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1 g-SIS Instantiations

1.1 g-SIS0 Model

States States in g-SIS0 systems have the following fields.

• S, the set of subjects

• O, the set of objects

• G, the set of groups

• T , the set of times

• >T , the total order on T

• Time ∈ T , the current time

• StrictJoin ⊆ S ×G× T , the record of strict join events

• LiberalJoin ⊆ S ×G× T , the record of liberal join events

• StrictLeave ⊆ S ×G× T , the record of strict leave events

• LiberalLeave ⊆ S ×G× T , the record of liberal leave events

• StrictAdd ⊆ O ×G× T , the record of strict add events

• LiberalAdd ⊆ O ×G× T , the record of liberal add events

• StrictRemove ⊆ O ×G× T , the record of strict remove events

• LiberalRemove ⊆ O ×G× T , the record of liberal remove events

Requests

• s, o, g for whether subject s has access to o through group g
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Queries g-SIS0 includes queries Member, Assoc, and auth. Below, we define these queries and
several helper predicates that simplify their definition.

• Join(s, g, t) , StrictJoin(s, g, t) ∨ LiberalJoin(s, g, t)

• Leave(s, g, t) , StrictLeave(s, g, t) ∨ LiberalLeave(s, g, t)
• Add(o, g, t) , StrictAdd(o, g, t) ∨ LiberalAdd(o, g, t)

• Remove(o, g, t) , StrictRemove(o, g, t) ∨ LiberalRemove(o, g, t)
• Member(s, g) , ∃t1.(

Join(s, g, t1) ∧
∀t2.(

Leave(s, g, t2)⇒ t1 > t2
)

)

• Assoc(o, g) , ∃t1.(
Add(o, g, t1) ∧
∀t2.(

Remove(o, g, t2)⇒ t1 > t2
)

)

• authForward(s, o, g) , ∃t1, t2.(
Join(s, g, t1) ∧
Add(o, g, t2) ∧
t2 > t1 ∧
∀t3.(

Leave(s, g, t3)⇒ (t1 > t3 ∨ t3 > t2) ∧
StrictLeave(s, g, t3)⇒ t2 > t3 ∧
StrictRemove(o, g, t3)⇒ t2 > t3

)
)

• authBackward(s, o, g) , ∃t1, t2.(
LiberalJoin(s, g, t1) ∧
LiberalAdd(o, g, t2) ∧
t1 > t2 ∧
∀t3.(

Remove(o, g, t3)⇒ (t2 > t3 ∨ t3 > t1) ∧
StrictLeave(s, g, t3)⇒ t1 > t3 ∧
StrictRemove(o, g, t3)⇒ t1 > t3

)
)

• auth(s, o, g) , authForward(s, o, g) ∨ authBackward(s, o, g)

1.2 g-SIS Systems

1.2.1 Role-like g-SIS

Labels

• addS(s): Add S(s)

• delS(s): Remove S(s)
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• addG(g): Add G(g)

• delG(g): Remove G(g)

• addO(o): Add O(o)

• delO(o): Remove O(o)

• liberalJoin(s, g): Remove Time(t), add LiberalJoin(s, g, t), T ime(t+ 1)

• strictLeave(s, g): Remove Time(t), add StrictLeave(s, g, t), T ime(t+ 1)

• liberalAdd(o, g): Remove Time(t), add LiberalAdd(o, g, t), T ime(t+ 1)

• strictRemove(o, g): Remove Time(t), add StrictRemove(o, g, t), T ime(t+ 1)

Simplified auth Definition

• auth(s, o, g) , ∃t1, t2.(
LiberalJoin(s, g, t1) ∧
LiberalAdd(o, g, t2) ∧
∀t3.(

StrictLeave(s, g, t3)⇒ t1 > t3 ∧
StrictRemove(o, g, t3)⇒ t2 > t3

)
)

1.2.2 Top g-SIS

Labels

• addS(s): Add S(s)

• delS(s): Remove S(s)

• addG(g): Add G(g)

• delG(g): Remove G(g)

• addO(o): Add O(o)

• delO(o): Remove O(o)

• strictJoin(s, g): Remove Time(t), add StrictJoin(s, g, t), T ime(t+ 1)

• strictLeave(s, g): Remove Time(t), add StrictLeave(s, g, t), T ime(t+ 1)

• strictAdd(o, g): Remove Time(t), add StrictAdd(o, g, t), T ime(t+ 1)

• strictRemove(o, g): Remove Time(t), add StrictRemove(o, g, t), T ime(t+ 1)

Simplified auth Definition

• auth(s, o, g) , ∃t1, t2.(
StrictJoin(s, g, t1) ∧
StrictAdd(o, g, t2) ∧
t2 > t1 ∧
∀t3.(

StrictLeave(s, g, t3)⇒ t1 > t3 ∧
StrictRemove(o, g, t3)⇒ t2 > t3

)
)
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1.2.3 Bottom g-SIS

Labels

• addS(s): Add S(s)

• delS(s): Remove S(s)

• addG(g): Add G(g)

• delG(g): Remove G(g)

• addO(o): Add O(o)

• delO(o): Remove O(o)

• liberalJoin(s, g): Remove Time(t), add LiberalJoin(s, g, t), T ime(t+ 1)

• liberalLeave(s, g): Remove Time(t), add LiberalLeave(s, g, t), T ime(t+ 1)

• liberalAdd(o, g): Remove Time(t), add LiberalAdd(o, g, t), T ime(t+ 1)

• liberalRemove(o, g): Remove Time(t), add LiberalRemove(o, g, t), T ime(t+ 1)

Simplified auth Definition

• auth(s, o, g) , ∃t1, t2.(
LiberalJoin(s, g, t1) ∧
LiberalAdd(o, g, t2) ∧
(

t2 > t1 ∧
∀t3.(LiberalLeave(s, g, t3)⇒ t1 > t3 ∨ t3 > t2)

) ∨ (
t1 > t2 ∧
∀t3.(LiberalRemove(o, g, t3)⇒ t2 > t3 ∨ t3 > t1)

)
)

1.3 g-SIS Workloads

1.3.1 Program Committee

Labels

• addS(s): Add S(s)

• delS(s): Remove S(s)

• addG(g): Add G(g)

• delG(g): Remove G(g)

• addO(o): Add O(o)

• strictJoin(s, g): Remove Time(t), add StrictJoin(s, g, t), T ime(t+ 1)

• liberalJoin(s, g): Remove Time(t), add LiberalJoin(s, g, t), T ime(t+ 1)

• strictLeave(s, g): Remove Time(t), add StrictLeave(s, g, t), T ime(t+ 1)

• liberalLeave(s, g): Remove Time(t), add LiberalLeave(s, g, t), T ime(t+ 1)

• liberalAdd(o, g): Remove Time(t), add LiberalAdd(o, g, t), T ime(t+ 1)
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auth Definition

• authForward(s, o, g) , ∃t1, t2.(
Join(s, g, t1) ∧
LiberalAdd(o, g, t2) ∧
t2 > t1 ∧
∀t3.(

Leave(s, g, t3)⇒ (t1 > t3 ∨ t3 > t2) ∧
StrictLeave(s, g, t3)⇒ t2 > t3

)
)

• authBackward(s, o, g) , ∃t1, t2.(
LiberalJoin(s, g, t1) ∧
LiberalAdd(o, g, t2) ∧
t1 > t2 ∧
∀t3.(

StrictLeave(s, g, t3)⇒ t1 > t3
)

)

• auth(s, o, g) , authForward(s, o, g) ∨ authBackward(s, o, g)

Traces Valid traces include three phases. In the first phase, the creation phase, program committee
groups are created. In the join phase, which follows, users liberal join discussion groups while papers
are made available to these groups via liberal add. Occasionally, a user must resign with strict leave.
Finally, during the review phase, users discuss the papers, posting reviews and messages to PC
groups. When a user has a conflict of interest with upcoming discussion, she liberal leaves for a
period of time before strict joining again.

1.3.2 PlayStation Plus

Labels

• addS(s): Add S(s)

• delS(s): Remove S(s)

• addO(o): Add O(o)

• delO(o): Remove O(o)

• liberalJoin(s, g): Remove Time(t), add LiberalJoin(s, g, t), T ime(t+ 1)

• strictLeave(s, g): Remove Time(t), add StrictLeave(s, g, t), T ime(t+ 1)

• liberalAdd(o, g): Remove Time(t), add LiberalAdd(o, g, t), T ime(t+ 1)

• strictRemove(o, g): Remove Time(t), add StrictRemove(o, g, t), T ime(t+ 1)

• liberalRemove(o, g): Remove Time(t), add LiberalRemove(o, g, t), T ime(t+ 1)

auth Definition Note that, due to its having restorative rejoin, this system is not a member of
the g-SIS0 model and therefore the following auth definition is not a simplified or special case of the
one used in g-SIS0.

• auth(s, o, g) ,Member(s, g) ∧
∃t1, t2.(

LiberalJoin(s, g, t1) ∧
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LiberalAdd(o, g, t2) ∧
∀t3.(StrictRemove(o, g, t3)⇒ t2 > t3) ∧
(

t2 > t1 ∧
∀t3.(StrictLeave(s, g, t3)⇒ (t1 > t3 ∨ t3 > t2))

) ∨ (
t1 > t2 ∧
∀t3.(Remove(o, g, t3)⇒ (t2 > t3 ∨ t3 > t1))

)
)

Traces Initial states include those with 2–5 groups, which represent regions (e.g., Sony’s PlayStation
Plus includes regions US, Europe, and Japan). One subject represents the service administrator, while
others represent subscribers. Some objects represent free games, while others represent discounts.
Several times per week (3, on average), the administrator will remove one free game, and replace it
with another. In addition, also several times weekly (9 times per week, on average), the administrator
will remove one discount from availability, and with the same rate adds new discounts. All objects
are added to groups with liberal add. Discounts are removed with strict remove, while free games
are removed with liberal add.

Subscribers join for fixed subscription periods—Sony offers 3-month and 1-year subscriptions.

2 Candidate Dissemination-centric Systems

2.1 Role-Based Access Control

This role-based system, RBAC0, is based on the system of the same name in the RBAC standard [2].

States States in RBAC0 have the following fields.

• U , the set of users

• R, the set of roles

• P , the set of permissions

• UR ⊆ U ×R, the user-role relation

• PA ⊆ R× P , the role-permission relation

Requests

• u, p for whether user u has access to permission p

Queries

• UR(u, r)

• PA(r, p)

• R(r)

• auth(u, p) , ∃r1.(UR(u, r1) ∧ PA(r1, p))
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Labels

• addU(u): Add U(u)

• delU(u): Remove U(u)

• addR(r): Add R(r)

• delR(r): Remove R(r)

• addP (p): Add P (p)

• delP (p): Remove P (p)

• assignUser(u, r): Add UR(u, r)

• revokeUser(u, r): Remove UR(u, r)

• assignPermission(r, p): Add PA(r, p)

• revokePermission(r, p): Remove PA(r, p)

2.2 Role-Based Access Control with Role Hierarchy

This hierarchical role-based system, RBAC1, is based on the system of the same name in the RBAC
standard [2].

States States in RBAC1 have the following fields.

• U , the set of users

• R, the set of roles

• P , the set of permissions

• UR ⊆ U ×R, the user-role relation

• PA ⊆ R× P , the role-permission relation

• RH ⊆ R×R, a partially ordered role hierarchy (written ≥ in infix notation)

Requests

• u, p for whether user u has access to permission p

Queries

• UR(u, r)

• PA(r, p)

• R(r)

• RH(r1, r2)

• Senior(r1, r2) , RH(r1, r2) ∨ ∃r3.(
Senior(r1, r3) ∧ Senior(r3, r2)

)

• auth(u, p) , ∃r1, r2.(
UR(u, r1) ∧ PA(r2, p) ∧ (r1 = r2 ∨ Senior(r1, r2))

)
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Labels

• addU(u): Add U(u)

• delU(u): Remove U(u)

• addR(r): Add R(r)

• delR(r): Remove R(r)

• addP (p): Add P (p)

• delP (p): Remove P (p)

• assignUser(u, r): Add UR(u, r)

• revokeUser(u, r): Remove UR(u, r)

• assignPermission(r, p): Add PA(r, p)

• revokePermission(r, p): Remove PA(r, p)

• addHierarchy(r1, r2): Add RH(r1, r2)

• removeHierarchy(r1, r2): Remove RH(r1, r2)

2.3 ugo System

The ugo system is based on UNIX’s traditional user-group-other discretionary access control system.

States States in ugo have the following fields.

• S, the set of subjects

• O, the set of objects

• G, the set of groups

• R = {read,write, execute}, the set of rights

• Member ⊆ S ×G, the group-membership relation

• Owner : O → S, the object-ownership record

• Group : O → G, the object-group-membership record

• OwnerRight ⊆ O ×R, the granted owner rights for objects

• GroupRight ⊆ O ×R, the granted group rights for objects

• OtherRight ⊆ O ×R, the granted global rights for objects

Requests

• s, o, r for whether subject s has access to object o with right r.

Queries

• G(g)

• Member(s, g)

• Group(o, g)

• OwnerAccess(s, o) , Owner(o, s)
• GroupAccess(s, o) , ¬Owner(o, s) ∧ ∃g1.(Group(o, g1) ∧Member(s, g1))

• OtherAccess(s, o) , ¬Owner(o, s) ∧ ∀g1.(¬Group(o, g1) ∨ ¬Member(s, g1))
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• auth(s, o, r) ,
OwnerAccess(s, o) ∧OwnerRight(o, r) ∨
GroupAccess(s, o) ∧GroupRight(o, r) ∨
OtherAccess(s, o) ∧OtherRight(o, r)

Labels

• addS(s): Add S(s)

• delS(s): Remove S(s)

• addO(o): Add O(o)

• delO(o): Remove O(o)

• addG(g): Add G(g)

• delG(g): Remove G(g)

• changeOwner(o, s): Set Owner(o) = s

• changeGroup(o, g): set Group(o) = g

• grantOwner(o, r): Add OwnerRight(o, r)

• revokeOwner(o, r): Remove OwnerRight(o, r)

• grantGroup(o, r): Add GroupRight(o, r)

• revokeGroup(o, r): Remove GroupRight(o, r)

• grantOther(o, r): Add OtherRight(o, r)

• revokeOther(o, r): Remove OtherRight(o, r)

3 Preliminary Proofs

3.1 Derived auth Definitions

Here, we prove the simplified auth definition of role-like g-SIS by simple logical deduction. The
other auth definitions for systems belonging to the g-SIS0 model (i.e., excluding the Playstation Plus
system) can be proved similarly.

Lemma 1 The rgSIS-specific definition of auth (authr) is equivalent to the general definition of
auth for g-SIS0 (auth0) within the restricted context of the role-like g-SIS system rgSIS.
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auth0(s, o, g) , (

∃t1, t2.(
Join(s, g, t1)∧
Add(o, g, t2)∧
t2 > t1∧
∀t3.(

Leave(s, g, t3)⇒ (t1 > t3 ∨ t3 > t2)∧
StrictLeave(s, g, t3)⇒ t2 > t3∧
StrictRemove(o, g, t3)⇒ t2 > t3

)

)

) ∨ (

∃t1, t2.(
LiberalJoin(s, g, t1)∧
LiberalAdd(o, g, t2)∧
t1 > t2∧
∀t3.(

Remove(o, g, t3)⇒ (t2 > t3 ∨ t3 > t1)∧
StrictLeave(s, g, t3)⇒ t1 > t3∧
StrictRemove(o, g, t3)⇒ t1 > t3

)

)

)

authr(s, o, g) , ∃t1, t2.(
LiberalJoin(s, g, t1)∧
LiberalAdd(o, g, t2)∧
∀t3.(

StrictLeave(s, g, t3)⇒ t1 > t3∧
StrictRemove(o, g, t3)⇒ t2 > t3

)

)

Proof Since role-like g-SIS includes only liberal join and add, and only strict leave and remove, we
have:

Joinr(s, g, t) , LiberalJoin(s, g, t)

Leaver(s, g, t) , StrictLeave(s, g, t)

Addr(o, g, t) , LiberalAdd(o, g, t)

Remover(o, g, t) , StrictRemove(o, g, t)

First, inspect authForward, the first half of the auth0 definition.

authForward0(s, o, g) , ∃t1, t2.(
Join(s, g, t1)∧
Add(o, g, t2)∧
t2 > t1∧
∀t3.(

Leave(s, g, t3)⇒ (t1 > t3 ∨ t3 > t2)∧
StrictLeave(s, g, t3)⇒ t2 > t3∧
StrictRemove(o, g, t3)⇒ t2 > t3

)

)
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Substitute rgSIS-specific expansions for Join, Add, and Leave.

authForwardr(s, o, g)⇔ ∃t1, t2.(
LiberalJoin(s, g, t1)∧
LiberalAdd(o, g, t2)∧
t2 > t1∧
∀t3.(

StrictLeave(s, g, t3)⇒ (t1 > t3 ∨ t3 > t2)∧
StrictLeave(s, g, t3)⇒ t2 > t3∧
StrictRemove(o, g, t3)⇒ t2 > t3

)

)

Remove redundancy.

authForwardr(s, o, g)⇔ ∃t1, t2.(
LiberalJoin(s, g, t1)∧
LiberalAdd(o, g, t2)∧
t2 > t1∧
∀t3.(

StrictLeave(s, g, t3)⇒ t1 > t3∧
StrictRemove(o, g, t3)⇒ t2 > t3

)

)

Next, we follow the same procedure for authBackward.

authBackwardr(s, o, g)⇔ ∃t1, t2.(
LiberalJoin(s, g, t1)∧
LiberalAdd(o, g, t2)∧
t1 > t2∧
∀t3.(

Remove(o, g, t3)⇒ (t2 > t3 ∨ t3 > t1)∧
StrictLeave(s, g, t3)⇒ t1 > t3∧
StrictRemove(o, g, t3)⇒ t1 > t3

)

)
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authBackwardr(s, o, g)⇔ ∃t1, t2.(
LiberalJoin(s, g, t1)∧
LiberalAdd(o, g, t2)∧
t1 > t2∧
∀t3.(

StrictLeave(s, g, t3)⇒ t1 > t3∧
StrictRemove(o, g, t3)⇒ t2 > t3∧

)

)

Now, since auth0(s, o, g) , authForward0(s, o, g) ∨ authBackward0(s, o, g),

authr(s, o, g)⇔ (

∃t1, t2.(
LiberalJoin(s, g, t1)∧
LiberalAdd(o, g, t2)∧
t2 > t1∧
∀t3.(

StrictLeave(s, g, t3)⇒ t1 > t3∧
StrictRemove(o, g, t3)⇒ t2 > t3

)

)

) ∨ (

∃t1, t2.(
LiberalJoin(s, g, t1)∧
LiberalAdd(o, g, t2)∧
t1 > t2∧
∀t3.(

StrictLeave(s, g, t3)⇒ t1 > t3∧
StrictRemove(o, g, t3)⇒ t2 > t3∧

)

)

)
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authr(s, o, g)⇔ ∃t1, t2.(
LiberalJoin(s, g, t1)∧
LiberalAdd(o, g, t2)∧
(

t2 > t1∧
∀t3.(

StrictLeave(s, g, t3)⇒ t1 > t3∧
StrictRemove(o, g, t3)⇒ t2 > t3

)

) ∨ (

t1 > t2∧
∀t3.(

StrictLeave(s, g, t3)⇒ t1 > t3∧
StrictRemove(o, g, t3)⇒ t2 > t3∧

)

)

)

authr(s, o, g)⇔ ∃t1, t2.(
LiberalJoin(s, g, t1)∧
LiberalAdd(o, g, t2)∧
∀t3.(

StrictLeave(s, g, t3)⇒ t1 > t3∧
StrictRemove(o, g, t3)⇒ t2 > t3

)∧
t2 > t1 ∨ t1 > t2

)

authr(s, o, g)⇔ ∃t1, t2.(
LiberalJoin(s, g, t1)∧
LiberalAdd(o, g, t2)∧
∀t3.(

StrictLeave(s, g, t3)⇒ t1 > t3∧
StrictRemove(o, g, t3)⇒ t2 > t3

)

)

Which is the definition as proposed. �

3.2 Weak AC-Preservation

Definition 1 Given a workloadW , a system Y , and an implementation I = 〈α, σ, π〉, π (and thus I)
is weak AC-preserving if there exists a request transformation f : Requests(W)→ Requests(Y) such
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that for any workload state w, workload request r, and system request r′, the following conditions
hold.

1. πauth(r)(Th(σ(w))) = true⇒ σ(w) ` auth(f(r))

2. σ(w) ` auth(r′)⇒ ∃r.(πauth(r)(Th(σ(w))) = true ∧ f(r) = r′) ♦

Lemma 2 Given two weak AC-preserving mappings, π1 and π2, π1 ◦ π2 is weak AC-preserving.

Proof Assume π1 is a query mapping from X to Y (i.e., a mapping from Y theories to X theories)
and π2 is a query mapping from Y to Z (i.e., a mapping from Z theories to Y theories).

Given π1 is weak AC-preserving, there exists a request transform f1 such that, for any Y theory
TY , X request r, and Y request r′:

auth(r) ∈ π1(TY)⇒ auth(f1(r)) ∈ TY

auth(r′) ∈ TY ⇒ ∃r.(auth(r) ∈ π1(TY) ∧ f1(r) = r′)

Given π2 is weak AC-preserving, there exists a request transform f2 such that, for any Z theory
TZ , Y request r, and Z request r′:

auth(r) ∈ π2(TZ)⇒ auth(f2(r)) ∈ TZ

auth(r′) ∈ TZ ⇒ ∃r.(auth(r) ∈ π2(TZ) ∧ f2(r) = r′)

Then, we show that π1 ◦ π2 is a weak AC-preserving query mapping from X to Z (i.e., mapping
from Z theories to X theories).

Choose an arbitrary Z theory, TZ , and X request, r. Assume auth(r) ∈ π1(π2(TZ)). By weak
AC-preservation of π1, auth(f1(r)) ∈ π2(TZ). By weak AC-preservation of π2, auth(f2(f1(r))) ∈ TZ .
Thus, (π1 ◦ π2)auth(r)(T

Z) = true⇒ auth(f2(f1(r))) ∈ TZ , and we have proved condition (1) for
weak AC-preservation of π1 ◦ π2 with request transform f2 ◦ f1.

Next, choose an arbitrary Z theory, TZ , and Z request, r′′. Assume auth(r′′) ∈ TZ . By weak
AC-preservation of π2, ∃r′.(auth(r′) ∈ π2(TZ) ∧ f2(r′) = r′′). By weak AC-preservation of π1,
∃r.(auth(r) ∈ π1(π2(TZ))) ∧ f2(f1(r)) = r′′). Thus, auth(r′′) ∈ TZ ⇒ ∃r.((π1 ◦ π2)auth(r)(T

Z) =
true ∧ f2(f1(r)) = r′′), and we have proved condition (2) for weak AC-preservation of π1 ◦ π2 with
request transform f2 ◦ f1.

Thus, if π1 is weak AC-preserving with transform f1, and π2 is weak AC-preserving with transform
f2, then π1 ◦ π2 is weak AC-preserving with transform f2 ◦ f1. �

Theorem 3 Given a correctness-preserving reduction 〈σ, π〉 from Y to Z where π is weak AC-
preserving, then Y ≤Ca Z.

Proof Since 〈σ, π〉 is correctness-preserving, we know already that Y ≤C Z (this can be proved
using either Theorem 1 from [1] or Corollary 4 from Section 3.3 of the present work). Thus, we
must simply show that, given a reduction 〈σ, π〉 from Y to Z where π is weak AC-preserving; and a
weak AC-preserving implementation 〈αY , σY , πY〉 of workload W in Y : the implementation 〈αZ , σZ ,
πZ〉 of W in Z is weak AC-preserving.

Since 〈σ, π〉 and 〈αY , σY , πY〉 are weak AC-preserving, π and πY are weak AC-preserving, say with
request transforms f and fY , respectively. Thus, by Lemma 2, πZ = πY ◦ π is weak AC-preserving
with transform fZ = f ◦ fY , and thus 〈αZ , σZ , πZ〉 is weak AC-preserving.
∴ Given a correctness-preserving reduction with weak AC-preserving query mapping from Y to

Z, Y ≤Ca Z. �
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3.3 Pseudo-Injective State Mappings

Definition 2 Given access control systems Y1 = 〈M1,L1, next1〉 and Y2 = 〈M2,L2, next2〉 and
reduction 〈σ, π〉 from Y1 to Y2, σ is pseudo-injective if, for all states x1 and x2 in Y1, if σ(x1) = σ(x2),
then ∀` ∈ L.(σ(next(x1, `)) = σ(next(x2, `))). ♦

Corollary 4 If there is a reduction 〈σ, π〉 from Y1 to Y2 where σ is pseudo-injective and preserves
reachability, then Y1 ≤C Y2.

