
The Design and Demonstration of an Actor-Based,
Application-Aware Access Control Evaluation Framework

William C. Garrison III
Department of Computer Science

University of Pittsburgh
bill@cs.pitt.edu

Adam J. Lee
Department of Computer Science

University of Pittsburgh
adamlee@cs.pitt.edu

Timothy L. Hinrichs
Department of Computer Science
University of Illinois at Chicago

hinrichs@uic.edu

Abstract—To date, most work regarding the formal analysis of
access control schemes has focused on quantifying and comparing
the expressive power of a set of schemes. Although expressive
power is important, it is a property that exists in an absolute
sense, detached from the application-specific context within which
an access control scheme will ultimately be deployed. In this
paper, by contrast, we formalize the access control suitability
analysis problem, which seeks to evaluate the degree to which
a set of candidate access control schemes can meet the needs
of an application-specific workload. This process involves both
reductions to assess whether a scheme is capable of implementing
a workload, as well as cost analysis using ordered measures
to quantify the overheads of using each candidate scheme to
service the workload. We develop a mathematical framework
for analyzing instances of the suitability analysis problem, and
evaluate this framework both formally (by quantifying its effi-
ciency and accuracy properties) and practically (by exploring
a group-based messaging workload from the literature). An
ancillary contribution of our work is the identification of auxiliary
machines, which are a useful class of modifications that can be
made to enhance the expressive power of an access control scheme
without negatively impacting the safety properties of the scheme.

I. INTRODUCTION

Access control is one of the most fundamental aspects of
computer security, and has been the subject of much formal
study. However, existing work on the formal analysis of access
control schemes has focused largely on comparing the relative
expressive power of two or more access control schemes
(e.g., [1]–[8]). Although expressive power is an interesting
and meaningful basis for comparing access control schemes,
it exists only as a comparison made in absolute terms. That
is, the knowledge that a scheme S is more expressive than
another scheme S ′ provides no assurance that S is the best
access control scheme for use within a particular real-world
application context. It could be the case, for instance, that S ′ is
expressive enough for a particular application and also has lower
administrative overheads than S would in the same situation. As
was noted in a recent NIST report, access control is not an area
with “one size fits all” solutions and, as such, systems should
be evaluated and compared relative to application-specific
metrics [9]. This report notes a variety of possible access
control quality metrics, but provides little guidance for actually
applying these metrics and carrying out practical analyses of
access control schemes.

Considering the wide availability of many diverse access
control schemes and the relative difficulty of designing and
building new secure systems from the ground up, an interesting
topic for exploration is that of suitability analysis. Informally,
this problem can be stated as follows: Given a description of a
system’s access control needs and a collection of access control
schemes, which scheme best meets the needs of the system?
Instances of this question can arise in many different scenarios,
encompassing both the deployment of new applications and
the reexamination of existing applications as assumptions
and requirements evolve. Modern software applications are
complex entities that may control access to both digital
(e.g., files) and physical (e.g., doors) resources. Given that
organizations are typically afforded little guidance in choosing
appropriate security solutions, suitability analysis could help
software developers sort through the myriad available security
frameworks and the multiple access control schemes embedded
in each.

In this paper, we identify and formalize the access control
suitability problem, and develop a mathematical framework and
techniques to facilitate suitability analysis. We first formalize
the notion of an access control workload to abstract the
application’s access control needs and the expected uses of
these functionalities. Analysis then consists of two orthogonal
tasks: (i) demonstrating that each candidate access control
scheme is capable of safely implementing the workload, and (ii)
quantifying the costs associated with the use of each candidate
scheme. Within this context, we develop techniques for safely
extending the functionality of candidate schemes that require
additional expressive power, develop guidelines for formally
specifying a wide range of access control cost metrics, and
present a simulation framework for carrying out Monte Carlo-
based cost analysis within our mathematical model. In doing
so, we make the following contributions:

• We formalize the access control suitability analysis
problem, and articulate a set of requirements that should
be satisfied by suitability analysis frameworks.

• We present the first formal definition of an access control
workload. This enables system administrators to clearly
and concisely specify the functionalities that must be
provided by access control schemes that are to be used
within a given context, as well as identify the ways in

which these schemes are envisioned to be exercised.
• We develop a two-phase analysis framework for assessing

the suitability of an access control scheme with respect
to a particular workload. We first establish whether the
candidate system is expressive enough to safely implement
the functionality of the workload via reduction. We then
utilize a constrained, actor-based workload invocation
structure to drive a cost analysis simulation that explores
the expected costs of deployment.