Proof This proof proceeds exactly as in the proof of Theorem 8 in [1], up until the “potential
problem” of two workload states, w1 and w2, which map to the same Y2 state y. Since we have
generalized the one-to-one property required in Theorem 8 [1], we cannot use the same argument to
solve this problem in this case.

However, knowing that the state mapping from Y1 to Y2 is pseudo-injective, we thus know that
one of the following is true.

• Workload states w1 and w2 map to the same Y1 state x, in which case the argument from the
proof of Theorem 8 [1] holds (these states need not be implemented differently).

• Workload states w1 and w2 map to different Y1 states, x1 and x2 respectively, which both
map to y in Y2. Since σ is pseudo-injective, ∀` ∈ Labels(Y1).(σ(next(x1, `)) = σ(next(x2, `))).
Thus, x1 and x2 need not be implemented differently (and therefore αY2(y, l) has a well-defined
value).

The proof then proceeds again as in Theorem 8 [1], and we have shown that it is sufficient for a
correctness-preserving reduction that σ is pseudo-injective, even if it is not one-to-one. �

3.4 Revisiting Reduction Transitivity

Proposition 5 Suppose ρ1 is a reduction from Y1 to Y2 and ρ2 is a reduction from Y2 to Y3,
where ρ1 and ρ2 are weak AC-preserving. Then there is a reduction from Y1 to Y3 that is weak
AC-preserving.

Proof Suppose ρ1 = 〈σ1, π1〉 and ρ2 = 〈σ2, π2〉. Then define the reduction ρ3 from Y1 to Y2 as
follows (it is shown in [1] that this construction results in a valid reduction).

π3(x) = π1(π2(x))

σ3(x) = σ2(σ1(x))

Say π1 is weak AC-preserving with request tranform f1, and π2 with f2. By Lemma 2, π3 = π1◦π2

is weak AC-preserving with transform f2 ◦ f1.
Thus, ρ3 is weak AC-preserving. �

Proposition 6 Suppose ρ1 is a reduction from Y1 to Y2 and ρ2 is a reduction from Y2 to Y3, where
ρ1 is pseudo-injective and ρ2 is injective (one-to-one). Then there is a reduction from Y1 to Y3 that
is pseudo-injective.

Proof Suppose ρ1 = 〈σ1, π1〉 and ρ2 = 〈σ2, π2〉. As in the previous proof, define the reduction ρ3
from Y1 to Y2 as follows.

π3(x) = π1(π2(x))

σ3(x) = σ2(σ1(x))

Assume ρ1 is pseudo-injective and ρ2 is injective. Then, for two states x1 and x2 in Y1, if
σ3(x1) = σ3(x2), then σ2(σ1(x1)) = σ2(σ1(x2)).
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Since ρ2 is injective, σ1(x1) = σ1(x2). Then, by the pseudo-injectiveness of ρ1, for any label `1
in Y1, σ1(next(x1, `1)) = σ1(next(x2, `1)). Of course, now σ2(σ1(next(x1, `))) = σ2(σ1(next(x2, `))),
and σ3(next(x1, `)) = σ3(next(x2, `)).

Thus, ρ3 is pseudo-injective. �

3.5 Reduction-Implied Implementations

Here we prove that a reduction Y ≤G Z implies there exists an implementation of 〈Y, T 〉 in Z with
guarantees G for any set of traces T .

Lemma 7 Given access control systems Y and Z, a set of security guarantees G, and any set T of
traces over Y; if there exists a reduction from Y to Z that preserves G (Y ≤G Z) then there exists an
implementation of workload 〈Y, T 〉 in Z with guarantees G.

Proof It is clear that Y can trivially implement workload 〈Y, T 〉 with guarantees G. By definition
of parameterized expressiveness, Y ≤G Z says that any workload that can be implemented in Y with
guarantees G can be implemented in Z with guarantees G. Thus, there exists an implementation of 〈Y,
T 〉 in Z. �

Corollary 8 Given access control systems Y and Z, a set of security guarantees G, and any set T
of traces over Y; if there does not exist an implementation of workload 〈Y, T 〉 in Z with guarantees
G, then there does not exist a reduction from Y to Z that preserves G (Y6≤GZ).

Proof Follows immediately from Lemma 7. �

4 Reductions

4.1 Role-like g-SIS and RBAC0

Theorem 9 There exists a reduction 〈σ, π〉 from role-like g-SIS to RBAC0 where:

• σ preserves π, is pseudo-injective, preserves reachability, and is homomorphic

• π is weak AC-preserving and homomorphic

Thus, rgSIS ≤CaH RBAC0 (RBAC0 is at least as expressive as role-like g-SIS with respect to
correctness, weak AC-preservation, and homomorphism).

Proof We present the reduction, 〈σ, π〉. First, σ maps the g-SIS state 〈S,O,G, T, T ime,
LiberalJoin, StrictLeave, LiberalAdd, StrictRemove〉 to an RBAC0 state of the form 〈U,R, P, UR,
PA〉. This mapping is described by the following HPL method (and is thus homomorphic).

f o r each (S( s ) ∈ M)
output (U( s ) )

f o r each (G( g ) ∈ M)
output (R( g ) )

f o r each (O( o ) ∈ M)
output (P( o ) )

f o r each ( L i b e r a l J o i n ( s , g , t ) ∈ M)
Old = {}
f o r each ( S t r i c tLeave ( s , g , x ) ∈ M)

I f >T (x , t ) ∈ M then
Old = {<s , g>}
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e n d i f
I f <s , g> /∈ Old

output (UR( s , g ) )
e n d i f

f o r each ( LiberalAdd ( o , g , t ) ∈ M)
Old = {}
f o r each ( StrictRemove ( o , g , x ) ∈ M)

I f >T (x , t ) ∈ M then
Old = {<o , g>}

e n d i f
I f <o , g> /∈ Old

output (PA( g , o ) )
e n d i f

π is defined as follows.

πMember(s,g)(T ) = UR(s, g) ∈ T
πAssoc(o,g)(T ) = PA(g, o) ∈ T
πauth(s,o,g)(T ) = UR(s, g), PA(g, o) ∈ T

This query mapping clearly contains no string manipulation and is thus homomorphic.
Let x be an arbitrary rgSIS state and λ = (s, o, g) an arbitrary rgSIS request, and let f(s, o, g) =

(s, o) be a request transform. Assume πauth(λ)(Th(σ(x))) = true. Then, UR(s, g) ∈ Th(σ(x)) ∧
PA(g, o) ∈ Th(σ(x)). Thus, it is clear that ∃r.(UR(s, r) ∈ Th(σ(x)) ∧ PA(r, o) ∈ Th(σ(x))), and
therefore σ(x) ` auth(f(λ)).

Now let x be an arbitrary rgSIS state, λ′ = (u, p) an arbitrary RBAC0 request, and f the request
transform defined above. Assume σ(x) ` auth(λ′). Then, ∃r.(UR(s, r) ∈ Th(σ(x)) ∧ PA(r, o) ∈
Th(σ(x))). Finally, f(u, p, r) = (u, p), and πauth(u,p,r)(Th(σ(x))) = true. Thus, π is weak AC-
preserving with transform f(s, o, g) = (s, o).

We show that σ preserves π (for all rgSIS states x, Th(x) = π(Th(σ(x)))) by contradiction.
Assume that there is some rgSIS state x and query q such that the value of q in x is the opposite of
the value of π(q) in σ(x). We show that, for each of the query forms of rgSIS, this assumption leads
to contradiction.

• Member Assume x ` Member(s, g) and σ(x) 0 π(Member(s, g)). Then,
∃t1.(LiberalJoin(s, g, t1) ∈ Th(x) ∧ ∀t2.(LiberalLeave(s, g, t2) ∈ Th(x) ⇒ t1 > t2)) (s has
joined g and not left). By σ, UR(s, g) ∈ Th(σ(x)). Thus, by π, πMember(s,g)(Th(σ(x))) = true,
which is a contradiction on the assumption that σ(x) 0 π(Member(s, g)).

Assume instead that x 0 Member(s, g) and σ(x) ` π(Member(s, g)). Then, either
∃t1.(LiberalLeave(s, g, t1) ∈ Th(x) ∧ ∀t2.(LiberalJoin(s, g, t2) ∈ Th(x) ⇒ t1 > t2)) (s has left g
and not returned), or ∀t1.(LiberalJoin(s, g, t1) /∈ Th(x)) (s has not joined g). By σ, in either case,
UR(s, g) /∈ Th(σ(x)). Thus, by π, πMember(o,g)(Th(σ(x))) = false, which is a contradiction on
the assumption that σ(x) ` π(Member(s, g)).

• Assoc Assume x ` Assoc(o, g) and σ(x) 0 π(Assoc(o, g)). Then, ∃t1.(LiberalAdd(o, g, t1) ∈
Th(x) ∧ ∀t2.(LiberalRemove(o, g, t2) ∈ Th(x) ⇒ t1 > t2)) (o was added to g and not removed).
Thus, by σ, PA(g, o) ∈ Th(σ(x))). By π, πAssoc(o,g)(Th(σ(x))) = true, which is a contradiction
on the assumption that σ(x) 0 π(Assoc(o, g)).

Assume instead that x 0 Assoc(o, g) and σ(x) ` π(Assoc(o, g)). Then, either
∃t1.(LiberalRemove(o, g, t1) ∈ Th(x) ∧ ∀t2.(LiberalAdd(o, g, t2) ∈ Th(x) ⇒ t1 > t2)) (s
was removed from g and not re-added), or ∀t1.(LiberalAdd(o, g, t1) /∈ Th(x)) (o has not added to
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g). By σ, in either case, PA(g, o) /∈ Th(σ(x))). Thus, by π, πAssoc(o,g)(Th(σ(x))) = false, which
is a contradiction on the assumption that σ(x) ` π(Assoc(o, g)).

• auth Assume x ` auth(s, o, g) and σ(x) 0 π(auth(s, o, g)). Then, ∃t1.(LiberalJoin(s, g, t1) ∈
Th(x) ∧ ∀t2.(LiberalLeave(s, g, t2) ∈ Th(x) ⇒ t1 > t2)) (s has joined g and not left), and
∃t1.(LiberalAdd(o, g, t1) ∈ Th(x) ∧ ∀t2.(LiberalRemove(o, g, t2) ∈ Th(x) ⇒ t1 > t2)) (o was
added to g and not removed). By σ, UR(s, g) ∈ Th(σ(x)) ∧ PA(g, o) ∈ Th(σ(x)). Thus,
by π, πauth(s,o,g)(Th(σ(x))) = true, which is a contradiction on the assumption that σ(x) 0
π(auth(s, o, g))

Assume instead that x 0 auth(s, o, g) and σ(x) ` π(auth(s, o, g)). Then, there are four possibilities
which we consider in pairs. If ∃t1.(LiberalLeave(s, g, t1) ∈ Th(x) ∧ ∀t2.(LiberalJoin(s, g, t2) ∈
Th(x) ⇒ t1 > t2)) (s has left g and not returned), or ∀t1.(LiberalJoin(s, g, t1) /∈ Th(x)) (s has
not joined g), then by σ, UR(s, g) /∈ Th(σ(x)), and thus by π, πauth(s,o,g)(Th(σ(x))) = false
(a contradiction). If instead ∃t1.(LiberalRemove(o, g, t1) ∈ Th(x) ∧ ∀t2.(LiberalAdd(o, g, t2) ∈
Th(x)⇒ t1 > t2)) (s was removed from g and not re-added), or ∀t1.(LiberalAdd(o, g, t1) /∈ Th(x))
(o has not added to g), then by σ, PA(g, o) /∈ Th(σ(x))), and thus by π, πauth(s,o,g)(Th(σ(x))) =
false.

Thus, by contradiction, σ preserves π.
For all rgSIS states s, s′, if s′ is reachable from s, then there exists a sequence of labels 〈`1, `2,

. . . , `n〉 such that terminal(s, `1 ◦ `2 ◦ · · · ◦ `n) = s′. We will show that, for any rgSIS state x and
label `, σ(next(x, `)) is reachable from σ(x) via RBAC0 labels. By induction, this will show that for
each intermediate rgSIS state si between s and s′, σ(si) is reachable from σ(s) and ultimately that
σ(s′) is reachable from σ(s) (i.e., that σ preserves reachability).

Given rgSIS state x and label `, x′ = next(x, `) is the state resulting from executing label ` in
state x.

• If ` is an instance of addS(s), then x′ = next(x, `) = x∪S(s). By σ, this maps in RBAC0 to state
σ(x′) = σ(x∪S(s)) = σ(x)∪U(s). By RBAC0’s next relation, next(σ(x), addU(s)) = σ(x)∪U(s).
Thus, if ` is an instance of addS(s), σ(x′) is reachable from σ(x) via execution of addU(s). A
similar argument holds for instances of addG(g) and addO(o) (with reachability in RBAC0 via
addR(g) and addP (o), respectively).

• If ` is an instance of delS(s), then x′ = x \ (S(s)∪Entries(x, s)), where Entries(x, s) denotes the
set of all state tuples in x involving s1. By σ, this maps in RBAC0 to state σ(x′) = σ(x \ (S(s) ∪
Entries(s))) = σ(x)\(U(s)∪Entries(σ(x), s)). By RBAC0’s next relation, next(σ(x), delU(s)) =
σ(x) \ (U(s) ∪ Entries(s)). Thus, if ` is an instance of delS(s), σ(x′) is reachable from σ(x) via
execution of delU(s). A similar argument holds for instances of delG(g) and delO(o) (with
reachability in RBAC0 via delR(g) and delP (o), respectively).

• If ` is an instance of liberalJoin(s, g), then x′ = x ∪ LiberalJoin(s, g, t) ∪ Time(t+ 1) \ Time(t).
By σ, this maps in RBAC0 to state σ(x′) = σ(x) ∪ UR(s, g). By RBAC0’s next relation,
next(σ(x), assignUser(s, g)) = σ(x) ∪ UR(s, g). Thus, if ` is an instance of liberalJoin, σ(x′) is
reachable from σ(x) via execution of assignUser(s, g). A similar argument holds for instances of
liberalAdd(o, g) with reachability via assignPermission(g, o).

• If ` is an instance of strictLeave(s, g), then x′ = x ∪ StrictLeave(s, g, t) ∪ Time(t+ 1) \ Time(t).
By σ, this maps in RBAC0 to σ(x′) = σ(x) \ UR(s, g). By RBAC0’s next relation,
next(σ(x), revokeUser(s, g)) = σ(x) \ UR(s, g). Thus, if ` is an instance of strictLeave(s, g),
σ(x′) is reachable from σ(x) via execution of revokeUser(s, g). A similar argument holds for
instances of strictRemove(o, g) with reachability via revokePermission(g, o).

1In the case of rgSIS, Entries(x, s) for subject s is {LiberalJoin(s, g, t) | LiberalJoin(s, g, t) ∈ x}∪{StrictLeave(s,
g, t) | StrictLeave(s, g, t) ∈ x}.
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Thus, for any rgSIS state u and label `, σ(next(u, `)) is reachable from σ(u) via RBAC0 labels. By
induction, for any rgSIS states s and s′, if s′ is reachable from s, then σ(s′) is reachable from σ(s).
Thus, we have shown that σ preserves reachability.

Finally, we show that σ is pseudo-injective. We first inspect σ to identify what set of differences
may exist between x and y and still allow σ(x) = σ(y). We then show that, if two rgSIS states x and
y are identical modulo this set of differences, then for any rgSIS label, `, next(x, `) and next(y, `)
are also identical modulo this set.

Assume σ(x) = σ(y). The state mapping, σ, stores S, G, and O directly in U , R, and P ,
respectively. The set of times, T , and current time, Time, are not stored in RBAC0. However, T is
immutable. Thus, states x and y must not differ in S, G, and O, and are guaranteed not to differ in
T , but may differ in current time Time.

Regarding the handling of LiberalJoin and StrictLeave by σ: These relations of rgSIS are
considered in combination. Rather than consider all joins and leaves a particular subject s has
performed for a particular group g, σ only considers the most recent join or leave event. If in x,
s has joined g and has not since left, by σ, UR(s, g) ∈ Th(σ(x)). If in x, s has left g and has not
since re-joined, or if s never joined g, UR(s, g) /∈ Th(σ(x)). Since past entries in LiberalJoin and
StrictLeave are not considered by σ, x and y can have any contents in these relations, so long as
they agree on the most recent event for each s and g (i.e., whether each s is currently a member of
each g).

For identical reasons regarding the storage of 〈g, o〉 ∈ PA by σ, x and y can have any contents in
LiberalAdd and StrictRemove as long as they agree, for each o and g, whether object o is currently
in group g.

Finally, StrictJoin, LiberalLeave, StrictAdd, and LiberalRemove are empty and immutable
over the labels of rgSIS. Thus, x and y are guaranteed to be identical in these relations.

Now, we examine each of the differences that may exist between x and y to ensure that, after
execution of any command in both, the resulting states will also differ only in these ways.

• Current time Consider two rgSIS states x and y that differ in the current time Time(t). Since
the current time is always greater than all times in the join, leave, add, and remove logs, the
difference in current time between these states will propogate only to a difference in the absolute
time of future events in the logs; relative order of future events will be preserved. Thus, for
any tgSIS label `, the differences between next(x, `) and next(y, `) will only be in current time
and absolute time of events. Thus, next(x, `) and next(y, `) will differ only in ways that ensure
σ(next(x, `)) = σ(next(y, `)).

• Absolute event times Consider rgSIS states x and y in which some event occured at different
absolute times but in the same order relative to other events. Since rgSIS labels can only add
events with the most recent timestamp, and do not consider the absolute times of past events,
for any rgSIS label `, next(x, `) and next(y, `) will differ only in this altered timestamp. Thus,
∀`.(σ(next(x, `)) = σ(next(y, `))).

• Relative inter-group event times Consider rgSIS states x and y in which two adjacent events
(operating on different groups) swap times. Since x and y are adjacent, this swap does not affect the
relative times of events within any particular group, and more importantly does not alter the most
recent event for a particular s, g or o, g pair. Thus, for any tgSIS label `, next(x, `) and next(y, `)
also differ only in these events’ relative times. Therefore, ∀`.(σ(next(x, `)) = σ(next(y, `))).

• Past events Consider two rgSIS states x and y which have different sets of LiberalJoin,
StrictLeave, LiberalAdd, and StrictRemove, but agree on the most recent event for each s, g (join
or leave) and o, g (add or remove). New events can only be added to the state with the most recent
time, and thus the different records between y and x will never impact a future decision—once events
become irrelevant, they cannot become relevant again. Thus, for any `, next(x, `) and next(y, `)
will continue to differ only in these previous events, and thus σ(next(x, `)) = σ(next(y, `)).
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We have enumerated the ways in which two distinct rgSIS states x and y can map to the same
RBAC0 state (i.e., x 6= y, σ(x) = σ(y)). In each case, we show that ∀`.(σ(next(x, `)) = σ(next(y, `))),
that is, that x and y are functionally equivalent with respect to σ. Thus, we have shown that σ is
pseudo-injective.

Thus, we have shown that σ preserves π, is pseudo-injective, preserves reachability, and is
homomorphic; and that π is weak AC-preserving and homomorphic.
∴ 〈σ, π〉 is a reduction from rgSIS to RBAC0 which shows rgSIS ≤CaH RBAC0. �

4.2 Top g-SIS and RBAC1

Theorem 10 There exists a reduction 〈σ, π〉 from top g-SIS (tgSIS) to RBAC1 where:

• σ preserves π, is pseudo-injective, preserves reachability, and is homomorphic

• π is weak AC-preserving and homomorphic

Thus, tgSIS ≤CaH RBAC1 (RBAC1 is at least as expressive as top g-SIS with respect to
correctness, weak AC-preservation, and homomorphism).

Proof We present the reduction, 〈σ, π〉. First, σ maps the g-SIS state 〈S,O,G, T, T ime, StrictJoin,
StrictLeave, StrictAdd, StrictRemove〉 to the RBAC1 state 〈U,R, P, UR, PA,RH〉. This mapping
is described as follows.

sigma (M)
f o r each (S( s ) ∈ M)

output (U( s ) )
f o r each (G( g ) ∈ M)

output (R( g ) )
f o r each (O( o ) ∈ M)

output (P( o ) )

Let Records = sortByTime ( S t r i c t J o i n ∪ St r i c tLeave ∪
Str ictAdd ∪ StrictRemove )

Let WildRoles = {}
Let UR = {}
Let PA = {}
Let RH = {}
f o r each ( Record ∈ Records )

I f ∃ s , g , t . ( Record = <s , g , t> ∧
S t r i c t J o i n ( s , g , t ) ∈ M)

Proces sJo in (M, s , g , UR, RH, WildRoles )
e l s e I f ∃ s , g , t . ( Record = <s , g , t> ∧

St r i c tLeave ( s , g , t ) ∈ M)
ProcessLeave (M, s , g , UR, RH)

e l s e I f ∃ o , g , t . ( Record = <o , g , t> ∧
Str ictAdd ( o , g , t ) ∈ M)

ProcessAdd (M, o , g , PA, RH)
e l s e I f ∃ o , g , t . ( Record = <o , g , t> ∧

StrictRemove ( o , g , t ) ∈ M)
ProcessRemove (M, o , g , PA, RH)

e n d i f
outputSet (UR ∪ PA ∪ RH)
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Proces sJo in (M, s , g , UR, RH, WildRoles )
NewRole = nFreshConst (1 , Consts (M) ∪ WildRoles , Univ )
WildRoles = WildRoles ∪ {NewRole}
OldBottom = FindBottom ( g , RH)
output (R( NewRole ) )
RH = RH ∪ {<OldBottom , NewRole>}
UR = UR ∪ {<s , NewRole>}

FindBottom ( r , RH)
I f ∃ q.(< r , q> ∈ RH)

return FindBottom (q , RH)
e l s e

re turn r
e n d i f

ProcessLeave (M, s , g , UR, RH)
Ass ignedRoles = FindUser ( s , g , UR, RH, {})
f o r each ( AssignedRole ∈ AssignedRoles )

UR = UR \ {<s , AssignedRole>}

FindUser (u , r , PA, RH, Ass ignedRoles )
I f <u , r> ∈ UR

AssignedRoles = Ass ignedRoles ∪ { r }
e n d i f
I f ∃ q.(< r , q> ∈ RH)

return FindUser (u , q , PA, RH, Ass ignedRoles )
e l s e

re turn Ass ignedRoles
e n d i f

ProcessAdd (M, o , g , PA, RH)
Bottom = FindBottom ( g , RH)
PA = PA ∪ {<Bottom , o>}

ProcessRemove (M, o , g , PA, RH)
Ass ignedRoles = FindPerm ( o , g , PA, RH, {})
f o r each ( AssignedRole ∈ AssignedRoles )

PA = PA \ {<AssignedRole , o>}

FindPerm (p , r , PA, RH, Ass ignedRoles )
I f <r , p> ∈ PA

AssignedRoles = Ass ignedRoles ∪ { r }
e n d i f
I f ∃ q.(< r , q> ∈ RH)

return FindPerm (p , q , PA, RH, Ass ignedRoles )
e l s e

re turn Ass ignedRoles
e n d i f

As the mapping is described in HPL, it is homomorphic.
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The query mapping, π, is defined as follows.

πMember(s,g)(T ) = ∃r.(UR(s, r) ∈ T ∧ Senior(g, r) ∈ T )

πAssoc(o,g)(T ) = ∃r.(PA(r, o) ∈ T ∧ Senior(g, r) ∈ T )

πauth(s,o,g)(T ) = ∃r1, r2.(UR(s, r1) ∈ T ∧ PA(r2, o) ∈ T ∧
(r1 = r2 ∨ Senior(r1, r2) ∈ T ) ∧
Senior(g, r1) ∈ T )

This query mapping clearly contains no string manipulation and is thus homomorphic.
Let x be an arbitrary tgSIS state and λ = (s, o, g) an arbitrary tgSIS request, and let f(s, o, g) =

(s, o) be a request transform. Assume πauth(λ)(Th(σ(x))) = true. Then, by π, ∃r1, r2.(r1 ≥
r2 ∧UR(s, r1) ∈ Th(σ(x))∧PA(r2, o) ∈ Th(σ(x))). Thus, by RBAC1’s ` relation, σ(x) ` auth(s, o).

Now let x be an arbitrary tgSIS state, λ′ = (u, p) an arbitrary RBAC1 request, and f the request
transform defined above. Assume σ(x) ` auth(λ′). Then, ∃r1, r2.(r1 ≥ r2 ∧ UR(u, r1) ∈ Th(σ(x)) ∧
PA(r2, p) ∈ Th(σ(x))). Furthermore, since σ only assigns roles to users which correspond to some
group, r1 must exist in the hierarchy below a role corresponding to a group: Senior(g, r1) ∈ Th(σ(x)).
Finally, f(u, p, g) = (u, p), and πauth(u,p,g)(Th(σ(x))) = true. Thus, π is weak AC-preserving with
transform f(s, o, g) = (s, o).

We show that σ preserves π (for all tgSIS states x, Th(x) = π(Th(σ(x)))) by contradiction.
Assume that there is some tgSIS state x and query q such that the value of q in x is the opposite of
the value of π(q) in σ(x). We show that, for each of the query forms of tgSIS, this assumption leads
to contradiction.

• Member Assume x ` Member(s, g) and σ(x) 0 π(Member(s, g)). Then,
∃t1.(StrictJoin(s, g, t1) ∈ Th(x) ∧ ∀t2.(StrictLeave(s, g, t2) ∈ Th(x) ⇒ t1 > t2)) (s has
joined g and not left). By σ, ∃r1.(Senior(g, r1) ∈ Th(σ(x)) ∧ UR(s, r1) ∈ Th(σ(x))).
By π, πMember(s,g)(Th(σ(x))) = true, which is a contradiction on the assumption that
σ(x) 0 π(Member(s, g)).

Assume instead that x 0 Member(s, g) and σ(x) ` π(Member(s, g)). Then, either
∃t1.(StrictLeave(s, g, t1) ∈ Th(x) ∧ ∀t2.(StrictJoin(s, g, t2) ∈ Th(x) ⇒ t1 > t2)) (s has left g
and not returned), or ∀t1.(StrictJoin(s, g, t1) /∈ Th(x)) (s has not joined g). By σ, in either case,
∀r1.(Senior(g, r1) /∈ Th(σ(x)) ∨ UR(s, r1) /∈ Th(σ(x))). By π, πMember(o,g)(Th(σ(x))) = false,
which is a contradiction on the assumption that σ(x) ` π(Member(s, g)).

• Assoc Assume x ` Assoc(o, g) and σ(x) 0 π(Assoc(o, g)). Then, ∃t1.(StrictAdd(o, g, t1) ∈
Th(x) ∧ ∀t2.(StrictRemove(o, g, t2) ∈ Th(x)⇒ t1 > t2)) (o was added to g and not removed). By
σ, ∃r1.(Senior(g, r1) ∈ Th(σ(x)) ∧ PA(r1, o) ∈ Th(σ(x))). By π, πAssoc(o,g)(Th(σ(x))) = true,
which is a contradiction on the assumption that σ(x) 0 π(Assoc(o, g)).

Assume instead that x 0 Assoc(o, g) and σ(x) ` π(Assoc(o, g)). Then, either
∃t1.(StrictRemove(o, g, t1) ∈ Th(x) ∧ ∀t2.(StrictAdd(o, g, t2) ∈ Th(x) ⇒ t1 > t2)) (s
was removed from g and not re-added), or ∀t1.(StrictAdd(o, g, t1) /∈ Th(x)) (o has not
added to g). By σ, in either case, ∀r1.(Senior(g, r1) /∈ Th(σ(x)) ∨ PA(r1, o) /∈ Th(σ(x))).
By π, πAssoc(o,g)(Th(σ(x))) = false, which is a contradiction on the assumption that
σ(x) ` π(Assoc(o, g)).

• auth Assume x ` auth(s, o, g) and σ(x) 0 π(auth(s, o, g)). Then, ∃t1, t2.(StrictJoin(s, g, t1) ∈
Th(x)∧StrictAdd(o, g, t2) ∈ Th(x)∧ t2 > t1) (s joined g, and o was later added to g). Furthermore,
∀t3.(StrictLeave(s, g, t3) ∈ Th(x)⇒ t1 > t3) (s did not leave g), and ∀t3.(StrictRemove(o, g, t3) ∈
Th(x)⇒ t2 > t3) (o was not removed from g). By σ, ∃r1, r2.(UR(s, r1) ∈ Th(σ(x)) ∧ PA(r2, o) ∈
Th(σ(x)) ∧ (r1 = r2 ∨ Senior(r1, r2) ∈ Th(σ(x)))) (s belongs to a role authorized to o or senior to
a role authorized to o). Also by σ, Senior(g, r1) ∈ Th(σ(x)) (s and o are in the hierarchy below
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g). Thus, by π, πauth(s,o,g)(Th(σ(x))) = true, which is a contradiction on the assumption that
σ(x) 0 π(auth(s, o, g))

Assume instead that x 0 auth(s, o, g) and σ(x) ` π(auth(s, o, g)). Then, either
∀t1, t2.(StrictJoin(s, g, t1) /∈ Th(x) ∨ StrictAdd(o, g, t2) /∈ Th(x) ∨ t1 > t2) (o was not added to
g after s joined g) or ∃t3.((t3 > t1 ∧ StrictLeave(s, g, t3)) ∨ (t3 > t2 ∧ StrictRemove(o, g, t3)))
(one of s and o has since left/been removed from group g). Thus, by σ, if
∃r1, r2.(UR(s, r1) ∈ Th(σ(x)) ∧ PA(r2, o) ∈ Th(σ(x)) ∧ (r1 = r2 ∨ Senior(r1, r2) ∈ Th(σ(x)))) (s
belongs to a role authorized to o or senior to a role authorized to o), then it must be in conjunction
with a group other than g: Senior(g, r1) /∈ Th(σ(x)) (s and o are not in the hierarchy below
g). Thus, by π, πauth(s,o,g)(Th(σ(x))) = false, which is a contradiction on the assumption that
σ(x) ` π(auth(s, o, g)).

Thus, by contradiction, σ preserves π.
As in Theorem 9, we prove that σ preserves reachability by induction by showing the following:

for any tgSIS state x and label `, σ(next(x, `)) is reachable from σ(x) via RBAC1 labels.
Given tgSIS state x and label `, x′ = next(x, `) is the state resulting from executing label ` in

state x.

• If ` is an instance of addS(s), then x′ = next(x, `) = x∪S(s). By σ, this maps in RBAC1 to state
σ(x′) = σ(x∪S(s)) = σ(x)∪U(s). By RBAC1’s next relation, next(σ(x), addU(s)) = σ(x)∪U(s).
Thus, if ` is an instance of addS(s), σ(x′) is reachable from σ(x) via execution of addU(s). A
similar argument holds for instances of addG(g) and addO(o) (with reachability in RBAC1 via
addR(g) and addP (o), respectively).

• If ` is an instance of delS(s), then x′ = x \ (S(s) ∪ Entries(x, s)), where Entries(x, s) de-
notes the set of all state tuples in x involving s. By σ, this maps in RBAC1 to state
σ(x′) = σ(x \ (S(s) ∪ Entries(x, s))) = σ(x) \ (U(s) ∪ Entries(σ(x), s)). By RBAC1’s next
relation, next(σ(x), delU(s)) = σ(x) \ (U(s) ∪ Entries(σ(x), s)). Thus, if ` is an instance of
delS(s), σ(x′) is reachable from σ(x) via execution of delU(s). A similar argument holds for
instances of delO(o), with reachability via delP (o).

• If ` is an instance of delG(g), then x′ = x \ (G(g) ∪ Entries(x, g)). By σ, σ(x′) =
σ(x) \ (R(g) ∪ ConnectedEntries(σ(x), g)), where ConnectedEntries(σ(x), g) denotes the set
of state tuples in σ(x) involving either g or any role connected to g in the role hierarchy of
σ(x) (i.e., ConnectedEntries(x, r) , r ∪ Entries(x, r) ∪ {ConnectedEntries(x, q) | RH(r, q) ∈
Th(x)∨RH(q, r) ∈ Th(x)}). By RBAC1’s next relation, terminal(σ(x), delR(g) ◦ delR(r1) ◦ · · · ◦
delR(rk)) = σ(x) \ (R(g)∪ConnectedEntries(σ(x), g)), where r1, . . . , rk is the (finite) set of roles
connected to g in the role hierarchy. Thus, if ` is an instance of delG(g), σ(x′) is reachable from
σ(x) via execution of delR(g), delR(r1), . . . , delR(rk).

• If ` is an instance of strictJoin(s, g), then x′ = x∪StrictJoin(s, g, t)∪ Time(t+ 1) \ Time(t). By
σ, this maps in RBAC1 to state σ(x′) = σ(x)∪R(r1)∪UR(s, r1)∪RH(r2, r1), where r1 is a newly-
created wildcard role and r2 is the bottom role of the role hierarchy chain of which g is the top. By
RBAC1’s next relation, terminal(σ(x), addR(r1) ◦ assignUser(s, r1) ◦ addHierarchy(r2, r1)) =
σ(x) ∪R(r1) ∪ UR(s, r1) ∪RH(r2, r1). Thus, if ` is an instance of strictJoin, σ(x′) is reachable
from σ(x) via execution of addR(r1), assignUser(s, r1), and addHierarchy(r2, r1).

• If ` is an instance of strictAdd(o, g), then x′ = x∪StrictAdd(o, g, t)∪Time(t+1)\Time(t). By σ,
σ(x′) = σ(x)∪PA(r, o), where r is the bottom role of the role hierarchy chain of which g is the top.
By RBAC1’s next relation, next(σ(x), assignPermission(r, o)) = σ(x)∪PA(r, o). Thus, if ` is an
instance of strictAdd(o, g), σ(x′) is reachable from σ(x) via execution of assignPermission(r, o)
where r is the junior-most role below role g.

• If ` is an instance of strictLeave(s, g), then x′ = x ∪ StrictLeave(s, g, t) ∪ Time(t+ 1) \ Time(t).
By σ, σ(x′) = σ(x) \ UR(s, r), where r is the role of which s is a member, among the roles
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in the role hierarchy chain below g (i.e., UR(s, r) ∧ Senior(g, r)). By RBAC1’s next relation,
next(σ(x), revokeUser(s, r)) = σ(x) \ UR(s, r). Thus, if ` is an instance of strictLeave(s, g),
σ(x′) is reachable from σ(x) via execution of revokeUser(s, r) for r such that UR(s, r) ∧
Senior(g, r). A similar argument holds for instances of strictRemove(o, g) with reachability
via revokePermission(r, o) for r such that PA(r, o) ∧ Senior(g, r).

Thus, for any tgSIS state x and label `, σ(next(x, `)) is reachable from σ(x) via RBAC1 labels. By
induction, for any tgSIS states s and s′, if s′ is reachable from s, then σ(s′) is reachable from σ(s).
Thus, we have shown that σ preserves reachability.

Finally, we show that σ is pseudo-injective. We first inspect σ to identify what set of differences
may exist between x and y and still allow σ(x) = σ(y). We then show that, if two tgSIS states x and
y are identical modulo this set of differences, then for any tgSIS label, `, next(x, `) and next(y, `)
are also identical modulo this set.

Assume σ(x) = σ(y). The state mapping, σ, stores S, G, and O directly in U , R, and P ,
respectively. The set of times, T , and current time, Time, are not stored in RBAC1. However, T is
immutable. Thus, states x and y must not differ in S, G, and O, and are guaranteed not to differ in
T , but may differ in current time Time.

All entries in StrictJoin, StrictLeave, StrictAdd, and StrictRemove are considered in t order
by σ, and each s and g for joins and leaves, and each o and g for adds and removes, are utilized in
building the RBAC1 state. Since these entries are also considered in t order, for any particular group
g, these entries must remain in order. However, the absolute times are not stored in the RBAC1

state, and thus x and y can differ in absolute time for any events, and can differ in relative time for
events in different groups.

Finally, LiberalJoin, LiberalLeave, LiberalAdd, and LiberalRemove are empty and immutable
over the labels of tgSIS. Thus, x and y are guaranteed to be identical in these relations.

Now, we examine each of the differences that may exist between x and y to ensure that, after
execution of any command in both, the resulting states will also differ only in these ways.

• Current time Consider two tgSIS states x and y that differ in the current time Time(t). Since
the current time is always greater than all times in the join, leave, add, and remove logs, the
difference in current time between these states will propogate only to a difference in the absolute
time of future events in the logs; relative order of future events will be preserved. Thus, for
any tgSIS label `, the differences between next(x, `) and next(y, `) will only be in current time
and absolute time of events. Thus, next(x, `) and next(y, `) will differ only in ways that ensure
σ(next(x, `)) = σ(next(y, `)).

• Absolute event times Consider tgSIS states x and y in which some event occured at different
absolute times but in the same order relative to other events. Since tgSIS labels can only add
events with the most recent timestamp, and do not consider the absolute times of past events,
for any tgSIS label `, next(x, `) and next(y, `) will differ only in this altered timestamp. Thus,
∀`.(σ(next(x, `)) = σ(next(y, `))).

• Relative inter-group event times Consider tgSIS states x and y in which two adjacent events
(operating on different groups) swap times. Since x and y are adjacent, this swap does not affect
the relative times of events within any particular group. Since tgSIS is an isolated group model
(i.e., one group’s contents do not affect other groups), and since each group’s events are ordered
equivalently in x and y, then for any tgSIS label `, next(x, `) and next(y, `) also differ only in
these (inter-group) events’ relative times. Thus, ∀`.(σ(next(x, `)) = σ(next(y, `))).

We have enumerated the ways in which two distinct rgSIS states x and y can map to the same
RBAC1 state (i.e., x 6= y, σ(x) = σ(y)). In each case, we show that ∀`.(σ(next(x, `)) = σ(next(y, `))),
that is, that x and y are functionally equivalent with respect to σ. Thus, we have shown that σ is
pseudo-injective.
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Thus, we have shown that σ preserves π, is pseudo-injective, preserves reachability, and is
homomorphic; and that π is weak AC-preserving and homomorphic.
∴ 〈σ, π〉 is a reduction from tgSIS to RBAC1 which shows tgSIS ≤CaH RBAC1. �

4.3 Bottom g-SIS and RBAC1

Theorem 11 There exists a reduction 〈σ, π〉 from bottom g-SIS (bgSIS) to RBAC1 where:

• σ preserves π, is pseudo-injective, preserves reachability, and is homomorphic

• π is weak AC-preserving and homomorphic

Thus, bgSIS ≤CaH RBAC1 (RBAC1 is at least as expressive as bottom g-SIS with respect to
correctness, weak AC-preservation, and homomorphism).

Proof We present the reduction, 〈σ, π〉. First, σ maps the g-SIS state 〈S,O,G, T, T ime,
LiberalJoin, LiberalLeave, LiberalAdd, LiberalRemove〉 to the RBAC1 state 〈U,R, P, UR, PA,
RH〉. This mapping is described as follows.

sigma (M)
Let WildRoles = {}
Let UR = {}
Let PA = {}
Let RH = {}

f o r each (S( s ) ∈ M)
output (U( s ) )

f o r each (G( g ) ∈ M)
InitGroup (M, g , RH, WildRoles )

f o r each (O( o ) ∈ M)
output (P( o ) )

Let Records = sortByTime ( L i b e r a l J o i n ∪ Libera lLeave ∪
LiberalAdd ∪ LiberalRemove )

f o r each ( Record ∈ Records )
I f ∃ s , g , t . ( Record = <s , g , t> ∧

L i b e r a l J o i n ( s , g , t ) ∈ M)
Proces sJo in (M, s , g , UR, RH)

e l s e I f ∃ s , g , t . ( Record = <s , g , t> ∧
Libera lLeave ( s , g , t ) ∈ M)

ProcessLeave (M, s , g , UR, RH, WildRoles )
e l s e I f ∃ o , g , t . ( Record = <o , g , t> ∧

LiberalAdd ( o , g , t ) ∈ M)
ProcessAdd (M, o , g , PA, RH)

e l s e I f ∃ o , g , t . ( Record = <o , g , t> ∧
LiberalRemove ( o , g , t ) ∈ M)

ProcessRemove (M, o , g , UR, PA, RH, WildRoles )
e n d i f

outputSet (UR ∪ PA ∪ RH)

InitGroup (M, g , RH, WildRoles )
output (R( g ) )
<Top , Bottom> = nFreshConst (2 , Consts (M) ∪ WildRoles ,
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Univ )
WildRoles = WildRoles ∪ {Top , Bottom}
output (R(Top ) )
output (R( Bottom ) )
RH = RH ∪ {<Top , g>, <g , Bottom>}

Proces sJo in (M, s , g , RH)
Top = FindTop ( g , RH)
UR = UR ∪ {<s , Top>}

FindTop ( r , RH)
I f ∃ q.(<q , r> ∈ RH)

return FindTop ( q )
e l s e

re turn r
e n d i f

ProcessLeave (M, s , g , UR, RH, WildRoles )
OldTop = FindTop ( g , RH)
I f <s , OldTop> ∈ UR

NewTop = nFreshConst (1 , Consts (M) ∪ WildRoles ,
Univ )

WildRoles = WildRoles ∪ {NewTop}
output (R(NewTop) )
RH = RH ∪ {<NewTop , OldTop>}
f o r each (<x , OldTop> ∈ UR)

I f x 6= s then
Movers = Movers ∪ {x}
UR = UR \ {<x , OldTop>}

e n d i f
f o r each Mover ∈ Movers

UR = UR ∪ {<Mover , NewTop>}
e n d i f

ProcessAdd (M, o , g , PA, RH)
Top = FindTop ( g , RH)
PA = PA ∪ {<Top , o>}

ProcessRemove (M, o , g , UR, PA, RH, WildRoles )
Orphan = nFreshConst (1 , Consts (M) ∪ WildRoles , Univ )
WildRoles = WildRoles ∪ {Orphan}
output (R( Orphan ) )
FirstPermRole = FindPermOnce ( o , g , PA, RH)
I f FirstPermRole 6= {}

Accessor s = UsersBetweenRoles ( FindTop ( g , RH) ,
FirstPermRole , PA,
RH, {})

f o r each ( User ∈ Accessor s )
UR = UR ∪ {<User , Orphan>}

PA = PA ∪ {<Orphan , o>}
RH = RH ∪ {<Orphan , FindBottom ( g , RH)>}
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PermRoles = FindPerm ( o , g , PA, RH, {})
f o r each ( PermRole ∈ PermRoles )

PA = PA \ {<PermRole , o>}
e n d i f

FindBottom ( r , RH)
I f ∃ q.(< r , q> ∈ RH)

return FindBottom (q , RH)
e l s e

re turn r
e n d i f

FindPermOnce (p , r , PA, RH)
I f <r , p> ∈ PA

return r
e l s e I f ∃ q.(<q , r> ∈ RH)

return FindPermOnce (p , q , PA, RH)
e l s e

re turn {}
e n d i f

FindPerm (p , r , PA, RH, Ass ignedRoles )
I f <r , p> ∈ PA

AssignedRoles = Ass ignedRoles ∪ { r }
e n d i f
I f ∃ q.(<q , r> ∈ RH)

return FindPerm (p , q , PA, RH, Ass ignedRoles )
e l s e

re turn Ass ignedRoles
e n d i f

UsersBetweenRoles (Top , Bottom , UR, RH, Users )
f o r each (<u , Top> ∈ UR)

Users = Users ∪ {u}
I f Top = Bottom then

return Users
e l s e I f ∃ r .(<Top , r> ∈ RH)

return UsersBetweenRoles ( r , Bottom , UR, RH, Users )
e l s e

re turn {}
e n d i f

As the mapping is described in HPL, it is homomorphic.
The query mapping, π, is defined as follows.

πMember(s,g)(T ) = ∃r1.(UR(s, r1) ∈ T ∧ Senior(r1, g) ∈ T∧
∀r2.(Senior(r2, r1) /∈ T ))

πAssoc(o,g)(T ) = ∃r.(PA(r, o) ∈ T ∧ Senior(r, g) ∈ T )

πauth(s,o,g)(T ) = ∃r1, r2.(UR(s, r1) ∈ T ∧ PA(r2, o) ∈ T∧
(r1 = r2 ∨ Senior(r1, r2) ∈ T )∧
∃r3.(Senior(g, r3) ∈ T ∧ Senior(r2, r3) ∈ T ))
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This query mapping clearly contains no string manipulation and is thus homomorphic.
Let x be an arbitrary bgSIS state and λ = (s, o, g) an arbitrary bgSIS request, and let f(s, o, g) =

(s, o) be a request transform. Assume πauth(λ)(Th(σ(x))) = true. Then, by π, ∃r1, r2.(r1 ≥
r2 ∧UR(s, r1) ∈ Th(σ(x))∧PA(r2, o) ∈ Th(σ(x))). Thus, by RBAC1’s ` relation, σ(x) ` auth(s, o).

Now let x be an arbitrary bgSIS state, λ′ = (u, p) an arbitrary RBAC1 request, and f the request
transform defined above. Assume σ(x) ` auth(λ′). Then, ∃r1, r2.(r1 ≥ r2 ∧ UR(u, r1) ∈ Th(σ(x)) ∧
PA(r2, p) ∈ Th(σ(x))). Furthermore, since σ only assigns permissions to roles which correspond to
some group, r2 must exist either in the hierarchy above a role corresponding to a group, or as an
orphan node attached to such a role: ∃r3.(Senior(g, r3) ∈ Th(σ(x)) ∧ Senior(r2, r3) ∈ Th(σ(x))).
Finally, f(u, p, g) = (u, p), and πauth(u,p,g)(Th(σ(x))) = true. Thus, π is weak AC-preserving with
transform f(s, o, g) = (s, o).

We show that σ preserves π (for all bgSIS states x, Th(x) = π(Th(σ(x)))) by contradiction.
Assume that there is some bgSIS state x and query q such that the value of q in x is the opposite of
the value of π(q) in σ(x). We show that, for each of the query forms of bgSIS, this assumption leads
to contradiction.

• Member Assume x ` Member(s, g) and σ(x) 0 π(Member(s, g)). Then,
∃t1.(LiberalJoin(s, g, t1) ∈ Th(x) ∧ ∀t2.(LiberalLeave(s, g, t2) ∈ Th(x) ⇒ t1 > t2)) (s
has joined g and not left). By σ, ∃r1.(Senior(r1, g) ∈ Th(σ(x)) ∧ UR(s, r1) ∈ Th(σ(x))).
By π, πMember(s,g)(Th(σ(x))) = true, which is a contradiction on the assumption that
σ(x) 0 π(Member(s, g)).

Assume instead that x 0 Member(s, g) and σ(x) ` π(Member(s, g)). Then, either
∃t1.(LiberalLeave(s, g, t1) ∈ Th(x) ∧ ∀t2.(LiberalJoin(s, g, t2) ∈ Th(x) ⇒ t1 > t2)) (s has left g
and not returned), or ∀t1.(LiberalJoin(s, g, t1) /∈ Th(x)) (s has not joined g). By σ, in either case,
∀r1.(Senior(r1, g) /∈ Th(σ(x)) ∨ UR(s, r) /∈ Th(σ(x))). By π, πMember(o,g)(Th(σ(x))) = false,
which is a contradiction on the assumption that σ(x) ` π(Member(s, g)).

• Assoc Assume x ` Assoc(o, g) and σ(x) 0 π(Assoc(o, g)). Then, ∃t1.(LiberalAdd(o, g, t1) ∈
Th(x)∧∀t2.(LiberalRemove(o, g, t2) ∈ Th(x)⇒ t1 > t2)) (o was added to g and not removed). By
σ, ∃r1.(Senior(r1, g) ∈ Th(σ(x)) ∧ PA(r1, o) ∈ Th(σ(x))). By π, πAssoc(o,g)(Th(σ(x))) = true,
which is a contradiction on the assumption that σ(x) 0 π(Assoc(o, g)).

Assume instead that x 0 Assoc(o, g) and σ(x) ` π(Assoc(o, g)). Then, either
∃t1.(LiberalRemove(o, g, t1) ∈ Th(x) ∧ ∀t2.(LiberalAdd(o, g, t2) ∈ Th(x) ⇒ t1 > t2)) (s
was removed from g and not re-added), or ∀t1.(LiberalAdd(o, g, t1) /∈ Th(x)) (o has not
added to g). By σ, in either case, ∀r1.(Senior(r1, g) /∈ Th(σ(x)) ∨ PA(r1, o) /∈ Th(σ(x))).
By π, πAssoc(o,g)(Th(σ(x))) = false, which is a contradiction on the assumption that
σ(x) ` π(Assoc(o, g)).

• auth Assume x ` auth(s, o, g) and σ(x) 0 π(auth(s, o, g)). Then, ∃t1, t2.(LiberalJoin(s, g, t1) ∈
Th(x) ∧ LiberalAdd(o, g, t2) ∈ Th(x)) (s has joined g and o has been added to g). If t2 > t1
(the join occurred first), then ∀t3.(LiberalLeave(s, g, t3) ∈ Th(x) ⇒ t1 > t3 ∨ t3 > t2) (s did
not leave g between joining and o being added). If t1 > t2 (the add occurred first), then
∀t3.(LiberalRemove(o, g, t3) ∈ Th(x) ⇒ t2 > t3 ∨ t3 > t1) (o was not removed from g between
being added and s joining). By σ, ∃r1, r2.(UR(s, r1) ∈ Th(σ(x))∧PA(r2, o) ∈ Th(σ(x))∧(r1 = r2∨
Senior(r1, r2) ∈ Th(σ(x)))) (s belongs to a role authorized to o or senior to a role authorized to o).
Connection to g is preserved by σ, so ∃r3.(Senior(g, r3) ∈ Th(σ(x)) ∧ Senior(r2, r3) ∈ Th(σ(x))),
either because s and o are in the hierarchy above g or because s and o are in an “orphaned node”
due to o’s removal from g. Thus, by π, πauth(s,o,g)(Th(σ(x))) = true, which is a contradiction on
the assumption that σ(x) 0 π(auth(s, o, g)).