• To address issues of fragility that arise when constructing
reductions between a workload and a candidate scheme,
we introduce the notion of access control auxiliary
machines (AMs). From a practical perspective, auxiliary
machines represent “tweaks” that can be made to an
existing scheme to increase the range of questions that it
can answer. From a theoretical perspective, AMs describe
a class of enhancements to a scheme’s expressive power
that do not alter its safety properties (i.e., those that strictly
expand the set of policies that can be represented). We
prove the safety guarantees of AMs, and demonstrate their
use during suitability analysis.

• We present a detailed case study demonstrating how our
framework can be used to gain insight into a realistic
scenario. Namely, we investigate a workload derived from
a group messaging scenario [10]–[12]. We confirm the
intuition that such a scenario can be implemented in
commonly-used general-purpose access control schemes
(though extensions are required to do so safely). We also
found that such implementations differ widely in their
costs, confirming the belief that addressing group-based
sharing using general-purpose access control (even with
a scheme that is expressive enough) can lead to inferior
results. This emphasizes the importance of suitability
analysis when making access control decisions.

The remainder of this paper will be structured as follows. In
Section II, we describe related work. In Section III, we present
a formal problem statement, solution requirements, and an
overview of our proposed analysis framework. In Sections IV
and V, we describe the two phases of our framework in detail
(expressiveness evaluation and cost analysis, respectively). In
Section VI, we discuss techniques for extending an under-
expressive scheme so that it may implement a workload that it
otherwise could not. We describe our case study and present its
results in Section VII. In Section VIII, we evaluate the degree
to which our analysis framework meets the requirements in
articulated in Section III, and discuss a number of interesting
open problems related to the suitability analysis problem. We
conclude in Section IX.

II. RELATED WORK

The formal study of access control schemes began with the
seminal paper by Harrison, Ruzzo, and Ullman that investigated
the rights leakage problem [1]. This paper formalized a general
access control model and proved that determining whether
a particular access right could ever be granted to a specific
individual—the so-called “safety problem”—was undecidable.

Shortly thereafter, Lipton and Snyder showed that in a more
restricted access control system, safety was not only decidable,
but decidable in linear time [2]. These two results introduced
the notion that the most capable system is not always the right
choice—that restricting our system can yield higher efficiency
and greater ease in solving relevant security problems. This led
to many results investigating the relative expressive power of
various access control schemes, often leveraging some notion
of (bi)simulation (e.g., [3], [4], [6]–[8]).

Further work by Ammann et al. [3], Chander et al. [4],
and Li et al. [13] developed simulation-based frameworks
for comparing the expressive power of various access control
schemes. These simulation frameworks proved to be too relaxed,
allowing almost any reasonable scheme to be shown equivalent
to all others. To address this, Tripunitara and Li [5] developed
a more restrictive notion of expressive power. Their framework
supersedes the more informal notions of simulation developed
in prior works by requiring the use of specific types of mappings
between systems that guarantee relevant security properties
are preserved under simulation; this provides a greater level
of precision when ranking access control schemes in terms of
their expressiveness. Unfortunately, none of these frameworks
supports the comparison of access control schemes with regards
to their ability to perform well within a particular environment.

The need for application-aware evaluation of access control
systems was reinforced by a recent NIST report, which states
that “when it comes to access control mechanisms, one size
does not fit all” [9]. The report bemoans the lack of established
quality metrics for access control systems, going so far as to
list numerous possibilities, but stopping short of explaining
how one might choose between them or evaluate systems with
respect to one’s specific requirements. In this paper, we develop
a formal framework for exploring exactly this problem.

Wang et al. [14] described methods to safely extend role-
based access control schemes with delegation primitives.
However, role-based access control is only one particular
scheme, and delegation is only one particular access control
feature. Thus, this work provides no guideline for extending
other access control schemes, or using extensions to allow
different classes of abilities. In our work, we discuss the general
problem of extending access control schemes, and present a
particular class of safe and useful extensions, called auxiliary
machines.

As a result of the lack of tools for evaluating suitability in
access control, there is little work in the field for generating
synthetic traces that are representative of an access control
application. Thus, for inspiration in designing the access control
workload’s invocation component (see Section V-A), we turn
to work in other domains. In the field of disk benchmarking,
Ganger [15] observed that interleaved workloads provided
the most accurate approximation of recorded traces. Thus,
mechanisms for representing access control workloads must
be capable of simulating the interleaved actions of multiple
actors. This view is reinforced by the design of IBM’s SWORD
workload generator for stream processing systems [16]. This
work also points out that synthetic workloads need to replicate

both volumetric and contextual properties of an execution
environment in order to provide an accurate indication of
a system’s performance within that environment. Thus, we
conjecture that access control workloads as well may need to
be capable of expressing not only volumetric statistics such
as number of documents created, but also contextual statistics
such as the type of content in created documents.