Assume instead that x 0 auth(s, o, g) and σ(x) ` π(auth(s, o, g)). Then, either
∀t1, t2.(LiberalJoin(s, g, t1) /∈ Th(x) ∨ LiberalAdd(o, g, t2) /∈ Th(x)) (s has not joined g
or o has not been added to g), or s and o’s times in g did not overlap. If t2 > t1 (the
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join occurred first), then ∃t3.(LiberalLeave(s, g, t3) ∈ Th(x) ∧ t2 > t3 ∧ t3 > t1) (s left g
before o was added). If t1 > t2 (the add occurred first), then ∃t3.(LiberalRemove(o, g, t3) ∈
Th(x) ∧ t1 > t3 ∧ t3 > t2) (o was removed from g before s joined). Thus, by σ, if
∃r1, r2.(UR(s, r1) ∈ Th(σ(x)) ∧ PA(r2, o) ∈ Th(σ(x)) ∧ (r1 = r2 ∨ Senior(r1, r2) ∈ Th(σ(x))))
(s belongs to a role authorized to o or senior to a role authorized to o), then it must be in
conjunction with a group other than g: ∀r3.(Senior(g, r3) /∈ Th(σ(x))∨Senior(r2, r3) /∈ Th(σ(x))).
Thus, by π, πauth(s,o,g)(Th(σ(x))) = false, which is a contradiction on the assumption that
σ(x) ` π(auth(s, o, g).

Thus, by contradiction, σ preserves π.
As before (Theorems 9 and 10), we prove that σ preserves reachability by induction by showing

that for any bgSIS state x and label `, σ(next(x, `)) is reachable from σ(x) via RBAC1 labels.
Given bgSIS state x and label `, x′ = next(x, `) is the state resulting from executing label ` in

state x.

• If ` is an instance of addS(s), then x′ = next(x, `) = x∪S(s). By σ, this maps in RBAC1 to state
σ(x′) = σ(x∪S(s)) = σ(x)∪U(s). By RBAC1’s next relation, next(σ(x), addU(s)) = σ(x)∪U(s).
Thus, if ` is an instance of addS(s), σ(x′) is reachable from σ(x) via execution of addU(s). A
similar argument holds for instances of addO(o), with reachability in RBAC1 via addP (o).

• If ` is an instance of delS(s), then x′ = x \ (S(s) ∪ Entries(x, s)), where Entries(x, s) denotes
the set of all state tuples in x involving s. By σ, σ(x′) = σ(x \ (S(s) ∪ Entries(x, s))) =
σ(x) \ (U(s)∪Entries(σ(x), s)). By RBAC1’s next relation, next(σ(x), delU(s)) = σ(x) \ (U(s)∪
Entries(σ(x), s)). Thus, if ` is an instance of delS(s), σ(x′) is reachable from σ(x) via execution
of delU(s). A similar argument holds for instances of delO(o), with reachability via delP (o).

• If ` is an instance of addG(g), then x′ = x ∪ G(g). By σ, σ(x′) = σ(x ∪ G(g)) =
σ(x) ∪ R(g) ∪ R(rtop) ∪ R(rbottom) ∪ RH(rtop, g) ∪ RH(g, rbottom), where rtop and rbottom
are newly-created roles. By RBAC1’s next relation, terminal(σ(x), addR(g) ◦ addR(rtop) ◦
addR(rbottom) ◦ addHierarchy(rtop, g) ◦ addHierarchy(g, rbottom)) = σ(x) ∪ R(g) ∪ R(rtop) ∪
R(rbottom) ∪ RH(rtop, g) ∪ RH(g, rbottom). Thus, if ` is an instance of addG(g), σ(x′) is reach-
able from σ(x) via execution of addR(g), addR(rtop), addR(rbottom), addHierarchy(rtop, g), and
addHierarchy(g, rbottom).

• If ` is an instance of delG(g), then x′ = x \ (G(g) ∪ Entries(x, g)). By σ, σ(x′) = σ(x) \ (R(g) ∪
ConnectedEntries(σ(x), g)). By RBAC1’s next relation, terminal(σ(x), delR(g) ◦ delR(r1) ◦ · · · ◦
delR(rk)) = σ(x) \ (R(g)∪ConnectedEntries(σ(x), g)), where r1, . . . , rk is the (finite) set of roles
connected to g in the role hierarchy. Thus, if ` is an instance of delG(g), σ(x′) is reachable from
σ(x) via execution of delR(g), delR(r1), . . . , delR(rk).

• If ` is an instance of liberalJoin(s, g), then x′ = x ∪ LiberalJoin(s, g, t) ∪ Time(t+ 1) \ Time(t).
By σ, σ(x′) = σ(x) ∪ UR(s, r), where r is the top role of the role hierarchy chain of which g is the
second-bottom. By RBAC1’s next relation, next(σ(x), assignUser(s, r)) = σ(x)∪UR(s, r). Thus,
if ` is an instance of liberalJoin, σ(x′) is reachable from σ(x) via execution of assignUser(s, r).

• If ` is an instance of liberalAdd(o, g), then x′ = x ∪ LiberalAdd(o, g, t) ∪ Time(t+ 1) \ Time(t).
By σ, σ(x′) = σ(x) ∪ PA(r, o), where r is the top role of the role hierarchy chain of which g
is the second-bottom. By RBAC1’s next relation, next(σ(x), assignPermission(r, o)) = σ(x) ∪
PA(r, o). Thus, if ` is an instance of liberalAdd(o, g), σ(x′) is reachable from σ(x) via execution
of assignPermission(r, o).

• If ` is an instance of liberalLeave(s, g), then x′ = x∪ liberalLeave(s, g, t)∪ Time(t+ 1) \ Time(t).
By σ, σ(x′) = σ(x)∪R(r2)∪RH(r2, r1)∪{UR(u, r2) | UR(u, r1) ∈ Th(σ(x))∧u 6= s}\{UR(u, r1) |
UR(u, r1) ∈ Th(σ(x)) ∧ u 6= s}, where r1 is the current top of the role hierarchy chain of which g
is the second-bottom, and r2 is the newly-created wildcard role and new top of the hierarchy chain.
By RBAC1’s next relation, terminal(σ(x), addR(r2)◦addHierarchy(r2, r1)◦assignUser(u1, r2)◦
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· · · ◦ assignUser(uk, r2) ◦ revokeUser(u1, r1) ◦ · · · ◦ revokeUser(uk, r1)) is σ(x) as above. Thus,
if ` is an instance of liberalLeave(s, g), σ(x′) is reachable from σ(x) via execution of addR(r2),
addHierarchy(r2, r1), and the following for each user u where UR(u, r1) ∈ Th(σ(x)) ∧ u 6= s:
assignUser(u, r2) and revokeUser(u, r1).

• If ` is an instance of liberalRemove(s, g), then x′ = x ∪ liberalRemove(o, g, t) ∪ Time(t + 1) \
Time(t). By σ, σ(x′) = σ(x) ∪ R(r2) ∪ RH(r2, r1) ∪ PA(r2, o) ∪ {UR(u, r2) | ∃r4.(UR(u, r4) ∈
Th(σ(x)) ∧ Senior(r4, r3) ∈ Th(σ(x)))} \ {PA(r5, o) | PA(r5, o) ∈ Th(σ(x)) ∧ Senior(r5, g) ∈
Th(σ(x))}, where r1 is the current bottom of the role hierarchy chain of which g is the
second-bottom, r2 is the wildcard role newly created above r1, and r3 is the lowest role in
the hierarchy chain above g such that r3 is authorized to o. By RBAC1’s next relation,
terminal(σ(x), addR(r2) ◦ addHierarchy(r2, r1) ◦ assignPermission(r2, o) ◦ assignUser(u1, r2) ◦
· · ·◦assignUser(uk, r2)◦revokePermission(q1, o)◦· · ·◦revokePermission(qk, o)) is σ(x) as above.
Thus, if ` is an instance of liberalRemove(s, g), σ(x′) is reachable from σ(x) via execution of
addR(r2), addHierarchy(r2, r1), assignPermission(r2, o), assignUser(u, r2) for each user u with
access to o (those assigned to roles above r3 in the hierarchy chain), and revokePermission(q, o)
for each role q such that q is authorized to o and q is above g in the hierarchy chain.

Thus, for any bgSIS state x and label `, σ(next(x, `)) is reachable from σ(x) via RBAC1 labels. By
induction, for any bgSIS states s and s′, if s′ is reachable from s, then σ(s′) is reachable from σ(s).
Thus, we have shown that σ preserves reachability.

Finally, σ is shown to be pseudo-injective using the same arguments as used in Theorem 10. If x 6= y
but σ(x) = σ(y), then x and y can differ in the same ways as in that proof, and for any bgSIS label `,
next(x, `) and next(y, `) will differ only in ways from this list. Thus, ∀`.(σ(next(x, `)) = σ(next(y, `))),
and so σ is pseudo-injective.

Thus, we have shown that σ preserves π, is pseudo-injective, preserves reachability, and is
homomorphic; and that π is weak AC-preserving and homomorphic.
∴ 〈σ, π〉 is a reduction from bgSIS to RBAC1 which shows tgSIS ≤CaH RBAC1. �

4.4 Helper Reductions

Proposition 12 There exists a reduction 〈σ, π〉 from RBAC0 to RBAC1 where:

• σ preserves π, is injective, preserves reachability, and is homomorphic

• π is AC-preserving and homomorphic

Furthermore, both RBAC0 and RBAC1 have homomorphic transition functions and entailment
relations.

Thus, RBAC0 ≤CAH RBAC1 (RBAC1 is at least as expressive as RBAC0 with respect to
correctness, AC-preservation, and homomorphism).

Proof We present the reduction, 〈σ, π〉. First, σ maps the RBAC0 state 〈U,R, P, UR, PA〉 to the
RBAC1 state 〈U,R, P, UR, PA,RH〉. This mapping is described as follows.

U1(u) , U0(u)

R1(r) , R0(r)

P1(p) , P0(p)

UR1(u, r) , UR0(u, r)

PA1(r, p) , PA0(r, p)

RH1(r1, r2) , {}
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The query mapping is defined as follows.

πUR(u,r)(T ) = UR(u, r) ∈ T
πPA(r,p)(T ) = PA(r, p) ∈ T
πR(r)(T ) = R(r) ∈ T

πauth(u,p)(T ) = auth(u, p) ∈ T

These degenerate mappings are trivially homomorphic: the state mapping stores all elements of
the RBAC0 state unchanged in the RBAC1 state, and the query mapping asks all RBAC0 queries
unchanged in RBAC1. σ is injective, since no two RBAC0 states will map to the same RBAC1 state.
π is also AC-preserving, since it maps authorization query auth(r) to true for theory T exactly
when T contains auth(r).

For all RBAC0 states x, Th(x) = π(Th(σ(x))), since:

• All UR, PA, and R queries (and their entailment relations) are identical between RBAC0 and
RBAC1, and the relevant state elements are mapped identically between them by σ.

• The definitions for auth in RBAC0 and RBAC1 are identical, given that σ sets RH in RBAC1 to
be empty and guarantees the Senior condition in RBAC1’s auth can not be satisfied.

Thus, σ preserves π.
Since RBAC0 contains a subset of the labels included in RBAC1, it is easy to show that σ

preserves reachability. For all RBAC0 states x, x′, if x′ is reachable from x, then there exists a
sequence of labels 〈`1, . . . , `n〉 such that terminal(x, `1 ◦ · · · ◦ `n) = x′. Since RBAC1 has a superset
of the labels of RBAC0 (and the equivalent next relation), this sequence of labels also exists in
RBAC1 and guarantees that terminal(σ(x), `1 ◦ . . . ◦ `n) = σ(x′). Thus, σ preserves reachability.

Thus, we have shown that σ preserves π, is injective, preserves reachability, and is homomorphic;
and that π is AC-preserving and homomorphic.
∴ 〈σ, π〉 is a reduction from RBAC0 to RBAC1 which shows RBAC0 ≤CAH RBAC1. �

Theorem 13 There exists a reduction 〈σ, π〉 from RBAC1 to RBAC0 where:

• σ preserves π, is injective, and preserves reachability

• π is AC-preserving

Thus, RBAC1 ≤CA RBAC0 (RBAC0 is at least as expressive as RBAC1 with respect to correct-
ness and AC-preservation).

Proof We present the reduction, 〈σ, π〉. First, σ maps the RBAC1 state 〈U,R, P, UR, PA,RH〉
to the RBAC0 state 〈U,R, P, UR, PA〉. This mapping is described as follows, where concat() is a
non-homomorphic string concatenation procedure; contains(), StartsWith(), and EndsWith() are
self-explanatory string testing procedures; and Sentinel () is a non-homomorphic procedure which
returns a sentinel string, a string which is not contained in any real role name2.

sigma (M)
Let U = {u | U(u) ∈ M}
Let R = { r | R( r ) ∈ M}
Let P = {p | P(p) ∈ M}

f o r each (<Senior , Junior> ∈ {<r , q> | RH( r , q ) ∈ M})

2Note that [1] shows that, if a role is added later which invalidates Sentinel (), we can then select a new string and
adjust all existing instances of Sentinel () before adding the new role.
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ProcessLink ( Senior , Junior , R)

Let UR = BuildUr (M, R)
Let PA = BuildPa (M, R)

outputSet (U ∪ R ∪ P ∪ UR ∪ PA)

ProcessLink ( Senior , Junior , R)
Let P r e f i x e s = { Sen ior }
Let S u f f i x e s = { Junior }
f o r each ( Role ∈ R)

I f StartsWith ( Role , concat ( Junior , S e n t i n e l ( ) ) )
S u f f i x e s = S u f f i x e s ∪ {Role}

e l s e I f EndsWith ( Role , concat ( S e n t i n e l ( ) , Sen ior ) )
P r e f i x e s = P r e f i x e s ∪ {Role}

e n d i f
f o r each ( P re f i x in P r e f i x e s )

f o r each ( S u f f i x in S u f f i x e s )
R = R ∪ { concat ( Pre f ix , S e n t i n e l ( ) , S u f f i x )}

BuildUr (M, R)
Let UR = {}
f o r each (<u , r> in {<u , r> | UR(u , r ) ∈ M})

UR = UR ∪ {<u , r>}
f o r each ( q ∈ R)

I f StartsWith (q , concat ( r , S e n t i n e l ( ) ) )
UR = UR ∪ {<u , q>}

e n d i f

BuildPa (M, R)
Let PA = {}
f o r each (<r , p> in {<r , p> | PA( r , p) ∈ M})

PA = PA ∪ {<r , p>}
f o r each ( q ∈ R)

I f EndsWith (q , concat ( S e n t i n e l ( ) , r ) )
PA = PA ∪ {<q , p>}

e n d i f

Since this mapping contains string manipulating functions like concat, it is not homomorphic. It
is injective, since no two RBAC1 states will map to the same RBAC0 state: all RBAC1 state is
represented in the RBAC0 state.

The query mapping, π, is defined as follows.

πUR(u,r)(T ) = UR(u, r) ∈ T ∧ ¬contains(r, Sentinel())

πPA(r,p)(T ) = PA(r, p) ∈ T ∧ ¬contains(r, Sentinel())

πR(r)(T ) = R(r) ∈ T ∧ ¬contains(r, Sentinel())

πRH(r1,r2)(T ) = R(concat(r1, Sentinel(), r2)) ∈ T
πSenior(r1,r2)(T ) = ∃r.(R(r) ∈ T ∧ StartsWith(r, concat(r1, Sentinel()))∧

EndsWith(r, concat(Sentinel(), r2)))

πauth(u,p)(T ) = auth(u, p) ∈ T
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This query mapping is obviously AC-preserving since it maps authorization requests auth(r) to
true for a theory T exactly when T contains auth(r). However, due to use of non-homomorphic
routines such as contains(), it is not homomorphic.

We show that σ preserves π (for any RBAC1 state x, Th(x) = π(Th(σ(x)))) by contradiction.
Assume that there is some RBAC1 state x and query q such that the value of q in x is the opposite
of the value of π(q) in σ(x). We show that, for each of the query forms of RBAC1, this assumption
leads to contradiction.

• UR Assume x ` UR(u, r) and σ(x) 0 π(UR(u, r)). Then, UR(u, r) ∈ Th(x), and by σ,
UR(u, r) ∈ Th(σ(x)). By π, πUR(u,r)(Th(σ(x))) = true, since if r is a valid role it does not
contain Sentinel (), and thus we have a contradiction that σ(x) 0 π(UR(u, r)).

Assume instead that x 0 UR(u, r) and σ(x) ` π(UR(u, r)). Then, UR(u, r) /∈ Th(x), and by σ,
either UR(u, r) /∈ Th(σ(x)), or r is a role that encodes a hierarchy chain, in which case it must
contain Sentinel (). In either case, by π, πUR(u,r)(Th(σ(x))) = false, which is a contradiction on
the assumption that σ(x) ` π(UR(u, r)).

• PA Assume x ` PA(r, p) and σ(x) 0 π(PA(r, p)). Then, PA(r, p) ∈ Th(x), and by σ, PA(r, p) ∈
Th(σ(x)). By π, πPA(r,p)(Th(σ(x))) = true, since if r is a valid role then it does not contain
Sentinel (), and thus we have a contradiction that σ(x) 0 π(PA(r, p)).

Assume instead that x 0 PA(r, p) and σ(x) ` π(PA(r, p)). Then, PA(r, p) /∈ Th(x), and by
σ, either PA(r, p) /∈ Th(σ(x)), or r is a chain-encoding role, and thus contains Sentinel (). In
either case, by π, πPA(r,p)(Th(σ(x))) = false, which is a contradiction on the assumption that
σ(x) ` π(PA(r, p)).

• R Assume x ` R(r) and σ(x) 0 π(R(r)). Then, R(r) ∈ Th(x), and by σ, R(r) ∈ Th(σ(x)). By π,
πR(r)(Th(σ(x))) = true, since if r is a valid role then it does not contain Sentinel (), and thus we
have a contradiction that σ(x) 0 π(R(r)).

Assume instead that x 0 R(r) and σ(x) ` π(R(r)). Then, R(r) /∈ Th(x), and by σ, either
R(r) /∈ Th(σ(x)), or r is a chain-encoding role, and thus contains Sentinel (). In either case, by π,
πR(r)(Th(σ(x))) = false, which is a contradiction on the assumption that σ(x) ` π(R(r)).

• RH Assume x ` RH(s, j) and σ(x) 0 π(RH(s, j)). Then, RH(s, j) ∈ Th(x), and by σ,
R(r) ∈ Th(σ(x)), where r = concat(s, Sentinel(), j). By π, πRH(s,j)(Th(σ(x))) = true, which is a
contradiction on the assumption that σ(x) 0 π(RH(s, j)).

Assume instead that x 0 RH(s, j) and σ(x) ` π(RH(s, j)). Then, RH(s, j) /∈ Th(x), and by σ,
R(r) /∈ Th(σ(x)), where r = concat(s, Sentinel(), j). By π, πRH(s,j)(Th(σ(x))) = false, which is
a contradiction on the assumption that σ(x) ` π(RH(s, j)).

• Senior Assume x ` Senior(s, j) and σ(x) 0 π(Senior(s, j)). Then, there is some sequence
of roles ri such that RH(s, r1) ∈ Th(x) ∧ RH(r1, r2) ∈ Th(x) ∧ · · · ∧ RH(rk, j) ∈ Th(x). By σ,
R(r) ∈ Th(σ(x)), where r = concat(s, Sentinel (), r1, Sentinel (), . . . , Sentinel (), rk, Sentinel (), j).
By π, πSenior(s,j)(Th(σ(x))) = true, which is a contradiction on the assumption that σ(x) 0
π(Senior(s, j)).

Assume instead that x 0 Senior(s, j) and σ(x) ` π(Senior(s, j)). Then, there is no sequence
of roles ri such that RH(s, r1) ∈ Th(x) ∧ RH(r1, r2) ∈ Th(x) ∧ · · · ∧ RH(rk, j) ∈ Th(x). By σ,
there is thus no role r such that R(r) ∈ Th(σ(x)) and r begins with concat(s, Sentinel) and ends
with concat(Sentinel, s). By π, πSenior(s,j)(Th(σ(x))) = false, which is a contradiction on the
assumption that σ(x) ` π(Senior(s, j)).

• auth Assume x ` auth(u, p) and σ(x) 0 π(auth(u, p)). Then, either ∃r.(UR(u, r) ∈ Th(x) ∧
PA(r, p) ∈ Th(x)) (u belongs to a role which is authorized to p) or ∃s, j.(UR(u, s) ∈ Th(x) ∧
PA(j, p) ∈ Th(x) ∧ Senior(s, j) ∈ Th(x)) (u belongs to a role senior to a role that is authorized
to p). In the former case, by σ, then trivially ∃r.(UR(u, r) ∈ Th(σ(x)) ∧ PA(r, p) ∈ Th(σ(x))).
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For the latter case, note that σ ensures users authorized to role s are also authorized to roles
that begin with concat(s, Sentinel()). In addition, if role j is authorized to p, then so are roles
ending in concat(Sentinel(), j). Thus, in the latter case above, it is also true that ∃r.(UR(u, r) ∈
Th(σ(x))∧PA(r, p) ∈ Th(σ(x))). Thus, by π, πauth(u,p)(Th(σ(x))) = true, which is a contradiction
on the assumption that σ(x) 0 π(auth(u, p)).

Assume instead that x 0 auth(u, p) and σ(x) ` π(auth(u, p)). Then, there is no sequence
of roles ri such that RH(r1, r2) ∈ Th(x) ∧ RH(r2, r3) ∈ Th(x) ∧ · · · ∧ RH(rk−1, rk) ∈ Th(x)
and UR(u, r1) ∈ Th(x) ∧ PA(rk, p) ∈ Th(x). Thus, by σ, there is no r such that UR(u, r) ∈
Th(σ(x)) ∧ PA(r, p) ∈ Th(σ(x)). By π, πauth(u,p)(Th(σ(x))) = false, which is a contradiction on
the assumption that σ(x) ` π(auth(u, p)).

Thus, by contradiction, σ preserves π.
We prove that σ preserves reachability by induction by showing that, for any RBAC1 state x

and label `, σ(next(x, `)) is reachable from σ(x) via RBAC0 labels.
Given RBAC1 state x and label `, let x′ = next(x, `) by the state resulting from executing label

` in state x.

• If ` is an instance of addU(u), then x′ = next(x, `) = x ∪ U(u). By σ, this maps in RBAC0 to
state σ(x′) = σ(x) ∪ U(u). By RBAC0’s next relation, next(σ(x), addU(u)) = σ(x) ∪ U(u). Thus,
if ` is an instance of addU(u), σ(x′) is reachable from σ(x) via execution of addU(u). A similar
argument holds for instances of addR(r) and addP (p), with reachability in RBAC0 via addR(r)
and addP (p), respectively.

• If ` is an instance of delU(u), then x′ = x \ (U(u) ∪ Entries(x, u)), where Entries(x, u) denotes
the set of all state tuples in x involving u. By σ, σ(x′) = σ(x \ (U(u) ∪ Entries(x, u))) =
σ(x)\ (U(u)∪Entries(σ(x), u)). By RBAC0’s next relation, next(σ(x), delU(u)) = σ(x)\ (U(u)∪
Entries(σ(x), u)). Thus, if ` is an instance of delU(u), σ(x′) is reachable from σ(x) via execution
of delU(u). A similar argument holds for instances of delP (p), with reachability via delP (p).

• If ` is an instance of delR(r), then x′ = x \ (R(r) ∪ Entries(x, r)). By σ, σ(x′) = σ(x) \ (R(r) ∪
NHEntries(σ(x), r)), where NHEntries(σ(x), r) denotes the set of state tuples in σ(x) involving
either r or any role non-homomorphically encoding r: roles that start with concat(r, Sentinel()),
end with concat(Sentinel(), r), or contain concat(Sentinel(), r, Sentinel()). By RBAC0’s next
relation, terminal(σ(x), delR(r) ◦ delR(r1) ◦ · · · ◦ delR(rk)) = σ(x) \ (R(r)∪NHEntries(σ(x), r)),
where r1, . . . , rk is the (finite) set of roles non-homomorphically encoding r. Thus, if ` is an instance
of delR(r), σ(x′) is reachable from σ(x) via execution of delR(r), delR(r1), . . . , delR(rk).

• If ` is an instance of assignUser(u, r), then x′ = x ∪ UR(u, r). By σ, σ(x′) = σ(x) ∪ (UR(u, r) ∪
UR(u, r1) ∪ · · · ∪ UR(u, rk)) where r1, . . . , rk is the set of roles which encode hierarchy chains
of which r is the head (i.e., the set of roles that begin with concat(r, Sentinel())). By RBAC0’s
next relation, terminal(σ(x), assignUser(u, r) ◦ assignUser(u, r1) ◦ · · · ◦ assignUser(u, rk)) =
σ(x)∪(UR(u, r)∪UR(u, r1)∪· · ·∪UR(u, rk)). Thus, if ` is an instance of assignUser(u, r), σ(x′) is
reachable from σ(x) via execution of assignUser(u, r), assignUser(u, r1), . . . , assignUser(u, rk).
A similar argument holds for instances of revokeUser(u, r), with reachability via revokeUser(u, r),
revokeUser(u, r1), . . . , revokeUser(u, rk) (for the same set of roles, r1, . . . , rk).

• If ` is an instance of assignPermission(r, p), then x′ = x ∪ PA(r, p). By σ, σ(x′) = σ(x) ∪
(PA(r, p) ∪ PA(r1, p) ∪ · · · ∪ PA(rk, p)) where r1, . . . , rk is the set of roles which encode hierarchy
chains of which r is the tail (i.e., the set of roles that end with concat(Sentinel(), r)). By
RBAC0’s next relation, terminal(σ(x), assignPermission(r, p) ◦ assignPermission(r1, p) ◦ · · · ◦
assignPermission(rk, p)) = σ(x)∪(PA(r, p)∪PA(r1, p)∪· · ·∪PA(rk, p)). Thus, if ` is an instance
of assignPermission(r, p), σ(x′) is reachable from σ(x) via execution of assignPermission(r, p),
assignPermission(r1, p), . . . , assignPermission(rk, p). A similar argument holds for instances of
revokePermission(r, p), with reachability via revokePermission(r, p), revokePermission(r1, p),
. . . , revokePermission(rk, p) (for the same set of roles, r1, . . . , rk).
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• If ` is an instance of addHierarchy(r1, r2), then x′ = x ∪ RH(r1, r2). By σ, σ(x′) =
σ(x) ∪ ChainRoles(σ(x), r1, r2) ∪ RoleAssigns(σ(x), r1, r2) ∪ PermAssigns(σ(x), r1, r2). Here,
ChainRoles(σ(x), r1, r2) denotes the set of roles encoding hierarchy chains that are newly formed
in σ(x) by adding a link from r1 to r2—every role that ends with concat(Sentinel(), r1) is joined
with every role that begins with concat(r2, Sentinel())). RoleAssigns(σ(x), r1, r2) denotes the
set of new assignments of users to chain-encoding roles formed in σ(x) by adding a link from r1
to r2—for each new chain-encoding role ri, if u is assigned to the head of the chain (i.e., ri be-
gins with concat(rj , Sentinel()) and UR(u, rj) ∈ Th(σ(x))), then RoleAssigns contains UR(u, ri).
PermAssigns(σ(x), r1, r2) denotes the set of new assignments of permissions to chain-encoding
roles—for each new chain-encoding role ri, if p is assigned to the tail of the chain (i.e., ri ends
with concat(Sentinel(), rj) and PA(rj , p) ∈ Th(σ(x))), then PermAssigns contains PA(ri, p).

By RBAC0’s next relation, terminal(σ(x), addR(rc1) ◦ · · · ◦ addR(rcj) ◦ assignUser(u1, ru1 ) ◦ · · · ◦
assignUser(uk, r

u
k ) ◦ assignPermission(rp1 , p1) ◦ · · · ◦ assignPermission(rpl , pl)) = σ(x′), where

each rci is a role encoding newly-formed hierarchy chains, each ui, r
u
i is a new assignment of a user

to a chain-encoding role, and each rpi , pi is a new assignment of a permission to a chain-encoding
role. Thus, if ` is an instance of addHierarchy(r1, r2), σ(x′) is reachable from σ(x) via execution
of this sequence of RBAC0 labels.

• If ` is an instance of removeHierarchy(r1, r2), then x′ = x \ RH(r1, r2). By σ,
σ(x′) = σ(x) \ (R(rc1) ∪ · · · ∪ R(rck)) where rc1, . . . , r

c
k is the set of roles which encode

hierarchy chains relying on the connection of r1 to r2 (i.e., the set of roles that be-
gin with concat(r1, Sentinel(), r2, Sentinel()), end with concat(Sentinel(), r1, Sentinel(), r2),
or contain concat(Sentinel(), r1, Sentinel(), r2, Sentinel())). By RBAC0’s next relation,
terminal(σ(x), delR(rc1) ◦ · · · ◦ delR(rck)) = σ(x) \ (R(rc1)∪ · · · ∪R(rck)). Thus, if ` is an instance of
removeHierarchy(r1, r2), σ(x′) is reachable from σ(x) via execution of delR(rc1), . . . , delR(rck).

Thus, for any RBAC1 state x and label `, σ(next(x, `)) is reachable from σ(x) via RBAC0 labels.
By induction, for any RBAC1 states s and s′, if s′ is reachable from s, then σ(s′) is reachable from
σ(s). Thus, we have shown that σ preserves reachability.

Thus, we have shown that σ preserves π, is injective, and preserves reachability; and that π is
AC-preserving.
∴ 〈σ, π〉 is a reduction from RBAC1 to RBAC0 which shows RBAC1 ≤CA RBAC0. �

Theorem 14 There exists a reduction 〈σ, π〉 from RBAC0 to ugo where:

• σ preserves π, is injective, and preserves reachability

• π is weak AC-preserving

Thus, RBAC0 ≤Ca ugo (ugo is at least as expressive as RBAC0 with respect to correctness and
weak AC-preservation).

Proof We present the reduction, 〈σ, π〉. First, σ maps the RBAC0 state 〈U,R, P, UR, PA〉 to the
ugo state 〈S,O,G,Member,Owner,Group,OwnerRight,GroupRight,OtherRight〉. This mapping
is described as follows.

sigma (M)
Let WildGroups = {}

Let S = {x | U( x ) ∈ M ∨ R( x ) ∈ M}
Let O = {o | P( o ) ∈ M}
Let G = {x | R( x ) ∈ M ∨ P( x ) ∈ M}

Let Member = {<x , y> | UR(x , y ) ∈ M ∨ PA(x , y ) ∈ M}
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Let Group = {}
Let GroupRight = {}

f o r each ( o ∈ O)
Grp = nFreshConst (1 , Consts (M) ∪ WildGroups , Univ )
WildGroups = WildGroups ∪ {Grp}
G = G ∪ {Grp}
Group = Group ∪ {<o , Grp>}
GroupRight = GroupRight ∪ {<o , read>}
f o r each ( s ∈ { s | ∃ r . ( r ∈ S ∧ r ∈ G ∧

<s , r> ∈ Member ∧
<r , o> ∈ Member )} )

Member = Member ∪ {<s , Grp>}

outputSet (S ∪ O ∪ G ∪ Member ∪ Group ∪ GroupRight )

We note that this mapping is not strict HPL due to its use of the constant right read. In addition,
if the universe of possible users and roles (or roles and permissions) in RBAC0 intersect (i.e., it
is possible that U(x) ∧ R(x)), some non-homomorphic encoding is necessary to store elements as
described.

Since the entire RBAC0 state is stored uniquely in the ugo state, no two RBAC0 states will map
to the same ugo state. Thus, σ is injective.

The query mapping, π, is defined as follows.

πUR(u,r)(T ) = Member(u, r) ∈ T ∧ ∀x.(Group(r, x) /∈ T ∧Group(x, r) /∈ T )

πPA(r,p)(T ) = Member(r, p) ∈ T ∧ ∃x.(Group(p, x) ∈ T )

πR(r)(T ) = G(r) ∈ T ∧ ∀x.(Group(r, x) /∈ T ∧Group(x, r) /∈ T )

πauth(u,p)(T ) = auth(u, p, read) ∈ T

Let x be an arbitrary RBAC0 state and λ = (u, p) an arbitrary RBAC0 request, and let
f(u, p) = (u, p, read) be a request transform. Assume πauth(λ)(Th(σ(x))) = true. Then, by π,
auth(u, p, read) ∈ Th(σ(x)), or σ(x) ` auth(u, p, read).

Now let x be an arbitrary RBAC0 state, λ′ = (s, o, r) an arbitrary ugo request, and f the
request transform defined above. Assume σ(x) ` auth(s, o, r). Since σ never constructs a ugo
state that grants any rights besides read, r = read, and λ′ = (s, o, r). Finally, f(s, o) = (s, o,
read), and πauth(s,o)(Th(σ(x))) = true. Thus, π is weak AC-preserving with transform f(u, p) = (u,
p, read).

We show that σ preserves π (for any RBAC0 state x, Th(x) = π(Th(σ(x)))) by contradiction.
Assume that there is some RBAC0 state x and query q such that the value of q in x is the opposite
of the value of π(q) in σ(x). We show that, for each of the query forms of RBAC0, this assumption
leads to contradiction.

• UR Assume x ` UR(u, r) and σ(x) 0 π(UR(u, r)). Then, UR(u, r) ∈ Th(x), and by σ,
Member(u, r) ∈ Th(σ(x)). Since r is a role, ∀x.(Group(r, x) /∈ Th(σ(x))∧Group(x, r) /∈ Th(σ(x))).
By π, πUR(u,r)(Th(σ(x))) = true, which is a contradiction on the assumption that σ(x) 0
π(UR(u, r)).

Assume instead that x 0 UR(u, r) and σ(x) ` π(UR(u, r)). Then, UR(u, r) /∈ Th(x), and by
σ, if Member(u, r) ∈ Th(σ(x)) then it is not to represent UR(u, r), which is only possible if r
does not represent a role, and thus it must represent a permission or a generated group used
to grant a permission. Thus, ∃x.(Group(r, x) ∈ Th(σ(x)) ∨ Group(x, r) ∈ Th(σ(x))). By π,
πUR(u,r)(Th(σ(x))) = false, which is a contradiction on the assumption that σ(x) ` π(UR(u, r)).
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• PA Assume x ` PA(r, p) and σ(x) 0 π(PA(r, p)). Then, PA(r, p) ∈ Th(x), and by σ,
Member(r, p) ∈ Th(σ(x)) ∧ ∃x.(Group(p, x) ∈ Th(σ(x))). By π, πPA(r,p)(Th(σ(x))) = true,
which is a contradiction on the assumption that σ(x) 0 π(PA(r, p)).

Assume instead that x 0 PA(r, p) and σ(x) ` π(PA(r, p)). Then, PA(r, p) /∈ Th(x), and by σ, if
Member(r, p) ∈ Th(σ(x)) then it is not to represent PA(r, p), which is only possible if p does not
represent a permission, and thus ∀x.(Group(p, x) /∈ Th(σ(x))). By π, πPA(r,p)(Th(σ(x))) = false,
which is a contradiction on the assumption that σ(x) ` π(PA(r, p)).

• R Assume x ` R(r) and σ(x) 0 π(R(r)). Then, R(r) ∈ Th(x), and by σ, G(r) ∈ Th(σ(x)). Since
r is a role, ∀x.(Group(r, x) /∈ Th(σ(x))∧Group(x, r) /∈ Th(σ(x))). By π, πR(r)(Th(σ(x))) = true,
which is a contradiction on the assumption that σ(x) 0 π(R(r)).

Assume instead that x 0 R(r) and σ(x) ` π(R(r)). Then, R(r) /∈ Th(x), and by σ, if G(r) ∈
Th(σ(x)) then r does not represent a role, and thus it must represent a permission or a generated
group used to grant a permission. Thus, ∃x.(Group(r, x) ∈ Th(σ(x)) ∨Group(x, r) ∈ Th(σ(x))).
By π, πR(r)(Th(σ(x))) = false, which is a contradiction on the assumption that σ(x) ` π(R(r)).

• auth Assume x ` auth(u, p) and σ(x) 0 π(auth(u, p)). Then, ∃r.(UR(u, r) ∈ Th(x)∧ PA(r, p) ∈
Th(x)). By σ, GroupRight(p, read) ∈ Th(σ(x)) ∧ ∃g.(Group(p, g) ∈ Th(σ(x)) ∧Member(u, g) ∈
Th(σ(x))). By π, πauth(u,p)(Th(σ(x))) = true, which is a contradiction on the assumption that
σ(x) 0 π(auth(u, p)).

Assume instead that x 0 auth(u, p) and σ(x) ` π(auth(u, p)). Then, there is no role r
such that UR(u, r) ∈ Th(x) ∧ PA(r, p) ∈ Th(x). Thus, by σ, if Group(p, g) ∈ Th(σ(x)),
then Member(u, g) /∈ Th(σ(x)). Furthermore, OwnerRight and OtherRight are empty via
σ. Thus, by π, πauth(u,p)(Th(σ(x))) = false, which is a contradiction on the assumption that
σ(x) ` π(auth(u, p)).

Thus, by contradiction, σ preserves π.
We prove that σ preserves reachability by induction by showing that, for any RBAC0 state x

and label `, σ(next(x, `)) in reachable from σ(x) via RBAC0 labels.
Given RBAC0 state x and label `, let x′ = next(x, `) by the state resulting from executing label

` in state x.

• If ` is an instance of addU(u), then x′ = next(x, `) = x ∪ U(u). By σ, this maps in ugo to state
σ(x′) = σ(x) ∪ S(u). By ugo’s next relation, next(σ(x), addS(u)) = σ(x) ∪ S(u). Thus, if ` is an
instance of addU(u), σ(x′) is reachable from σ(x) via execution of addS(u).

• If ` is an instance of delU(u), then x′ = x \ (U(u) ∪ Entries(x, u)), where Entries(x, u) denotes
the set of all state tuples in x involving u. By σ, σ(x′) = σ(x) \ (S(u) ∪ Entries(σ(x), u)) (or
simply σ(x) if G(u) ∈ Th(σ(x)), u represents a role). By ugo’s next relation, next(σ(x), delS(u)) =
σ(x) \ (S(u) ∪Entries(σ(x), u)). Thus, if ` is an instance of delU(u), σ(x′) is reachable from σ(x)
via execution of delS(u) (or via no action if G(u) ∈ Th(σ(x))).

• If ` is an instance of addR(r), then x′ = next(x, `) = x ∪ R(r). By σ, this maps in ugo to
state σ(x′) = σ(x) ∪ S(r) ∪ G(r). By ugo’s next relation, terminal(σ(x), addS(r) ◦ addG(r)) =
σ(x)∪S(r)∪G(r). Thus, if ` is an instance of addR(r), σ(x′) is reachable from σ(x) via execution
of addS(r), addG(r).

• If ` is an instance of delR(r), then x′ = x \ (R(r) ∪ Entries(x, r)). By σ, σ(x′) = σ(x) \ (S(r) ∪
G(r)∪Entries(σ(x), r)) (or simply σ(x) if S(r) /∈ Th(σ(x)), r does not represent a role). By ugo’s
next relation, terminal(σ(x), delS(r) ◦ delG(r)) = σ(x) \ (S(r) ∪G(r) ∪ Entries(σ(x), r)). Thus,
if ` is an instance of delR(r), σ(x′) is reachable from σ(x) via execution of delS(r), delG(r) (or
via no action if S(r) /∈ Th(σ(x))).

• If ` is an instance of addP (p), then x′ = x ∪ P (p). By σ, σ(x′) = σ(x) ∪ O(p) ∪ G(p) ∪
G(g) ∪ Group(p, g) ∪ GroupRight(p, read), where g is any fresh constant to represent a new

37



group. By ugo’s next relation, terminal(σ(x), addO(p) ◦ addG(p) ◦ addG(g) ◦ changeGroup(p, g) ◦
grantGroup(p, read)) = σ(x′). Thus, if ` is an instance of addP (p), σ(x′) is reachable from σ(x)
via execution of addO(p), addG(p), addG(g), changeGroup(p, g), and grantGroup(p, read).

• If ` is an instance of delP (p), then x′ = x \ (P (p) ∪ Entries(x, p)). By σ, σ(x′) = σ(x) \ (O(p) ∪
G(p) ∪ G(g)), where Group(p, g) ∈ Th(σ(x)). By ugo’s next relation, terminal(σ(x), delO(p) ◦
delG(p) ◦ delG(g) = σ(x′). Thus, if ` is an instance of delP (p), σ(x′) is reachable from σ(x) via
execution of delO(p), delG(p), and delG(g).

• If ` is an instance of assignUser(u, r), then x′ = x∪UR(u, r). By σ, σ(x′) = σ(x)∪Member(u, r)∪
Member(u, g1) ∪ ◦ ∪Member(u, gk), where g1, . . . , gk is the set of groups which grant accesses to
objects u should gain by joining r, i.e., all gi such that ∃o.(Member(r, o) ∈ Th(σ(x)) ∧ O(o) ∈
Th(σ(x)) ∧Group(o, gi) ∈ Th(σ(x))). By ugo’s next relation, terminal(σ(x), addMember(u, r) ◦
addMember(u, g1)◦ · · · ◦addMember(u, gk)) = σ(x′). Thus, if ` is an instance of assignUser(u, r),
σ(x′) is reachable from σ(x) via execution of addMember(u, r), addMember(u, g1), . . . ,
addMember(u, gk).

• If ` is an instance of revokeUser(u, r), then x′ = x\UR(u, r). By σ, σ(x′) = σ(x)\(Member(u, r)∪
Member(u, g1) ∪ ◦ ∪Member(u, gk)), where g1, . . . , gk is the set of groups which grant accesses to
objects u should lose by leaving r. (σ(x′) is simply σ(x) if S(r) /∈ Th(σ(x)), r does not represent a
role). By ugo’s next relation, terminal(σ(x), removeMember(u, r) ◦ removeMember(u, g1) ◦
· · · ◦ removeMember(u, gk)) = σ(x′). Thus, if ` is an instance of revokeUser(u, r), σ(x′)
is reachable from σ(x) via execution of removeMember(u, r), removeMember(u, g1), . . . ,
removeMember(u, gk) (or via no action if S(r) /∈ Th(σ(x))).

• If ` is an instance of assignPermission(r, p), then x′ = x ∪ PA(r, p). By σ, σ(x′) =
σ(x) ∪Member(r, p) ∪Member(u1, g) ∪ ◦ ∪Member(uk, g), where Group(p, g) ∈ Th(σ(x)) and
u1, . . . , uk is the set of users which should gain access to object p by its being added to r,
i.e., all ui such that Member(ui, r) ∈ Th(σ(x))) ∧ G(ui) ∈ Th(σ(x)). By ugo’s next relation,
terminal(σ(x), addMember(r, p) ◦ addMember(u1, g) ◦ · · · ◦ addMember(uk, g)) = σ(x′). Thus,
if ` is an instance of assignPermission(r, p), σ(x′) is reachable from σ(x) via execution of
addMember(r, p), addMember(u1, g), . . . , addMember(uk, g).

• If ` is an instance of revokePermission(r, p), then x′ = x \ PA(r, p). By σ, σ(x′) =
σ(x)\(Member(r, p)∪Member(u1, g)∪◦∪Member(uk, g)), Group(p, g) ∈ Th(σ(x)) and u1, . . . , uk
is the set of users in r, as in the previous point. (σ(x′) is simply σ(x) if O(p) /∈ Th(σ(x)), p
does not represent a permission). By ugo’s next relation, terminal(σ(x), removeMember(r, p) ◦
removeMember(u1, g) ◦ · · · ◦ removeMember(uk, g)) = σ(x′). Thus, if ` is an instance of
revokePermission(r, p), σ(x′) is reachable from σ(x) via execution of removeMember(r, p),
removeMember(u1, g), . . . , removeMember(uk, g) (or via no action if S(r) /∈ Th(σ(x))).

Thus, for any RBAC0 state x and label `, σ(next(x, `)) is reachable from σ(x) via ugo labels. By
induction, for any RBAC0 states s and s′, if s′ is reachable from s, then σ(s′) is reachable from σ(s).
Thus, we have shown that σ preserves reachability.

Thus, we have shown that σ preserves π, is injective, and preserves reachability; and that π is
weak AC-preserving.
∴ 〈σ, π〉 is a reduction from RBAC0 to ugo which shows RBAC0 ≤Ca ugo. �

4.5 Reductions by Transitivity

Corollary 15 rgSIS ≤CaH RBAC1

Proof Follows directly from Theorem 9 and Propositions 5, 6 and 12. �

Corollary 16 rgSIS ≤Ca ugo
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Proof Follows directly from Theorems 9 and 14 and Propositions 5 and 6. �

Corollary 17 tgSIS ≤Ca RBAC0

Proof Follows directly from Theorems 10 and 13 and Propositions 5 and 6. �

Corollary 18 tgSIS ≤Ca ugo

Proof Follows directly from Corollary 17, Theorem 14, and Propositions 5 and 6. �

Corollary 19 bgSIS ≤Ca RBAC0

Proof Follows directly from Theorems 11 and 13 and Propositions 5 and 6. �

Corollary 20 bgSIS ≤Ca ugo

Proof Follows directly from Corollary 19, Theorem 14, and Propositions 5 and 6. �

5 Implementations

5.1 Program Committee in RBAC1

Theorem 21 There exists an implementation 〈α, σ, π〉 of PC in RBAC1 where:

• α preserves σ, is homomorphic, and preserves safety

• σ preserves π and is homomorphic

• π is weak AC-preserving and homomorphic

Thus, RBAC1 admits a correct, weak AC-preserving, homomorphic, safe implementation of PC.

Proof We present the implementation, 〈α, σ, π〉. First, σ maps the g-SIS state 〈S,O,G, T, T ime,
StrictJoin, LiberalJoin, StrictLeave, LiberalLeave, LiberalAdd〉 to the RBAC1 state 〈U,R, P, UR,
PA,RH〉. This mapping is described as follows.

sigma (M)
Let WildRoles = {}
Let UR = {}
Let PA = {}
Let RH = {}

f o r each (S( s ) ∈ M)
output (U( s ) )

f o r each (G( g ) ∈ M)
InitGroup (M, g , RH, WildRoles )

f o r each (O( o ) ∈ M)
output (P( o ) )

Let Records = sortByTime ( S t r i c t J o i n ∪ L i b e r a l J o i n ∪
St r i c tLeave ∪ Libera lLeave ∪
LiberalAdd )

f o r each ( Record ∈ Records )
I f ∃ s , g , t . ( Record = <s , g , t> ∧

S t r i c t J o i n ( s , g , t ) ∈ M)
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ProcessSJo in (M, s , g , UR, RH, WildRoles )
e l s e I f ∃ s , g , t . ( Record = <s , g , t> ∧

L i b e r a l J o i n ( s , g , t ) ∈ M)
ProcessLJoin (M, s , g )

e l s e I f ∃ s , g , t . ( Record = <s , g , t> ∧
St r i c tLeave ( s , g , t ) ∈ M)

ProcessSLeave (M, s , g , UR, RH)
e l s e I f ∃ s , g , t . ( Record = <s , g , t> ∧

Libera lLeave ( s , g , t ) ∈ M)
ProcessLLeave (M, s , g , UR, PA, RH, WildRoles )

e l s e I f ∃ o , g , t . ( Record = <o , g , t> ∧
LiberalAdd ( o , g , t ) ∈ M)

ProcessLAdd (M, o , g , PA, RH)
e n d i f

outputSet (UR ∪ PA ∪ RH)

InitGroup (M, g , RH, WildRoles )
output (R( g ) )
<Top , Bottom> = nFreshConst (2 , Consts (M) ∪ WildRoles ,

Univ )
WildRoles = WildRoles ∪ {Top , Bottom}
output (R(Top ) )
output (R( Bottom ) )
RH = RH ∪ {<Top , g>, <g , Bottom>}

ProcessSJo in (M, s , g , UR, RH, WildRoles )
NewBottom = nFreshConst (1 , Consts (M) ∪ WildRoles ,

Univ )
WildRoles = WildRoles ∪ {NewBottom}
OldBottom = FindBottom ( g , RH)
output (R(NewBottom ) )
RH = RH ∪ {<OldBottom , NewBottom>}
UR = UR ∪ {<s , NewBottom>}

FindBottom ( r , RH)
I f ∃ q.(< r , q> ∈ RH)

return FindBottom (q , RH)
e l s e

re turn r
e n d i f

ProcessLJoin (M, s , g )
UR = UR ∪ {<s , g>}

ProcessSLeave (M, s , g , UR, RH)
LeaveDown( s , g , UR, RH)
LeaveOrphans ( s , g , UR, RH)

LeaveDown(u , r , UR, RH)
UR = UR \ {<u , r>}
I f ∃ q.(< r , q> ∈ RH)
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LeaveDown(u , q , UR, RH)
e n d i f

LeaveOrphans (u , g , UR, RH)
f o r each ( Orphan in { r | ∃ Head.(<Head , g> ∈ RH ∧

<Head , r> ∈ RH)} )
UR = UR \ {<u , Orphan>}

ProcessLLeave (M, s , g , UR, PA, RH, WildRoles )
Orphan = nFreshConst (1 , Consts (M) ∪ WildRoles , Univ )
WildRoles = WildRoles ∪ {Orphan}
output (R( Orphan ) )
Permiss ions = PermsInChain ( s , g , UR, PA, RH)
Top = FindTop ( g , RH)
f o r each ( Permiss ion ∈ Permiss ions )

PA = PA ∪ {<Orphan , Permiss ion>}
UR = UR ∪ {<s , Orpan>}
RH = RH ∪ {<Top , Orphan>}
LeaveDown( s , g , UR, RH)

PermsInChain (u , r , UR, PA, RH)
I f <u , r> ∈ UR

return PermsBelow ( r , PA, RH, {})
e l s e I f ∃ q.(< r , q> ∈ RH)

return PermsInChain (u , q , UR, PA, RH)
e l s e

re turn {}
e n d i f

PermsBelow ( r , PA, RH, Perms )
Perms = Perms ∪ {p | <r , p> ∈ PA}
I f ∃ q.(< r , q> ∈ RH)

return PermsBelow (q , PA, RH, Perms )
e l s e

re turn Perms
e n d i f

FindTop ( r , RH)
I f ∃ q.(<q , r> ∈ RH)

return FindTop ( q )
e l s e

re turn r
e n d i f

ProcessLAdd (M, o , g , PA, RH)
Bottom = FindBottom ( g , RH)
PA = PA ∪ {<Bottom , o>}

As the mapping is described in HPL, it is homomorphic.
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The query mapping, π, is defined as follows.