Recent work in workflow systems has analyzed the com-
plexity of the workflow satisfiability problem (WSP), which
determines whether a workflow can be completed by the
participants in the system [17], [18]. This problem turns out to
be important for our approach, since our analysis framework
includes a simulation procedure that utilizes workflow systems
for describing behavior. Without an efficient method of solving
WSP, our simulation would suffer either intractability or
incorrect behavior.

III. A NEW APPROACH

Historically, evaluating the expressive power of access
control schemes has allowed researchers to separate schemes
into equivalence classes and answer important policy analysis
questions. However, absolute assessments tell us very little
about the performance and suitability of a particular access
control scheme for a given application. In this section, we
identify the access control suitability analysis problem, develop
a set of requirements that solutions to this problem must satisfy,
and overview our solution approach.

A. Problem Definition

Given a formalization of an application’s access control
requirements, we postulate that assessing the suitability of an
access control scheme for that application will involve two
classes of suitability measures: expressiveness and cost. As
such, suitability analysis is necessarily a two-phased process.

In the first phase, one must ensure that candidate schemes
for use within an application are expressive enough to safely
meet the needs of the application; that is, whether the
candidate schemes can admit at least the policies required
by the application. In this expressiveness phase, the analyst
formalizes the candidate access control schemes, the operations
required by the application, and the set of properties that
a safe implementation must satisfy. Examples of potential
implementation requirements range from simply enforcing
the same accesses to ensuring a strict bisimulation over state
transitions. Upon completion of this phase, the analyst should
be able to narrow down the list of schemes to those that
are expressive enough to operate within the application while
satisfying all required properties.

The notion of costs, on the other hand, requires examining
ordered measures of suitability such as administrative over-
heads, workflow throughput, or degree of reliance on system
extensions (e.g., to increase expressiveness) that result from
the choice of a particular candidate access control scheme.
In the cost analysis phase, the analyst formalizes the cost
measures of interest, the expected usage of the access control
system, and the expected costs of individual actions within each

scheme. This information can be used to conduct a cost analysis
that determines a partial order over the candidate schemes that
expresses their relative suitability to the application with respect
to the cost measures of interest.

More formally, we address the following problem:

Problem (Suitability Analysis) Given an access control
workload W , a set of candidate access control schemes
S = {S1, . . . ,Sn}, a notion of safe implementation I, and a
set of ordered cost measures C = {C1, . . . , Cm}, determine:

(i) the subset S ′ ⊆ S of schemes that admit implementations
of W preserving I

(ii) the schemes within S ′ whose cost assessments are
optimal within the lattice C1 × · · · × Cm ♦

B. Solution Requirements

We now explore requirements for suitability analysis frame-
works. First, we consider requirements in how an access control
workload (W) is represented. These requirements ensure that
a suitability analysis framework is capable of modeling the
tasks carried out within an organization, and the interactions
required to support and process these tasks. Considering both
facets of a workload is critical, as neither one alone can fully
parameterize the behavior of an organization.1

• Domain exploration: Large organizations are complex
systems with subtle interactions. The emergent behaviors
of such systems may not be captured during the static
process of workload specification. It must be possible
to efficiently explore many initial conditions (e.g., types
of actors, operations supported, organization size, and
operation distributions) to examine the effects of various
levels of concurrency and resource limitation.

• Cooperative interaction: Tasks within large organizations
typically require the interaction of many individuals. To
model these interactions, a suitability analysis framework
should support the use of operational workflows, as well
as constraints on their execution (e.g., to model separation
or binding of duty).

Next, we ensure that the analyst is able to tune the suitability
analysis framework to meet the specific needs of her application.
believe that For maximum flexibility, it must be possible to
choose the metrics used to assess the suitability of an access
control scheme for a given workload. This should include both
the binary metrics used in expressiveness evaluation (I) and
the ordered metrics used in cost evaluation (C).
• Tunable safety: Given a particular workload and scheme,

there may be many different ways for the scheme to
implement the workload. Without enforcing structure on
the mapping encoding this implementation, even the most
under-expressive schemes can appear to implement a
workload [5]. However, as mentioned in Section III-A,

1For instance, the well-documented shortcomings of the U.S. military’s
access control scheme result not from some core inability to process data, but
instead from overheads associated with scaling these processes to support high
volumes of data and dynamic sharing patterns [19], [20].

the particular properties that any given implementation
is required to satisfy will depend on the application in
which the access control system will be utilized.