πMember(s,g)(T ) = UR(s, g) ∈ T ∨ ∃r.(UR(s, r) ∈ T ∧ Senior(g, r) ∈ T )

πAssoc(o,g)(T ) = ∃r.(PA(r, o) ∈ T ∧ Senior(g, r) ∈ T )

πauth(s,o,g)(T ) = ∃r1, r2.(UR(s, r1) ∈ T ∧ PA(r2, o) ∈ T∧
(r1 = r2 ∨ Senior(r1, r2) ∈ T )∧
∃r3.(Senior(r3, g) ∈ T ∧ Senior(r3, r2) ∈ T ))

This query mapping clearly contains no string manipulation and is thus homomorphic.
Let x be an arbitrary PC state and λ = (s, o, g) an arbitrary PC request, and let f(s, o, g) = (s,

o) be a request transform. Assume πauth(λ)(Th(σ(x))) = true. Then, by π, ∃r1, r2.(r1 ≥ r2 ∧
UR(s, r1) ∈ Th(σ(x)) ∧ PA(r2, o) ∈ Th(σ(x))). Thus, by RBAC1’s ` relation, σ(x) ` auth(s, o).

Now let x be an arbitrary PC state, λ′ = (u, p) an arbitrary RBAC1 request, and f the request
transform defined above. Assume σ(x) ` auth(λ′). Then, ∃r1, r2.(r1 ≥ r2 ∧ UR(u, r1) ∈ Th(σ(x)) ∧
PA(r2, p) ∈ Th(σ(x))). Furthermore, since σ only assigns permissions to role which correspond to
some group, r2 must exist either in the hierarchy below a role corresponding to a group, or as an
orphan node attached to such a role: ∃r3.(Senior(r3, g) ∈ Th(σ(x)) ∧ Senior(r3, r2) ∈ Th(σ(x))).
Finally, f(u, p, g) = (u, p), and πauth(u,p,g)(Th(σ(x))) = true. Thus, π is weak AC-preserving with
transform f(s, o, g) = (s, o).

We show that σ preserves π (for all PC states x, Th(x) = π(Th(σ(x)))) by contradiction. Assume
that there is some PC state x and query q such that the value of q in x is the opposite of the value of
π(q) in σ(x). We show that, for each of the query forms of PC, this assumption leads to contradiction.

• Member Assume x ` Member(s, g) and σ(x) 0 π(Member(s, g)). Then, ∃t1.(Join(s, g, t1) ∈
Th(x) ∧ ∀t2.(Leave(s, g, t2) ∈ Th(x) ⇒ t1 > t2)) (s has joined g and not left). By σ, if the Join
is a LiberalJoin, then UR(s, g) ∈ Th(σ(x)). If the Join is a StrictJoin, then ∃r1.(UR(s, r1) ∈
Th(σ(x))∧Senior(g, r1) ∈ Th(σ(x))). By π, in either case, πMember(s,g)(Th(σ(x))) = true, which
is a contradiction on the assumption that σ(x) 0 π(Member(s, g)).

Assume instead that x 0 Member(s, g) and σ(x) ` π(Member(s, g)). Then, either
∃t1.(Leave(s, g, t1) ∈ Th(x)∧∀t2.(Join(s, g, t2) ∈ Th(x)⇒ t1 > t2)) (s has left g and not returned),
or ∀t1.(Join(s, g, t1) /∈ Th(x)) (s has not joined g). By σ, in either case, UR(s, g) /∈ Th(σ(x)) ∧
∀r1.(Senior(g, r1) /∈ Th(σ(x)) ∨ UR(s, r1) /∈ Th(σ(x))). By π, πMember(o,g)(Th(σ(x))) = false,
which is a contradiction on the assumption that σ(x) ` π(Member(s, g)).

• Assoc Assume x ` Assoc(o, g) and σ(x) 0 π(Assoc(o, g)). Then, ∃t1.(LiberalAdd(o, g, t1) ∈
Th(x)) (o was added to g). By σ, ∃r1.(Senior(g, r1) ∈ Th(σ(x)) ∧ PA(r1, o) ∈ Th(σ(x))).
By π, πAssoc(o,g)(Th(σ(x))) = true, which is a contradiction on the assumption that σ(x) 0
π(Assoc(o, g)).

Assume instead that x 0 Assoc(o, g) and σ(x) ` π(Assoc(o, g)). Then, ∀t1.(LiberalAdd(o, g, t1) /∈
Th(x)) (o has not added to g). By σ, ∀r1.(Senior(g, r1) /∈ Th(σ(x)) ∨ PA(r1, o) /∈ Th(σ(x))).
By π, πAssoc(o,g)(Th(σ(x))) = false, which is a contradiction on the assumption that σ(x) `
π(Assoc(o, g)).

• auth Assume x ` auth(s, o, g) and σ(x) 0 π(auth(s, o, g)). Then, ∃t1, t2.(Join(s, g, t1) ∈ Th(x) ∧
LiberalAdd(o, g, t2) ∈ Th(x) ∧ ∀t3.(StrictLeave(s, g, t3) ∈ Th(x)⇒ t1 > t3)) (s has joined g and
not strict left; o has been added to g). If t2 > t1 (the join occurred first), then ∀t4.(Leave(s, g, t4) ∈
Th(x)⇒ t1 > t4 ∨ t4 > t2) (s did not leave g between joining and o being added). If t1 > t2 (the
add occurred first), then s’s join must be a liberal join. In either case, by σ, ∃r1, r2.(UR(s, r1) ∈
Th(σ(x))∧PA(r2, o) ∈ Th(σ(x))∧r1 ≥ r2 ∈ Th(σ(x))) (s belongs to a role authorized to o or senior
to a role authorized to o). Connection to g is preserved by σ, so ∃r3.(Senior(r3, g) ∈ Th(σ(x)) ∧
Senior(r3, r2) ∈ Th(σ(x))), either because s and o are in the hierarchy below g or because s and o
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are in an “orphaned node” due to o’s removal from g. Thus, by π, πauth(s,o,g)(Th(σ(x))) = true,
which is a contradiction on the assumption that σ(x) 0 π(auth(s, o, g)).

Assume instead that x 0 auth(s, o, g) and σ(x) ` π(auth(s, o, g)). Then, either:
∀t1, t2.(Join(s, g, t1) /∈ Th(x) ∨ LiberalAdd(o, g, t2) /∈ Th(x)) (s has not joined g or o has
not been added to g); ∃t3.(StrictLeave(s, g, t3) ∈ Th(x) ∧ t3 > t1) (s has since strict left g); or s’s
and o’s membership in g did not overlap in a way that caused the authorization. In the final case,
if t2 > t1 (the join occurred first), then ∃t4.(Leave(s, g, t4) ∈ Th(x) ∧ t2 > t4 > t1) (s left g before
o was added). If t1 > t2 (the add occurred first), then Join(s, g, t1) must be StrictJoin(s, g, t1).
Thus, by σ, if ∃r1, r2.(UR(s, r1) ∈ Th(σ(x)) ∧ PA(r2, o) ∈ Th(σ(x)) ∧ r1 ≥ r2 ∈ Th(σ(x)))
(s belongs to a role authorized to o or senior to a role authorized to o), then it must be in
conjunction with a group other than g: ∀r3.(Senior(r3, g) /∈ Th(σ(x))∨Senior(r3, r2) /∈ Th(σ(x))).
Thus, by π, πauth(s,o,g)(Th(σ(x))) = false, which is a contradiction on the assumption that
σ(x) ` π(auth(s, o, g).

Thus, by contradiction, σ preserves π.
Finally, the label mapping, α, is defined as follows.

addS (M, s )
output (addU( s ) )

de lS (M, s )
output ( delU ( s ) )

addG(M, g )
output (addR( g ) )
<Top , Bottom> = nFreshConst (2 , Consts (M) , Univ )
output (addR(Top ) )
output (addR( Bottom ) )
output ( addHierarchy (Top , g ) )
output ( addHierarchy ( g , Bottom ) )

delG (M, g )
I f ∃ Head . (RH(Head , g ) ∈ M)

DeleteDown (M, g )
DeleteOrphans (M, Head)
output ( delR (Head ) )

DeleteDown (M, r )
I f ∃ q . (RH( r , q ) ∈ M)

DeleteDown (M, q )
e n d i f
output ( delR ( r ) )

DeleteOrphans (M, Head)
f o r each ( Orphan ∈ {Role | RH(Head , Role ) ∈ M}

output ( delR ( Orphan ) )

addO(M, o )
output (addP( o ) )

s t r i c t J o i n (M, s , g )
NewBottom = nFreshConst (1 , Consts (M) , Univ )
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OldBottom = FindBottom (M, g )
output (addR(NewBottom ) )
output ( addHierarchy ( OldBottom , NewBottom ) )
output ( as s i gnUser ( s , NewBottom ) )

FindBottom (M, r )
I f ∃ q . (RH( r , q ) ∈ M)

return FindBottom (M, q )
e l s e

re turn r
e n d i f

l i b e r a l J o i n (M, s , g )
output ( as s i gnUser ( s , g ) )

s t r i c t L e a v e (M, s , g )
LeaveDown(M, s , g )
LeaveOrphans (M, s , g )

LeaveDown u , r )
I f UR(u , r ) ∈ M

output ( revokeUser (u , r ) )
e n d i f
I f ∃ q . (RH( r , q ) ∈ M)

LeaveDown(M, u , q )
e n d i f

LeaveOrphans (M, u , g )
f o r each ( Orphan ∈ { r | ∃ Head . (RH(Head , g ) ∈ M ∧

RH(Head , r ) ∈ M)} )
I f UR(u , Orphan ) ∈ M

output ( revokeUser (u , Orphan ) )
e n d i f

l i b e r a l L e a v e (M, s , g )
Orphan = nFreshConst (1 , Consts (M) , Univ )
output (addR( Orphan ) )
Top = FindTop (M, r )
f o r each ( Permiss ion ∈ PermsInChain (M, s , g ) )

output ( a s s i gnPermi s s i on ( Orphan , Permiss ion ) )
output ( as s i gnUser ( s , Orphan ) )
output ( addHierarchy (Top , Orphan ) )
LeaveDown(M, s , g )

FindTop (M, r )
I f ∃ q . (RH(q , r ) ∈ M)

return FindTop (M, q )
e l s e

re turn r
e n d i f
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PermsInChain (M, u , r )
I f UR(u , r ) ∈ M

return PermsBelow (M, r , {})
e l s e I f ∃ q . (RH( r , q ) ∈ M)

return PermsInChain (M, u , q )
e l s e

re turn {}
e n d i f

PermsBelow (M, r , Perms )
Perms = Perms ∪ {p | PA( r , p) ∈ M}
I f ∃ q . (RH( r , q ) ∈ M)

return PermsBelow (M, q , Perms )
e l s e

re turn Perms
e n d i f

l i be ra lAdd (M, o , g )
Bottom = FindBottom (M, g )
output ( a s s i gnPermi s s i on ( Bottom , o ) )

This mapping is described in HPL, and is thus homomorphic.
We prove that α preserves σ by showing that, for any PC state x and label `, σ(next(x, `)) =

terminal(σ(x), α(σ(x), `)).
Given PC state x and label `, x′ = next(x, `) is the state resulting from executing label ` in state

x.

• If ` is an instance of addS(s), then x′ = x∪S(s). By σ, this maps in RBAC1 to state σ(x′) = σ(x)∪
U(s). By α, α(σ(x), `) = addU(s). By RBAC1’s next relation, next(σ(x), addU(s)) = σ(x)∪U(s).
Thus, if ` is an instance of addS(s), σ(x′) = terminal(σ(x), α(σ(x), `)).

• If ` is an instance of delS(s), then x′ = x\(S(s)∪Entries(x, s)), where Entries(x, s) denotes the set
of all state tuples in x involving s. By σ, σ(x′) = σ(x)\(U(s)∪Entries(σ(x), s)). By α, α(σ(x), `) =
delU(s). By RBAC1’s next relation, next(σ(x), delU(s)) = σ(x)\ (U(s)∪Entries(σ(x), s)). Thus,
if ` is an instance of delS(s), σ(x′) = terminal(σ(x), α(σ(x), `)).

• If ` is an instance of addG(g), then x′ = x ∪ G(g). By σ, σ(x′) = σ(x) ∪ R(g) ∪
R(rtop) ∪ R(rbottom) ∪ RH(rtop, g) ∪ RH(g, rbottom), where rtop and rbottom are newly-created
roles. By α, α(σ(x), `) = addR(g) ◦ addR(rtop) ◦ addR(rbottom) ◦ addHierarchy(rtop, g) ◦
addHierarchy(g, rbottom). By RBAC1’s next relation, terminal(σ(x), addR(g) ◦ addR(rtop) ◦
addR(rbottom) ◦ addHierarchy(rtop, g) ◦ addHierarchy(g, rbottom)) = σ(x) ∪ R(g) ∪ R(rtop) ∪
R(rbottom) ∪ RH(rtop, g) ∪ RH(g, rbottom). Thus, if ` is an instance of addG(g), σ(x′) =
terminal(σ(x), α(σ(x), `)).

• If ` is an instance of delG(g), then x′ = x \ (G(g) ∪ Entries(x, g)). By σ, σ(x′) = σ(x) \
(R(g) ∪ ConnectedEntries(σ(x), g)), where ConnectedEntries(σ(x), g) denotes the set of state
tuples in σ(x) involving either g or any role connected to g in the role hierarchy of σ(x) (i.e.,
ConnectedEntries(x, r) , r ∪ Entries(x, r) ∪ {ConnectedEntries(x, q) | RH(r, q) ∈ Th(x) ∨
RH(q, r) ∈ Th(x)}). By α, α(σ(x), `) = delR(g) ◦ delR(r1) ◦ · · · ◦ delR(rk), where r1, . . . , rk
is the (finite) set of roles connected to g in the role hierarchy. By RBAC1’s next relation,
terminal(σ(x), delR(g) ◦ delR(r1) ◦ · · · ◦ delR(rk)) = σ(x) \ (R(g) ∪ ConnectedEntries(σ(x), g)).
Thus, if ` is an instance of delG(g), σ(x′) = terminal(σ(x), α(σ(x), `)).

• If ` is an instance of addO(o), then x′ = x ∪O(o). By σ, σ(x′) = σ(x) ∪ P (o). By α, α(σ(x), `) =
addP (o). By RBAC1’s next relation, next(σ(x), addP (o)) = σ(x)∪P (o). Thus, if ` is an instance
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of addP (o), σ(x′) = terminal(σ(x), α(σ(x), `)).

• If ` is an instance of strictJoin(s, g), then x′ = x ∪ StrictJoin(s, g, t) ∪ Time(t + 1) \ Time(t).
By σ, σ(x′) = σ(x) ∪ R(rnew) ∪ RH(rbottom, rnew) ∪ UR(s, rnew), where rbottom is the cur-
rent bottom of the hierarchy chain below g and rnew is a newly-created role. By α,
α(σ(x), `) = addR(rnew) ◦ addHierarchy(rbottom, rnew) ◦ assignUser(s, rnew). By RBAC1’s
next relation, terminal(σ(x), addR(rnew) ◦ addHierarchy(rbottom, rnew) ◦ assignUser(s, rnew)) =
σ(x) ∪ R(rnew) ∪ RH(rbottom, rnew) ∪ UR(s, rnew). Thus, if ` is an instance of strictJoin(s, g),
σ(x′) = terminal(σ(x), α(σ(x), `)).

• If ` is an instance of liberalJoin(s, g), then x′ = x ∪ LiberalJoin(s, g, t) ∪ Time(t+ 1) \ Time(t).
By σ, σ(x′) = σ(x) ∪ UR(s, g). By α, α(σ(x), `) = assignUser(s, g). By RBAC1’s next relation,
next(σ(x), assignUser(s, g)) = σ(x) ∪ UR(s, g). Thus, if ` is an instance of liberalJoin(s, g),
σ(x′) = terminal(σ(x), α(σ(x), `)).

• If ` is an instance of strictLeave(s, g), then x′ = x ∪ StrictLeave(s, g, t) ∪ Time(t+ 1) \ Time(t).
By σ, σ(x′) = σ(x) \ (UR(s, g) ∪ UR(s, r1) ∪ · · · ∪ UR(s, rk)), where r1, . . . , rk is the set
of roles to which s belongs and which are also connected in the role hierarchy to g. By
α, α(σ(x), `) = revokeUser(s, g) ◦ revokeUser(s, r1) ◦ · · · ◦ revokeUser(s, rk). By RBAC1’s
next relation, terminal(σ(x), revokeUser(s, g) ◦ revokeUser(s, r1) ◦ · · · ◦ revokeUser(s, rk)) =
σ(x) \ (UR(s, g) ∪ UR(s, r1) ∪ · · · ∪ UR(s, rk)). Thus, if ` is an instance of strictLeave(s, g),
σ(x′) = terminal(σ(x), α(σ(x), `)).

• If ` is an instance of liberalLeave(s, g), then x′ = x∪ liberalLeave(s, g, t)∪ Time(t+ 1) \ Time(t).
By σ, σ(x′) = σ(x) ∪ R(rorphan) ∪ PA(rorphan, p1) ∪ · · · ∪ PA(rorphan, pk) ∪ UR(s, rorphan) ∪
RH(rhead, rorphan) \ (UR(s, r1) ∪ · · · ∪ UR(s, rl)), where p1, . . . , pk is the set of permis-
sions to which s is authorized in g, and r1, . . . , rl is the set of roles to which s is
authorized in the role hierarchy chain below g. By α, α(σ(x), `) = addR(rorphan) ◦
assignPermission(rorphan, p1) ◦ · · · ◦ assignPermission(rorphan, pk) ◦ assignUser(s, rorphan) ◦
addHierarchy(rhead, rorphan) ◦ revokeUser(s, r1) ◦ · · · ◦ revokeUser(s, rl). By RBAC1’s
next relation, terminal(σ(x), addR(rorphan) ◦ assignPermission(rorphan, p1) ◦ · · · ◦
assignPermission(rorphan, pk) ◦ assignUser(s, rorphan) ◦ addHierarchy(rhead, rorphan) ◦
revokeUser(s, r1) ◦ · · · ◦ revokeUser(s, rl)) = σ(x) ∪ R(rorphan) ∪ PA(rorphan, p1) ∪ · · · ∪
PA(rorphan, pk) ∪UR(s, rorphan) ∪RH(rhead, rorphan) \ (UR(s, r1) ∪ · · · ∪UR(s, rl)). Thus, if ` is
an instance of liberalLeave(s, g), σ(x′) = terminal(σ(x), α(σ(x), `)).

• If ` is an instance of liberalAdd(o, g), then x′ = x ∪ LiberalAdd(o, g, t) ∪ Time(t+ 1) \ Time(t).
By σ, σ(x′) = σ(x) ∪ PA(rbottom, o), where rbottom is the bottom role of the role hierarchy
chain below g. By α, α(σ(x), `) = assignPermission(rbottom, o). By RBAC1’s next relation,
next(σ(x), assignPermission(rbottom, o)) = σ(x) ∪ PA(rbottom, o). Thus, if ` is an instance of
liberalAdd(o, g), σ(x′) = terminal(σ(x), α(σ(x), `)).

Thus, for any PC state x and label `, σ(next(x, `)) = terminal(σ(x), α(σ(x), `)). Thus, we have
shown that α preserves σ.

Finally, α is safe by inspection—for any PC state x and label `, the sequence of RBAC1 labels
α(σ(x), `) never revokes or grants authorizations except the images of those that are revoked or
granted by `.

Thus, we have shown that α preserves σ, is homomorphic, and preserves safety; that σ preserves
π and is homomorphic; and that π is weak AC-preserving and homomorphic.
∴ 〈α, σ, π〉 is an implementation of PC in RBAC1 which preserves correctness, weak AC-

preservation, homomorphism, and safety. �

5.2 PlayStation Plus in RBAC1

Theorem 22 There exists an implementation 〈α, σ, π〉 of PSP in RBAC1 where:
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• α preserves σ, is homomorphic, and preserves safety

• σ preserves π and is homomorphic

• π is weak AC-preserving and homomorphic

Thus, RBAC1 admits a correct, homomorphic implementation of PSP.

Proof We present the implementation, 〈α, σ, π〉. First, σ maps the g-SIS state 〈S,O,G, T, T ime,
LiberalJoin, StrictLeave, LiberalAdd, StrictRemove, LiberalRemove〉 to the RBAC1 state 〈U,R,
P, UR, PA,RH〉. This mapping is described as follows.

sigma (M)
Let WildRoles = {}
Let UR = {}
Let PA = {}
Let RH = {}

f o r each (S( s ) ∈ M)
output (U( s ) )

f o r each (G( g ) ∈ M)
InitGroup (M, g , RH, WildRoles )

f o r each (O( o ) ∈ M)
output (P( o ) )

Let Records = sortByTime ( L i b e r a l J o i n ∪ St r i c tLeave ∪
LiberalAdd ∪ StrictRemove ∪
LiberalRemove )

f o r each ( Record ∈ Records )
I f ∃ s , g , t . ( Record = <s , g , t> ∧

L i b e r a l J o i n ( s , g , t ) ∈ M)
ProcessLJoin (M, s , g , UR, RH)

e l s e I f ∃ s , g , t . ( Record = <s , g , t> ∧
St r i c tLeave ( s , g , t ) ∈ M)

ProcessSLeave (M, s , g , UR, PA, RH, WildRoles )
e l s e I f ∃ o , g , t . ( Record = <o , g , t> ∧

LiberalAdd ( o , g , t ) ∈ M)
ProcessLAdd (M, o , g , PA)

e l s e I f ∃ o , g , t . ( Record = <o , g , t> ∧
StrictRemove ( o , g , t ) ∈ M)

ProcessSRemove (M, o , g , PA, RH)
e l s e I f ∃ o , g , t . ( Record = <o , g , t> ∧

LiberalRemove ( o , g , t ) ∈ M)
ProcessLRemove (M, o , g , UR, PA, RH, WildRoles )

e n d i f
outputSet (UR ∪ PA ∪ RH)

InitGroup (M, g , RH, WildRoles )
output (R( g ) )
<SubA , SubB> = nFreshConst (2 , Consts (M) ∪ WildRoles ,

Univ )
WildRoles = WildRoles ∪ {SubA , SubB}
output (R(SubA) )
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output (R(SubA) )
RH = RH ∪ {<g , SubA>, <SubA , SubB>}

ProcessLJoin (M, s , g , UR, RH)
UR = UR ∪ {<s , g>}
I f ∃ x , y , z .({<g , x>, <y , x>, <z , y>} ⊂ RH ∧

<s , y> ∈ UR)
UR = UR ∪ {<s , z>} \ {<s , y>}

endI f

ProcessSLeave (M, s , g , UR, PA, RH, WildRoles )
I f <s , g> /∈ UR

return
e n d i f
I f ∃ x , y , z .({<g , x>, <y , x>, <z , y>} ⊂ RH ∧

<s , z> ∈ UR)
UR = UR ∪ {<s , y>} \ {<s , z>}

e l s e
Let <y , z> = nFreshConst (2 , Consts (M) ∪ WildRoles ,

Univ )
WildRoles = WildRoles ∪ {y , z}
output (R( y ) )
output (R( z ) )
RH = RH ∪ {<z , y>}
I f ∃ x.(<g , x> ∈ RH)

RH = RH ∪ {<y , x>}
e n d i f
UR = UR ∪ {<s , y>}

e n d i f
f o r each (p ∈ {p | <g , p> ∈ PA})

PA = PA ∪ {<z , p>}
UR = UR \ {<s , g>}

ProcessLAdd (M, o , g , PA)
PA = PA ∪ {<g , o>}

ProcessSRemove (M, o , g , PA, RH)
PA = PA \ {<g , o>}
I f ∃ SubA , SubB.({<g , SubA>, <SubA , SubB>} ⊂ RH)

f o r each ( Sup2 ∈ {z | ∃ y.({<y , SubA>,
<z , y>} ⊂ RH)} )

PA = PA \ {<Sup2 , o>}
f o r each ( Orphan ∈ { r | <r , SubB> ∈ RH} \ {SubA})

PA = PA \ {<Orphan , o>}
e n d i f

ProcessLRemove (M, o , g , UR, PA, RH, WildRoles )
I f <g , o> /∈ PA

return
e n d i f
I f ∃ SubA , SubB.({<g , SubA>, <SubA , SubB>} ⊂ RH)
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Orphan = nFreshConst (1 , Consts (M) ∪ WildRoles ,
Univ )

WildRoles = WildRoles ∪ {Orphan}
output (R( Orphan ) )
RH = RH ∪ {<Orphan , SubB>}
f o r each (u ∈ {u | <u , g> ∈ UR})

UR = UR ∪ {<u , Orphan>}
PA = PA ∪ {<Orphan , o>} \ {<g , o>}

e n d i f

As the mapping is described in HPL, it is homomorphic.
The query mapping, π, is defined as follows.

πMember(s,g)(T ) = UR(s, g) ∈ T
πAssoc(o,g)(T ) = PA(g, o) ∈ T
πauth(s,o,g)(T ) = ∃r1, r2.(UR(s, r1) ∈ T ∧ PA(r2, o) ∈ T∧

(r1 = r2 ∨ Senior(r1, r2) ∈ T )∧
∃r3.(Senior(g, r3) ∈ T ∧ Senior(r2, r3) ∈ T ))

This query mapping clearly contains no string manipulation and is thus homomorphic.
Let x be an arbitrary PSP state and λ = (s, o, g) an arbitrary PSP request, and let f(s, o, g) = (s,

o) be a request transform. Assume πauth(λ)(Th(σ(x))) = true. Then, by π, ∃r1, r2.(r1 ≥ r2 ∧
UR(s, r1) ∈ Th(σ(x)) ∧ PA(r2, o) ∈ Th(σ(x))). Thus, by RBAC1’s ` relation, σ(x) ` auth(s, o).

Now let x be an arbitrary PSP state, λ′ = (u, p) an arbitrary RBAC1 request, and f the request
transform defined above. Assume σ(x) ` auth(λ′). Then, ∃r1, r2.(r1 ≥ r2 ∧ UR(u, r1) ∈ Th(σ(x)) ∧
PA(r2, p) ∈ Th(σ(x))). Furthermore, since σ only assigns permissions to role which correspond to
some group, r2 must exist either in the hierarchy above a role corresponding to a group, or as an
orphan node attached to such a role: ∃r3.(Senior(g, r3) ∈ Th(σ(x)) ∧ Senior(r2, r3) ∈ Th(σ(x))).
Finally, f(u, p, g) = (u, p), and πauth(u,p,g)(Th(σ(x))) = true. Thus, π is weak AC-preserving with
transform f(s, o, g) = (s, o).

We show that σ preserves π (for any PSP state x, Th(x) = π(Th(σ(x)))) by contradiction. Assume
that there is some PSP state x and query q such that the value of q in x is the opposite of the
value of π(q) in σ(x). We show that, for each of the query forms of PSP, this assumption leads to
contradiction.

• Member Assume x ` Member(s, g) and σ(x) 0 π(Member(s, g)). Then,
∃t1.(LiberalJoin(s, g, t1) ∈ Th(x) ∧ ∀t2.(StrictLeave(s, g, t2) ∈ Th(x) ⇒ t1 > t2)) (s has
joined g and not left). By σ, UR(s, g) ∈ Th(σ(x)). By π, πMember(s,g)(Th(σ(x))) = true, which
is a contradiction on the assumption that σ(x) 0 π(Member(s, g)).

Assume instead that x 0 Member(s, g) and σ(x) ` π(Member(s, g)). Then, either
∃t1.(StrictLeave(s, g, t1) ∈ Th(x) ∧ ∀t2.(LiberalJoin(s, g, t2) ∈ Th(x) ⇒ t1 > t2)) (s has left
g and not returned), or ∀t1.(LiberalJoin(s, g, t1) /∈ Th(x)) (s has not joined g). By σ, in either
case, UR(s, g) /∈ Th(σ(x)). By π, πMember(o,g)(Th(σ(x))) = false, which is a contradiction on the
assumption that σ(x) ` π(Member(s, g)).

• Assoc Assume x ` Assoc(o, g) and σ(x) 0 π(Assoc(o, g)). Then, ∃t1.(LiberalAdd(o, g, t1) ∈
Th(x) ∧ ∀t2.(Remove(o, g, t2) ∈ Th(x)⇒ t1 > t2)) (o has been added to g and not removed). By
σ, PA(g, o) ∈ Th(σ(x)). By π, πAssoc(o,g)(Th(σ(x))) = true, which is a contradiction on the
assumption that σ(x) 0 π(Assoc(o, g)).

Assume instead that x 0 Assoc(o, g) and σ(x) ` π(Assoc(o, g)). Then, either
∃t1.(Remove(o, g, t1) ∈ Th(x) ∧ ∀t2.(LiberalAdd(o, g, t2) ∈ Th(x) ⇒ t1 > t2)) (o has been
removed from g and not re-added), or ∀t1.(LiberalAdd(o, g, t1) /∈ Th(x)) (o has not been added to
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g). By σ, in either case, PA(o, g) /∈ Th(σ(x)). By π, πAssoc(o,g)(Th(σ(x))) = false, which is a
contradiction on the assumption that σ(x) ` π(Assoc(o, g)).

• auth Assume x ` auth(s, o, g) and σ(x) 0 π(auth(s, o, g)). Then, ∃t1, t2.(LiberalJoin(s, g, t1) ∈
Th(x) ∧ LiberalAdd(o, g, t2) ∈ Th(x) ∧ ∀t3.(StrictRemove(o, g, t3) ∈ Th(x) ⇒ t2 > t3)) (s has
joined g, o has been added to g and has not been strict removed). If t2 > t1 (the join occurred first),
then ∀t3.(StrictLeave(s, g, t3) ∈ Th(x)⇒ t1 > t3 ∨ t3 > t2) (s did not leave g between joining and
o being added). If t1 > t2 (the add occurred first), then ∀t3.(Remove(o, g, t3) ∈ Th(x) ⇒ t2 >
t3 ∨ t3 > t1) (o was not removed from g between being added and s joining). In either case, by
σ, ∃r1, r2.(UR(s, r1) ∈ Th(σ(x)) ∧ PA(r2, o) ∈ Th(σ(x)) ∧ r1 ≥ r2 ∈ Th(σ(x))) (s belongs to a
role authorized to o or senior to a role authorized to o). Connection to g is preserved by σ, so
∃r3.(Senior(g, r3) ∈ Th(σ(x))∧Senior(r2, r2) ∈ Th(σ(x))), either because s and o are both in role
g (so r1 = r2 = g and r3 is the automatically-created role below g) or because s and o are in one of
two types of “orphaned node.” The first results from s strict leaving g and later re-joining (s must
have re-joined if x ` auth(s, o, g)). The second results from o being liberal removed. Thus, in any
of these cases, by π, πauth(s,o,g)(Th(σ(x))) = true, which is a contradiction on the assumption
that σ(x) 0 π(auth(s, o, g)).

Assume instead that x 0 auth(s, o, g) and σ(x) ` π(auth(s, o, g)). Then, either:
∀t1, t2.(LiberalJoin(s, g, t1) /∈ Th(x) ∨ LiberalAdd(o, g, t2) /∈ Th(x)) (s has not joined g
or o has not been added to g); x 0 Member(s, g) (s is not currently a member of g);
∃t3.(StrictRemove(o, g, t3) ∈ Th(x) ∧ t3 > t1) (o has been strict removed from g); or
s’s and o’s membership in g did not overlap in a way that caused the authorization.
In the final case, if t2 > t1 (the join occurred first), then ∃t4.(StrictLeave(s, g, t4) ∈
Th(x) ∧ t2 > t4 > t1) (s left g before o was added). If t1 > t2 (the add occurred first),
then ∃t4.(Remove(s, g, t4) ∈ Th(x) ∧ t1 > t4 > t2) (o was removed from g before s joined).
Thus, by σ, if ∃r1, r2.(UR(s, r1) ∈ Th(σ(x)) ∧ PA(r2, o) ∈ Th(σ(x)) ∧ r1 ≥ r2 ∈ Th(σ(x)))
(s belongs to a role authorized to o or senior to a role authorized to o), then it must be in
conjunction with a group other than g: ∀r3.(Senior(g, r3) /∈ Th(σ(x))∨Senior(r2, r3) /∈ Th(σ(x))).
Thus, by π, πauth(s,o,g)(Th(σ(x))) = false, which is a contradiction on the assumption that
σ(x) ` π(auth(s, o, g).

Thus, by contradiction, σ preserves π.
Finally, the label mapping, α, is defined as follows.

addS (M, s )
output (addU( s ) )

de lS (M, s )
output ( delU ( s ) )

addO(M, o )
output (addP( o ) )

delO (M, o )
output ( delP ( o ) )

l i b e r a l J o i n (M, s , g )
output ( as s i gnUser ( s , g ) )
I f ∃ x , y , z . ( {RH( g , x ) , RH(y , x ) , RH( z , y ) ,

UR( s , y )} ⊂ M)
output ( as s i gnUser ( s , z ) )
output ( revokeUser ( s , y ) )
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endI f

s t r i c t L e a v e (M, s , g )
output ( revokeUser ( s , g ) )
I f ∃ x , y , z . ( {RH( g , x ) , RH(y , x ) , RH( z , y ) ,

UR( s , z )} ⊂ M)
output ( as s i gnUser ( s , y ) )
output ( revokeUser ( s , z ) )

e l s e
Let <y , z> = nFreshConst (2 , Consts (M) , Univ )
output (addR( y ) )
output (addR( z ) )
output ( as s i gnUser ( s , y ) )
output ( addHierarchy ( z , y ) )
I f ∃ x . (RH( g , x ) ∈ M)

output ( addHierarchy (y , x ) )
e n d i f

e n d i f
f o r each (p ∈ {p | PA( g , p) ∈ M})

output ( a s s i gnPermi s s i on ( z , p ) )

l ibe ra lAdd (M, o , g )
output ( a s s i gnPermi s s i on ( g , o ) )

str ictRemove (M, o , g )
output ( revokePermiss ion ( g , o ) )
I f ∃ SubA , SubB . ( {RH( g , SubA) , RH(SubA , SubB)} ⊂ M)

f o r each ( Sup2 ∈ {z | ∃ y . ( {RH(y , SubA) ,
RH( z , y )} ⊂ M)} )

output ( revokePermiss ion ( Sup2 , o ) )
f o r each ( Orphan ∈ { r | RH( r , SubB) ∈ M} \ {SubA})

output ( revokePermiss ion ( Orphan , o ) )
e n d i f

l ibera lRemove (M, o , g )
I f ∃ SubA , SubB . ( {RH( g , SubA) , RH(SubA , SubB)} ⊂ M)

Orphan = nFreshConst (1 , Consts (M) , Univ )
output (addR( Orphan ) )
output ( addHierarchy (Orphan , SubB ) )
f o r each (u ∈ {u | UR(u , g ) ∈ M})

output ( as s i gnUser (u , Orphan ) )
output ( a s s i gnPermi s s i on ( Orphan , o ) )
output ( revokePermiss ion ( g , o ) )

e n d i f

This mapping is described in HPL, and is thus homomorphic.
We prove that α preserves σ by showing that, for any PSP state x and label `, σ(next(x, `)) =

terminal(σ(x), α(σ(x), `)).
Given PSP state x and label `, x′ = next(x, `) is the state resulting from executing label ` in

state x.

• If ` is an instance of addS(s), then x′ = x∪S(s). By σ, this maps in RBAC1 to state σ(x′) = σ(x)∪
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U(s). By α, α(σ(x), `) = addU(s). By RBAC1’s next relation, next(σ(x), addU(s)) = σ(x)∪U(s).
Thus, if ` is an instance of addS(s), σ(x′) = terminal(σ(x), α(σ(x), `)).

• If ` is an instance of delS(s), then x′ = x\(S(s)∪Entries(x, s)), where Entries(x, s) denotes the set
of all state tuples in x involving s. By σ, σ(x′) = σ(x)\(U(s)∪Entries(σ(x), s)). By α, α(σ(x), `) =
delU(s). By RBAC1’s next relation, next(σ(x), delU(s)) = σ(x)\ (U(s)∪Entries(σ(x), s)). Thus,
if ` is an instance of delS(s), σ(x′) = terminal(σ(x), α(σ(x), `)).

• If ` is an instance of addO(o), then x′ = x ∪O(o). By σ, σ(x′) = σ(x) ∪ P (o). By α, α(σ(x), `) =
addP (o). By RBAC1’s next relation, next(σ(x), addP (o)) = σ(x)∪P (o). Thus, if ` is an instance
of addP (o), σ(x′) = terminal(σ(x), α(σ(x), `)).

• If ` is an instance of delO(o), then x′ = x \ (O(o) ∪ Entries(x, o)). By σ, σ(x′) =
σ(x) \ (P (o) ∪ Entries(σ(x), o)). By α, α(σ(x), `) = delP (o). By RBAC1’s next relation,
next(σ(x), delP (o)) = σ(x) \ (P (o) ∪ Entries(σ(x), o)). Thus, if ` is an instance of delO(o),
σ(x′) = terminal(σ(x), α(σ(x), `)).

• If ` is an instance of liberalJoin(s, g), then x′ = x ∪ LiberalJoin(s, g, t) ∪ Time(t+ 1) \ Time(t).
If s has not previously strict left g, then by σ, σ(x′) = σ(x) ∪ UR(s, g). By α, α(σ(x), `) =
assignUser(s, g). By RBAC1’s next relation, next(σ(x), assignUser(s, g)) = σ(x) ∪ UR(s, g).
Thus, σ(x′) = terminal(σ(x), α(σ(x), `)).

If s has previously strict left g, then by σ, σ(x′) = σ(x)∪UR(s, g)∪UR(s, rhigh)\UR(s, rlow), where
rlow, rhigh is an orphaned rolepair tracking the permissions to be re-granted to s upon re-join. By
α, α(σ(x), `) = assignUser(s, g) ◦ assignUser(s, rhigh) ◦ revokeUser(s, rlow). By RBAC1’s next
relation, terminal(σ(x), assignUser(s, g) ◦ assignUser(s, rhigh) ◦ revokeUser(s, rlow) = σ(x) ∪
UR(s, g) ∪ UR(s, rhigh) \ UR(s, rlow). Thus, σ(x′) = terminal(σ(x), α(σ(x), `)).

Thus, if ` is an instance of liberalJoin(s, g), σ(x′) = terminal(σ(x), α(σ(x), `)).

• If ` is an instance of strictLeave(s, g), then x′ = x ∪ StrictLeave(s, g, t) ∪ Time(t+ 1) \ Time(t).
If s has not previously strict left g, then by σ, σ(x′) = σ(x) \ UR(s, g) ∪ R(rlow) ∪
R(rhigh) ∪ UR(s, rlow) ∪ RH(rhigh, rlow) ∪ RH(rlow, rsub) ∪ PA(rhigh, p1) ∪ · · · ∪ PA(rhigh, pk),
where rlow, rhigh is a newly-created orphaned rolepair tracking the permissions to be
re-granted to s upon re-join, rsub is the role below g in the hierarchy, and p1, . . . , pk
is the set of permissions currently granted to members of g (the permissions that will
be re-granted if s re-joins g). By α, α(σ(x), `) = revokeUser(s, g) ◦ addR(rlow) ◦
addR(rhigh) ◦ assignUser(s, rlow) ◦ addHierarchy(rhigh, rlow) ◦ addHierarchy(rlow, rsub) ◦
assignPermission(rhigh, p1) ◦ · · · ◦ assignPermission(rhigh, pk). By RBAC1’s next re-
lation, terminal(σ(x), revokeUser(s, g) ◦ addR(rlow) ◦ addR(rhigh) ◦ assignUser(s, rlow) ◦
addHierarchy(rhigh, rlow) ◦ addHierarchy(rlow, rsub) ◦ assignPermission(rhigh, p1) ◦ · · · ◦
assignPermission(rhigh, pk) = σ(x)\UR(s, g)∪R(rlow)∪R(rhigh)∪UR(s, rlow)∪RH(rhigh, rlow)∪
RH(rlow, rsub) ∪ PA(rhigh, p1) ∪ · · · ∪ PA(rhigh, pk). Thus, σ(x′) = terminal(σ(x), α(σ(x), `)).

If s has previously strict left g, then by σ, σ(x′) = σ(x) \ UR(s, g) ∪ UR(s, rlow) \ UR(s, rhigh) ∪
PA(rhigh, p1) ∪ · · · ∪ PA(rhigh, pk). By α, α(σ(x), `) = revokeUser(s, g) ◦ assignUser(s, rlow) ◦
revokeUser(s, rhigh) ◦ assignPermission(rhigh, p1) ◦ · · · ◦ assignPermission(rhigh, pk).
By RBAC1’s next relation, terminal(σ(x), revokeUser(s, g) ◦ assignUser(s, rlow) ◦
revokeUser(s, rhigh) ◦ assignPermission(rhigh, p1) ◦ · · · ◦ assignPermission(rhigh, pk) =
σ(x) \ UR(s, g) ∪ UR(s, rlow) \ UR(s, rhigh) ∪ PA(rhigh, p1) ∪ · · · ∪ PA(rhigh, pk). Thus,
σ(x′) = terminal(σ(x), α(σ(x), `)).

Thus, if ` is an instance of strictLeave(s, g), σ(x′) = terminal(σ(x), α(σ(x), `)).

• If ` is an instance of liberalAdd(o, g), then x′ = x ∪ LiberalAdd(o, g, t) ∪ Time(t+ 1) \ Time(t).
By σ, σ(x′) = σ(x) ∪ PA(g, o). By α, α(σ(x), `) = assignPermission(g, o). By RBAC1’s next
relation, next(σ(x), assignPermission(g, o)) = σ(x) ∪ PA(g, o). Thus, if ` is an instance of
liberalAdd(o, g), σ(x′) = terminal(σ(x), α(σ(x), `)).
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• If ` is an instance of strictRemove(o, g), then x′ = x ∪ StrictRemove(o, g, t) ∪ Time(t + 1) \
Time(t). By σ, σ(x′) = σ(x) \ (PA(g, o) ∪ PA(r1, o) ∪ · · · ∪ PA(rk, o)), where r1, . . . , rk is the
set of roles ri connected to g in the role hierarchy such that PA(ri, o) ∈ Th(σ(x)). By α,
α(σ(x), `) = revokePermission(g, o) ◦ revokePermission(r1, o) ◦ · · · ◦ revokePermission(rk, o).
By RBAC1’s next relation, next(σ(x), revokePermission(g, o) ◦ revokePermission(r1, o) ◦ · · · ◦
revokePermission(rk, o)) = σ(x)\(PA(g, o)∪PA(r1, o)∪· · ·∪PA(rk, o)). Thus, if ` is an instance
of strictRemove(o, g), σ(x′) = terminal(σ(x), α(σ(x), `)).

• If ` is an instance of liberalRemove(o, g), then x′ = x ∪ LiberalRemove(o, g, t) ∪ Time(t +
1) \ Time(t). By σ, σ(x′) = σ(x) ∪ R(rorphan) ∪ RH(rorphan, rsubb) ∪ UR(u1, rorphan) ∪ · · · ∪
UR(uk, rorphan) ∪ PA(rorphan, o) \ PA(g, o), where rorphan is a newly-created orphan role to
permit users to retain access to o, rsubb is the second role below g in the role hierarchy,
and u1, . . . , uk is the set of users currently in g (e.g., {ui | UR(ui, g) ∈ Th(σ(x))}). By
α, α(σ(x), `) = addR(rorphan) ◦ addHierarchy(rorphan, rsubb) ◦ assignUser(u1, rorphan) ◦ · · · ◦
assignUser(uk, rorphan) ◦ assignPermission(rorphan, o) ◦ revokePermission(g, o). By RBAC1’s
next relation, next(σ(x), addR(rorphan)◦addHierarchy(rorphan, rsubb)◦assignUser(u1, rorphan)◦
· · · ◦ assignUser(uk, rorphan) ◦ assignPermission(rorphan, o) ◦ revokePermission(g, o)) = σ(x)∪
R(rorphan)∪RH(rorphan, rsubb)∪UR(u1, rorphan)∪· · ·∪UR(uk, rorphan)∪PA(rorphan, o)\PA(g, o).
Thus, if ` is an instance of liberalRemove(o, g), σ(x′) = terminal(σ(x), α(σ(x), `)).

Thus, for any PSP state x and label `, σ(next(x, `)) = terminal(σ(x), α(σ(x), `)). Thus, we have
shown that α preserves σ.

Finally, α is safe by inspection—for any PSP state x and label `, the sequence of RBAC1 labels
α(σ(x), `) never revokes or grants authorizations except the images of those that are revoked or
granted by `.

Thus, we have shown that α preserves σ, is homomorphic, and preserves safety; that σ preserves
π and is homomorphic; and that π is weak AC-preserving and homomorphic.
∴ 〈α, σ, π〉 is an implementation of PSP in RBAC1 which preserves correctness, weak AC-

preservation, homomorphism, and safety. �

5.3 Reduction-Derived Implementations

Corollary 23 RBAC0 admits a correct, weak AC-preserving implementation of PC.

Proof Follows directly from Theorems 13 and 21. �

Corollary 24 ugo admits a correct, weak AC-preserving implementation of PC.

Proof Follows directly from Theorem 14 and Corollary 23. �

Corollary 25 RBAC0 admits a correct, weak AC-preserving implementation of PSP.

Proof Follows directly from Theorems 13 and 22. �

Corollary 26 ugo admits a correct, weak AC-preserving implementation of PSP.

Proof Follows directly from Theorem 14 and Corollary 25. �

6 Infeasible Reductions

6.1 RBAC1 and RBAC0

Theorem 27 There exists a reduction 〈σ, π〉 from RBAC1 to RBAC0 where:
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• σ preserves π, is injective, preserves reachability, and is homomorphic

• π is AC-preserving and homomorphic

Thus, RBAC1 ≤CAH RBAC0 (RBAC0 is at least as expressive as RBAC1 with respect to
correctness, AC-preservation, and homomorphism).