• Tunable cost: There is no single notion of cost that is
sensible for use in every analysis instance. As evidenced
by a recent NIST report [9], the costs that are relevant in
evaluating access control schemes are very application-
dependent. Any suitability analysis framework should be
flexible enough to represent many types of costs, including
computational, communication, and administrative costs.
It must also be possible to examine multiple notions of
cost simultaneously during an analysis.

Finally, we consider requirements that ensure that the
suitability analysis framework remains practical to use—in
terms of runtime efficiency and accuracy—even for large-scale
application workloads.
• Tractability: Steps of the analysis process that can be

automated should be done so using tractable (e.g., poly-
nomial time or fixed-parameter tractable) algorithms that
remain feasible to use even for very large systems.

• Accuracy: In many cases, full exploration of all possible
system traces for the purposes of cost analysis (e.g., via
model checking) will be impractical. As such, it must
be possible to approximate the expected error of costs
obtained by exploring only a subset of these traces.

We have allowed these requirements to drive the development
of our suitability analysis framework, and will thus refer to
them when justifying various design decisions throughout the
following sections. We discuss our framework’s success in
achieving each of these requirements in Section VIII-A.

C. Framework Overview

Figure 1 presents a overview of the technical approach
that we propose for analyzing instances of the access control
suitability analysis problem. The first phase of this process is
largely manual, and begins by capturing the requirements of
the application in what we call an access control workload.
The workload includes a state machine that formalizes the
application’s required protection state and supported commands
and queries (Section IV-B). In addition, the workload contains
a specification of the expected utilization patterns of this
functionality, encoding individual behaviors using actor-based
probabilistic models, and collaborative tasks via constrained
workflows (Section V-A). Candidate access control schemes
are then specified as state machines, using the same formalism
as the operational aspects of the access control workload
(Section IV-A).

The representational similarity between the workload’s
operational description and the candidate schemes grants us
the ability to construct implementations of the workload. This
is done by mapping states, commands, and queries in the
workload to states, (sequences of) commands, and queries in
the candidate schemes (e.g., σS and σT in Fig. 1). Security
properties that must be upheld by a workload implementation
can be expressed as constraints on these mappings, and proofs

are manually constructed by the analyst indicating that these
properties are upheld (Section IV-C). In this way, the process
of constructing implementations is a conceptual extension of
prior work in expressive power analysis (e.g., [3], [4], [6]–
[8], [13]). It may be necessary for a candidate scheme to be
augmented to support such a safe implementation (Section VI).
The result of the first phase of analysis determines goal (i) of
the Suitability Analysis problem: the subset of schemes that
admit implementations of the workload while preserving the
requisite security properties.

After the initial specification of cost measures to quantify
the costs of interest to the analyst (Section V-B) and cost
functions to assign cost distributions to actions taken within
each candidate access control scheme (Section V-C), Phase 2 of
the suitability analysis process is largely automated. Specifically,
our approach makes use of Monte Carlo simulation to carry out
cost analysis: input parameters (e.g., number of users, frequency
of execution for various types of processes, etc.) are sampled
from appropriate distributions, the actor-based probabilistic
model of workload utilization is walked to generate concurrent
traces of workload activities, these activities are mapped to
(sequences of) actions in each candidate scheme being analyzed,
actions are carried out, and the resulting costs are aggregated.
This process is repeated until either (i) adequate coverage of the
input space is obtained or (ii) adequate confidence intervals can
be placed on the costs for specific points within this input space
(Section V-D). The result of this phase of analysis determines
goal (ii) of the Suitability Analysis Problem: the set of schemes
whose cost assessments are optimal within the lattice formed
by the collection of all costs measures.

IV. PHASE 1: EXPRESSIVENESS EVALUATION

In this section, we discuss the first phase of suitability
analysis, expressiveness evaluation. In this phase, the analyst
formalizes the workload and the candidate access control
schemes, then constructs expressiveness mappings to ensure
that each scheme has the expressiveness necessary to properly
implement the workload.