Proof We present the reduction, 〈σ, π〉. First, σ maps the RBAC1 state 〈U,R, P, UR, PA,RH〉
to the RBAC0 state 〈U,R, P, UR, PA〉.

sigma (M)
Let U = {u | U(u) ∈ M} ∪ { r | R( r ) ∈ M}
Let R = { r | R( r ) ∈ M}
Let P = {p | P(p) ∈ M} ∪ { r | R( r ) ∈ M}
Let UR = {}
Let PA = {}
Let Skolems = {}

EncodeUr (M, Skolems , U, R, UR)
EncodePa (M, Skolems , R, P, PA)
EncodeRh (M, Skolems , R, P, PA)
EncodeAuth ( Consts (M) , Skolems , U, R, P, UR, PA)

outputSet (U ∪ R ∪ P ∪ UR ∪ PA)

EncodeUr (M, Skolems , U, R, UR)
f o r each (<u , r> ∈ {<u , r> | UR(u , r ) ∈ M})

StoreUr ( Consts (M) , Skolems , U, R, UR, u , r )

StoreUr ( Constants , Skolems , U, R, UR, u , r )
<z , y> = nFreshConst (2 , Constants ∪ Skolems , Univ )
Skolems = Skolems ∪ {z , y}
U = U ∪ {z}
R = R ∪ {z , y}
UR = UR ∪ {<z , y>, <u , z>, <r , y>}

EncodePa (M, Skolems , R, P, PA)
f o r each (<r , p> ∈ {<r , p> | PA( r , p) ∈ M})

StorePa ( Consts (M) , Skolems , R, P, PA, r , p )

StorePa ( Constants , Skolems , R, P, PA, r , p )
<z , y> = nFreshConst (2 , Constants ∪ Skolems , Univ )
Skolems = Skolems ∪ {z , y}
R = R ∪ {z , y}
P = P ∪ {y}
PA = PA ∪ {<z , y>, <z , r>, <y , p>}

EncodeRh (M, Skolems , R, P, PA)
f o r each (<s , j> ∈ {<s , j> | RH( s , j ) ∈ M})

StoreRh ( Consts (M) , Skolems , R, P, PA, s , j )

StoreRh ( Constants , Skolems , R, P, PA, s , j )
<z , y , x> = nFreshConst (3 , Constants ∪ Skolems , Univ )
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Skolems = Skolems ∪ {z , y , x}
R = R ∪ {z , y , x}
P = P ∪ {y , x}
PA = PA ∪ {<z , y>, <y , x>, <z , s>, <x , j>}

EncodeAuth ( Constants , Skolems , U, R, P, UR, PA)
f o r each (u ∈ {u | u ∈ U \ R})

f o r each (p ∈ {p | p ∈ P \ R})
I f Authorized (UR, PA, u , p)

StoreAuth ( Constants , Skolems , R, UR, PA, u ,
p)

e n d i f

StoreAuth ( Constants , Skolems , R, UR, PA, u , p)
z = nFreshConst (1 , Constants ∪ Skolems , Univ )
Skolems = Skolems ∪ {z}
R = R ∪ {z}
UR = UR ∪ {<u , z>}
PA = PA ∪ {<z , p>}

Authorized (UR, PA, u , p)
I f ∃ z , y , x ,w, r .({<z , y>, <u , z>, <r , y>} ⊆ UR ∧

{<x , w>, <x , r>, <w, p>} ⊆ PA)
return true

e l s e I f ∃ z , y , x ,w, s , j .({<z , y>, <u , z>, <s , y>} ⊆ UR ∧
{<x , w>, <x , j>, <w, p>} ⊆ PA ∧
Sen ior (PA, s , j ) )

r e turn true
e l s e

re turn false
e n d i f

Sen ior (PA, s , j )
I f ∃ z , y , x .({<z , y>, <y , x>, <z , s>, <x , j>} ⊆ PA)

return true
e l s e I f ∃ r . ( Sen ior (PA, s , r ) ∧ Sen ior (PA, r , j ) )

r e turn true
e l s e

re turn false
e n d i f

As this mapping is described in HPL, it is homomorphic. It is also injective, since no two RBAC1

states will map to the same RBAC0 state: the entirety of the RBAC1 state is encoded in (and can
be uniquely extracted from) the RBAC0 state.

The query mapping, π, is defined as follows.

UR(T, u , r )
I f ∃ x . (UR(x , u) ∈ T ∨ UR(x , r ) ∈ T)

return false
e l s e I f ∃ z , y . (UR( z , y ) ∈ T ∧ UR(u , z ) ∈ T ∧

UR( r , y ) ∈ T)
return true
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e l s e
re turn false

e n d i f

PA(T, r , p )
I f ∃ x . (PA( r , x ) ∈ T ∨ PA(p , x ) ∈ T)

return false
e l s e I f ∃ z , y . (PA( z , y ) ∈ T ∧ PA( z , r ) ∈ T ∧

PA(y , p) ∈ T)
return true

e l s e
re turn false

e n d i f

R(T, r )
I f ∃ x . (UR(x , r ) ∈ T ∨ PA( r , x ) ∈ T)

return false
e l s e I f R( r ) ∈ T

return true
e l s e

re turn false
e n d i f

RH(T, s , j )
I f ∃ x . (PA( s , x ) ∈ T ∨ PA( j , x ) ∈ T)

return false
I f ∃ z , y , x . (PA( z , y ) ∈ T ∧ PA(y , x ) ∈ T ∧

PA( z , s ) ∈ T ∧ PA(x , j ) ∈ T)
return true

e l s e
re turn false

e n d i f

Sen ior (T, s , j )
I f RH(T, s , j )

r e turn true
e l s e I f ∃ r . ( Sen ior (T, s , r ) ∧ Sen ior (T, r , j ) )

r e turn true
e l s e

re turn false
e n d i f

auth (T, u , p)
I f auth (u , p) ∈ T

return true
e l s e

re turn false
e n d i f

This query mapping is described in HPL and is thus homomorphic. It is also AC-preserving since it
maps authorization query auth(r) to true for theory T exactly when T contains auth(r).

We show that σ preserves π (for any RBAC1 state x, Th(x) = π(Th(σ(x)))) by contradiction.
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Assume that there is some RBAC1 state x and query q such that the value of q in x is the opposite
of the value of π(q) in σ(x). We show that, for each of the query forms of RBAC1, this assumption
leads to contradiction.

• UR Assume x ` UR(u, r) and σ(x) 0 π(UR(u, r)). Then, UR(u, r) ∈ Th(x), and by σ,
∃z, y.(UR(z, y) ∈ Th(σ(x)) ∧ UR(u, z) ∈ Th(σ(x)) ∧ UR(r, y) ∈ Th(σ(x))). Since σ only stores
tuples in UR in which the second element is a skolem, ∀w.(UR(w, u) /∈ Th(σ(x)) ∧ UR(w, r) /∈
Th(σ(x))). By π, πUR(u,r)(Th(σ(x))) = true, which is a contradiction on the assumption that
σ(x) 0 π(UR(u, r)).

Assume instead that x 0 UR(u, r) and σ(x) ` π(UR(u, r)). Then, UR(u, r) /∈ Th(x). By σ, either
∀z, y.(UR(z, y) /∈ Th(σ(x)) ∨ UR(u, z) /∈ Th(σ(x)) ∨ UR(r, y) /∈ Th(σ(x))), or one or both of u
and r is a skolem value, in which case ∃w.(UR(w, u) ∈ Th(σ(x)) ∨ UR(w, r) ∈ Th(σ(x))). In
either case, by π, πUR(u,r)(Th(σ(x))) = false, which is a contradiction on the assumption that
σ(x) ` π(UR(u, r)).

• PA Assume x ` PA(r, p) and σ(x) 0 π(PA(r, p)). Then, PA(r, p) ∈ Th(x), and by σ,
∃z, y.(PA(z, y) ∈ Th(σ(x)) ∧ PA(z, r) ∈ Th(σ(x)) ∧ PA(y, p) ∈ Th(σ(x))). Since σ only stores
tuples in PA in which the first element is a skolem, ∀w.(PA(r, w) /∈ Th(σ(x)) ∧ PA(p, w) /∈
Th(σ(x))). By π, πPA(r,p)(Th(σ(x))) = true, which is a contradiction on the assumption that
σ(x) 0 π(PA(r, p)).

Assume instead that x 0 PA(r, p) and σ(x) ` π(PA(r, p)). Then, PA(r, p) /∈ Th(x). By σ, either
∀z, y.(PA(z, y) /∈ Th(σ(x)) ∨ PA(z, r) /∈ Th(σ(x)) ∨ PA(y, p) /∈ Th(σ(x))), or one or both of r
and p is a skolem value, in which case ∃w.(PA(r, w) ∈ Th(σ(x)) ∨ PA(p, w) ∈ Th(σ(x))). In
either case, by π, πPA(r,p)(Th(σ(x))) = false, which is a contradiction on the assumption that
σ(x) ` π(PA(r, p)).

• R Assume x ` R(r) and σ(x) 0 π(R(r)). Then, R(r) ∈ Th(x), and by σ, R(r) ∈ Th(σ(x)). By
σ’s storage of skolems in UR and PA, ∀w.(UR(w, r) /∈ Th(σ(x)) ∧ PA(r, w) /∈ Th(σ(x))). By π,
πR(r)(Th(σ(x))) = true, which is a contradiction on the assumption that σ(x) 0 π(R(r)).

Assume instead that x 0 R(r) and σ(x) ` π(R(r)). Then, R(r) /∈ Th(x), and by σ, either
R(r) /∈ Th(σ(x)), or r is a skolem, in which case ∃w.(UR(w, r) ∈ Th(σ(x))∨PA(r, w) ∈ Th(σ(x))).
In either case, by π, πR(r)(Th(σ(x))) = false, which is a contradiction on the assumption that
σ(x) ` π(R(r)).

• RH Assume x ` RH(s, j) and σ(x) 0 π(RH(s, j)). Then, RH(s, j) ∈ Th(x), and by σ,
∃z, y, w.(PA(z, y) ∈ Th(σ(x)) ∧ PA(y, w) ∈ Th(σ(x)) ∧ PA(z, s) ∈ Th(σ(x)) ∧ PA(w, j) ∈
Th(σ(x))). By σ’s storage of skolems in PA, ∀v.(PA(s, v) /∈ Th(σ(x))∧PA(j, v) /∈ Th(σ(x))). By π,
πRH(s,j)(Th(σ(x))) = true, which is a contradiction on the assumption that σ(x) 0 π(RH(s, j)).

Assume instead that x 0 RH(s, j) and σ(x) ` π(RH(s, j)). Then, RH(s, j) /∈ Th(x). By σ,
either ∀z, y, w.(PA(z, y) /∈ Th(σ(x)) ∨ PA(y, w) /∈ Th(σ(x)) ∨ PA(z, s) /∈ Th(σ(x)) ∨ PA(w, j) /∈
Th(σ(x))), or one or both of s and j is a skolem value, in which case ∃v.(PA(s, v) ∈ Th(σ(x)) ∨
PA(j, v) ∈ Th(σ(x))). In either case, by π, πRH(s,j)(Th(σ(x))) = false, which is a contradiction
on the assumption that σ(x) ` π(RH(s, j)).

• Senior Assume x ` Senior(s, j) and σ(x) 0 π(Senior(s, j)). Then, there is some sequence of roles
ri such that RH(s, r1) ∈ Th(x) ∧RH(r1, r2) ∈ Th(x) ∧ · · · ∧RH(rk, j) ∈ Th(x). By the previous
point, σ preserves πRH , so RH(s, r1) ∈ Th(σ(x)) ∧ RH(r1, r2) ∈ Th(σ(x)) ∧ · · · ∧ RH(rk, j) ∈
Th(σ(x)). By π, πSenior(s,j)(Th(σ(x))) = true, which is a contradiction on the assumption that
σ(x) 0 π(Senior(s, j)).

Assume instead that x 0 Senior(s, j) and σ(x) ` π(Senior(s, j)). Then, there is no sequence of
roles ri such that RH(s, r1) ∈ Th(x) ∧ RH(r1, r2) ∈ Th(x) ∧ · · · ∧ RH(rk, j) ∈ Th(x). Since σ
preserves πRH , there is also no sequence of roles ri such that RH(s, r1) ∈ Th(σ(x))∧RH(r1, r2) ∈
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Th(σ(x))∧· · ·∧RH(rk, j) ∈ Th(σ(x)) By π, πSenior(s,j)(Th(σ(x))) = false, which is a contradiction
on the assumption that σ(x) ` π(Senior(s, j)).

• auth Assume x ` auth(u, p) and σ(x) 0 π(auth(u, p)). Then, either ∃r.(UR(u, r) ∈ Th(x) ∧
PA(r, p) ∈ Th(x)) (u belongs to a role which is authorized to p) or ∃s, j.(UR(u, s) ∈ Th(x) ∧
PA(j, p) ∈ Th(x)∧ Senior(s, j) ∈ Th(x)) (u belongs to a role senior to a role that is authorized to
p). In either case, the HPL procedure Authorized() from σ’s specification will return true for u, p.
Thus, ∃z.(UR(u, z) ∈ Th(σ(x)) ∧ PA(z, p) ∈ Th(σ(x))), and by π, πauth(u,p)(Th(σ(x))) = true,
which is a contradiction on the assumption that σ(x) 0 π(auth(u, p)).

Assume instead that x 0 auth(u, p) and σ(x) ` π(auth(u, p)). Then, there is no sequence of roles ri
such that (RH(r1, r2), RH(r2, r3), . . . , RH(rk−1, rk)) ∈ Th(x) and UR(u, r1) ∈ Th(x)∧PA(rk, p) ∈
Th(x). Thus, by σ, Authorized() will return false for u, p, and thus StoreAuth() will not be
called for this pair. Since skolem values are not reused, and this is the only procedure that stores
the same skolem in both UR and PA, there is no r such that UR(u, r) ∈ Th(σ(x)) ∧ PA(r, p) ∈
Th(σ(x)). By π, πauth(u,p)(Th(σ(x))) = false, which is a contradiction on the assumption that
σ(x) ` π(auth(u, p)).

Thus, by contradiction, σ preserves π.
We prove that σ preserves reachability by induction by showing that, for any RBAC1 state x

and label `, σ(next(x, `)) is reachable from σ(x) via RBAC0 labels.
Given RBAC1 state x and label `, let x′ = next(x, `) by the state resulting from executing label

` in state x.

• If ` is an instance of addU(u), then x′ = next(x, `) = x ∪ U(u). By σ, this maps in RBAC0 to
state σ(x′) = σ(x) ∪ U(u). By RBAC0’s next relation, next(σ(x), addU(u)) = σ(x) ∪ U(u). Thus,
if ` is an instance of addU(u), σ(x′) is reachable from σ(x) via execution of addU(u). A similar
argument holds for instances of addP (p), with reachability in RBAC0 via addP (p).

• If ` is an instance of delU(u), then x′ = x \ (U(u) ∪ Entries(x, u)), where Entries(x, u) denotes
the set of all state tuples in x involving u. By σ, σ(x′) = σ(x) \ (U(u)∪UEntries(σ(x), u)), where
UEntries(σ(x), u) denotes a connected set of state tuples in σ(x) representing u:

– Where ∃z, y.(UR(z, y) ∧ UR(u, z) ∧ UR(r, y)), all three entries are removed, as well as U(z),
R(y), and R(z).

– Where ∃w, p.(UR(u,w) ∧ PA(w, p)), both are removed, as well as R(w).

By RBAC0’s next relation, terminal(σ(x), delU(u)◦{delU(zi)◦delR(yi)◦delR(zi)}◦{delR(wi)}) =
σ(x)\(U(u)∪UEntries(σ(x), u)) (where subsequences surrounded in {} are repeated as necessary).
Note that explicitly executing revokeUser and revokePermission labels to remove UR and PA
relations is not necessary since deleting the skolems will remove any entries containing them (by
typing). Thus, if ` is an instance of delU(u), σ(x′) is reachable from σ(x).

• If ` is an instance of delP (p), then x′ = next(x, `) = x \P (p). By σ, this maps in RBAC0 to state
σ(x′) = σ(x) \ (P (p) ∪ PEntries(σ(x), p)), where PEntries(σ(x), u) denotes a connected set of
state tuples in σ(x) representing p:

– Where ∃z, y.(PA(z, y) ∧ PA(z, r) ∧ PA(y, p)), all three entries are removed, as well as R(z),
P (y), and R(y).

– Where ∃u,w.(UR(u,w) ∧ PA(w, p)), both are removed, as well as R(w).

By RBAC0’s next relation, terminal(σ(x), delP (p)◦{delR(zi)◦delP (yi)◦delR(yi)}◦{delR(wi)}) =
σ(x) \ (P (p) ∪ PEntries(σ(x), p)) (again repeating subsequences surrounded in {} as necessary).
Thus, if ` is an instance of delP (p), σ(x′) is reachable from σ(x).
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• If ` is an instance of addR(r), then x′ = next(x, `) = x ∪ R(r). By σ, this maps in RBAC0 to
state σ(x′) = σ(x) ∪ (U(r) ∪R(r) ∪ P (r)). By RBAC0’s next relation, terminal(σ(x), addU(r) ◦
addR(r) ◦ addP (r)) = σ(x) ∪ (U(r) ∪R(r) ∪ P (r)). Thus, if ` is an instance of addR(r), σ(x′) is
reachable from σ(x) via execution of addU(r), addR(r), and addP (r).

• If ` is an instance of delR(r), then x′ = x \ (R(r) ∪ Entries(x, r)). By σ, σ(x′) = σ(x) \ (U(r) ∪
R(r)∪P (r)∪REntries(σ(x), r)), where REntries(σ(x), r) denotes a connected set of state tuples
in σ(x) representing r:

– Where ∃z, y.(UR(z, y) ∧ UR(u, z) ∧ UR(r, y)), all three are removed, as well as U(z), R(y),
and R(z).

– Where ∃z, y.(PA(z, y) ∧ PA(z, r) ∧ PA(y, p)), all three are removed, as well as R(z), P (y),
and R(y).

– Where ∃z, y, w, j.(PA(z, y) ∧ PA(y, w) ∧ PA(z, r) ∧ PA(w, j)), all four are removed, as well
as R(z), P (y), R(y), P (w), and R(w).

– Where ∃z, y, w, s.(PA(z, y) ∧ PA(y, w) ∧ PA(z, s) ∧ PA(w, r)), all four are removed, as well
as R(z), P (y), R(y), P (w), and R(w).

By RBAC0’s next relation, terminal(σ(x), delU(r) ◦ delR(r) ◦ delP (r) ◦ {delU(zi) ◦ delR(yi) ◦
delR(zi)}◦{delR(zi)◦delP (yi)◦delR(yi)}◦{delR(zi)◦delP (yi)◦delR(yi)◦delP (wi)◦delR(wi)}) =
σ(x) \ (U(r) ∪R(r) ∪ P (r) ∪REntries(σ(x), r)) (repeating subsequences as needed). Thus, if ` is
an instance of delR(r), σ(x′) is reachable from σ(x).

• If ` is an instance of assignUser(u, r), then x′ = x ∪ UR(u, r). By σ, σ(x′) = σ(x) ∪ (U(z) ∪
R(z) ∪ R(y) ∪ UR(z, y) ∪ UR(u, z) ∪ UR(r, y) ∪ Accesses(σ(x), u, r)), where z and y are skolem
values. Here, Accesses(σ(x), u, r) denotes the set of state tuples needed to grant u access to the
permissions implied by membership in r (skipping those that are already granted by other role
assignments). That is, for each permission pi gained by u by being assigned to r, the following are
added to the state: (R(wi)∪UR(u,wi)∪PA(wi, pi)), where each wi is a skolem value. By RBAC0’s
next relation, terminal(σ(x), addU(z)◦addR(z)◦addR(y)◦assignUser(z, y)◦assignUser(u, z)◦
assignUser(r, y) ◦ {addR(wi) ◦ assignUser(u,wi) ◦ assignPermission(wi, pi)}) = σ(x)∪ (U(z)∪
R(z) ∪R(y) ∪ UR(z, y) ∪ UR(u, z) ∪ UR(r, y) ∪Accesses(σ(x), u, r)) (repeating subsequences as
needed). Thus, if ` is an instance of assignUser(u, r), σ(x′) is reachable from σ(x).

• If ` is an instance of revokeUser(u, r), then x′ = x \UR(u, r). By σ, σ(x′) = σ(x) \ (U(z)∪R(z)∪
R(y) ∪UR(z, y) ∪UR(u, z) ∪UR(r, y) ∪Accesses(σ(x), u, r)), where Accesses(σ(x), u, r) is again
the set of tuples representing the granting of permissions to u because of membership in role r,
and z and y (and each wi implicit in Accesses) are whatever (skolem) values cause these tuples to
exist in the state (e.g., for pi, whatever wi such that σ(x) ` UR(u,wi)∧PA(wi, pi)). By RBAC0’s
next relation, terminal(σ(x), delU(z) ◦ delR(z) ◦ delR(y) ◦ {delR(wi)}) = σ(x) \ (U(z) ∪R(z) ∪
R(y) ∪ UR(z, y) ∪ UR(u, z) ∪ UR(r, y) ∪Accesses(σ(x), u, r)) (repeating subsequences as needed).
Thus, if ` is an instance of revokeUser(u, r), σ(x′) is reachable from σ(x).

• If ` is an instance of assignPermission(r, p), then x′ = x∪PA(r, p). By σ, σ(x′) = σ(x)∪ (R(z)∪
R(y) ∪ P (y) ∪ PA(z, y) ∪ PA(z, r) ∪ PA(y, p) ∪Accessors(σ(x), p, r)), where z and y are skolem
values. Accessors(σ(x), p, r) denotes the set of state tuples needed to grant access to p to members
of r and senior roles (skipping those that are already granted by other role assignments). For
each user ui that gains access to p by it being assigned to r, the following are added to the state:
(R(wi) ∪ UR(ui, wi) ∪ PA(wi, p)), where each wi is a skolem value. By RBAC0’s next relation,
terminal(σ(x), addR(z)◦addR(y)◦addP (y)◦assignPermission(z, y)◦assignPermission(z, r)◦
assignPermission(y, p) ◦ {addR(wi) ◦ assignUser(ui, wi) ◦ assignPermission(wi, p)}) = σ(x) ∪
(R(z)∪R(y)∪P (y)∪PA(z, y)∪PA(z, r)∪PA(y, p)∪Accessors(σ(x), p, r)) (repeating subsequences
as needed). Thus, if ` is an instance of assignPermission(r, p), σ(x′) is reachable from σ(x).
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• If ` is an instance of revokePermission(r, p), then x′ = x \PA(r, p). By σ, σ(x′) = σ(x) \ (R(z)∪
R(y) ∪ P (y) ∪ PA(z, y) ∪ PA(z, r) ∪ PA(y, p) ∪ Accessors(σ(x), p, r)), for whatever values for z
and y (and each wi implicit in Accessors) cause these tuples to exist in the state. By RBAC0’s
next relation, terminal(σ(x), delR(z) ◦ delR(y) ◦ delP (y) ◦ {delR(wi)}) = σ(x) \ (R(z) ∪R(y) ∪
P (y)∪PA(z, y)∪PA(z, r)∪PA(y, p)∪Accessors(σ(x), p, r)) (repeating subsequences as needed).
Thus, if ` is an instance of revokePermission(r, p), σ(x′) is reachable from σ(x).

• If ` is an instance of addHierarchy(s, j), then x′ = x ∪ RH(s, j). By σ, σ(x′) =
σ(x) ∪ (R(z) ∪ R(y) ∪ R(w) ∪ P (y) ∪ P (w) ∪ PA(z, y) ∪ PA(y, w) ∪ PA(z, s) ∪ PA(w, j) ∪
CascadePerms(σ(x), s, j)), where z, y, and w are skolem values. CascadePerms(σ(x), s, j)
denotes the set of state tuples needed to grant authorizations as a result of s now be-
ing a senior role of j. For each user ui that gains access to permission pi via this ac-
tion, the following are added to the state: (R(vi) ∪ UR(ui, vi) ∪ PA(vi, pi)), where vi is
a skolem value. By RBAC0’s next relation, terminal(σ(x), addR(z) ◦ addR(y) ◦ addR(w) ◦
addP (y)◦addP (w)◦assignPermission(z, y)◦assignPermission(y, w)◦assignPermission(z, s)◦
assignPermission(w, j)◦{addR(vi)◦assignUser(ui, vi)◦assignPermission(vi, pi)}) = σ(x′) (re-
peating subsequences as needed). Thus, if ` is an instance of addHierarchy(s, j), σ(x′) is reachable
from σ(x).

• If ` is an instance of removeHierarchy(s, j), then x′ = x \RH(s, j). By σ, σ(x′) = σ(x) \ (R(z)∪
R(y)∪R(w)∪P (y)∪P (w)∪PA(z, y)∪PA(y, w)∪PA(z, s)∪PA(w, j)∪CascadePerms(σ(x), s, j)),
for whatever values for z, y, and w (and each vi in CascadePerms) cause these tuples to exist
in the state. By RBAC0’s next relation, terminal(σ(x), delR(z) ◦ delR(y) ◦ delR(w) ◦ delP (y) ◦
delP (y) ◦ delP (w) ◦ {delR(vi)} = σ(x′) (repeating subsequences as needed). Thus, if ` is an
instance of removeHierarchy(s, j), σ(x′) is reachable from σ(x).

Thus, for any RBAC1 state x and label `, σ(next(x, `)) is reachable from σ(x) via RBAC0 labels.
By induction, for any RBAC1 states s and s′, if s′ is reachable from s, then σ(s′) is reachable from
σ(s). Thus, we have shown that σ preserves reachability.

Thus, we have shown that σ preserves π, is injective, preserves reachability, and is homomorphic;
and that π is AC-preserving and homomorphic.
∴ 〈σ, π〉 is a reduction from RBAC1 to RBAC0 which shows RBAC1 ≤CAH RBAC0. �

Corollary 28 RBAC0 and RBAC1 are equivalent in expressiveness with respect to correctness,
AC-preservation, and homomorphism.

Proof Follows directly from Proposition 12 and Theorem 27. �

6.2 Reductions by Transitivity

Corollary 29 tgSIS ≤CaH RBAC0

Proof Follows directly from Theorems 10 and 27 and Propositions 5 and 6. �

Corollary 30 bgSIS ≤CaH RBAC0

Proof Follows directly from Theorems 11 and 27 and Propositions 5 and 6. �
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