A. Formalizing Access Control Schemes

At the heart of an access control system is the access
control model, the collection of data structures used to store
the information needed to make access control decisions. An
access control model is formalized as a set of states, the
possible configurations of these data structures. An access
control scheme, then, defines the set of commands and queries
that can be used to interact with the model’s states. Lastly, an
access control system is an instantiation of a scheme, defining
the subset of the scheme’s commands that are immediately
available, as well as an initial state. Previous work has shown
distinctions in expressiveness between schemes with identical
models but different commands [4], [5] or queries [5], [8].
However, there seems to be little benefit in including a system’s
initial state in an analysis, since generalizing over all states
allows us to make stronger claims about its properties. Thus,
in this paper, our analysis considers access control schemes.

Access Control Workload

Operational
Component

Invocation
Mechanism

�S

�T �E

E

�S

�T �ET
Scheme

Scheme
S

Workload
Traces

Scheme
Traces

`S

`T �E

⌃

⌃

C1, . . . , Cj

Fig. 1: Overview of an application-aware analysis framework for access control

Our particular formalism is adapted from prior work [5],
and represents an access control scheme as a state transition
system operating over a set of protection states Γ. States in
Γ contain all information necessary for the operation of the
access control scheme (e.g., sets of principals, objects, roles,
etc.) Queries provided by the scheme enable inspection of this
state, while commands enable transitions between states. We
now more formally define these concepts.

Definition 1 (Query) Given a set of access control states, Γ,
an access control query over Γ is a question that can be asked
of an access control system, defined as q = 〈n, P,`〉, where:

• n names the query
• P = 〈P1, . . . , Pj〉 is the set of parameter spaces from

which the query’s j parameters are drawn (e.g., the set
of subjects, objects, roles), where p1 ∈ P1 represents the
entity executing the query.2 We denote P1 × · · · × Pj as
P ∗.

• ` : Γ× P ∗ → {TRUE, FALSE} is the entailment relation
that maps each state and parameterization to a truth value,
asserting that truth value of the query in the given state
with the given parameters ♦

Given access control query q = 〈nq, Pq,`q〉 over Γ,
state γ ∈ Γ, and parameterization p ∈ P ∗q , we say that
γ ` q(p1, . . . , pj) to indicate that `q(γ, p1, . . . , pj) = TRUE.
To better explain the intuition behind queries, we present the
following example.

Example 1 Consider the access control state γ, in which Alice
has no access to user Bob’s document, foo. Bob may choose
to verify whether Alice has access to foo by asking a query
where n = can_read, which takes parameters from spaces
〈U,U,D〉, the sets of users, users, and documents, respectively,
and whose entailment ` maps γ and the parameterization (Bob,

Alice, foo) to FALSE, indicating that Alice does not have the
access in question. ♦

While queries are used to inspect access control states,
commands are used to modify these states.

Definition 2 (Command) Given a set of access control states,
Γ, an access control command over Γ is the mechanism for

2The first parameter of a query or command represents the executing entity.
For queries, this allows the access control scheme to respond differently to
different queriers (e.g., a user may not be allowed to find out the existence of
another user’s documents). For commands, this allows the scheme to determine
whether the requested execution is allowed.

state transformations, defined as c = 〈n, P, e〉, where:
• n names the command
• P = 〈P1, . . . , Pj〉 is the set of parameter spaces from

which the command’s j parameters are drawn (e.g., the
set of subjects, objects, roles), where p1 ∈ P1 represents
the entity executing the command. We denote P1×· · ·×Pj
as P ∗.

• e : Γ × P ∗ → Γ, the effect mapping, which maps each
state and parameterization to the state that results from
the execution of the command with the given parameters
in the given state. ♦

We now give an example command to clarify Definition 2.

Example 2 Consider the state γ from Example 1. Bob may
choose to grant Alice read access to foo by executing a
command where n = grant_read, which takes parameters
from spaces 〈U,U,D〉, the sets of users, users, and documents,
respectively, and whose effect mapping e maps γ and the
parameterization (Bob, Alice, foo) to γ′, an identical state
with the exception of Alice being granted read access to foo.♦

Given a set of access control commands Ψ over Γ, and
two states γ, γ′ ∈ Γ, we say that γ 7→Ψ γ′ if there exists a
command ψ = 〈n, P, e〉 ∈ Ψ and a parameterization p ∈ P ∗
such that e(γ, p) = γ′. We use γ ∗7→Ψ γ′ to denote the transitive
closure of 7→Ψ: i.e., there exists a sequence of commands
〈ψ1 = 〈n1, P1, e1〉, . . . , ψk = 〈nk, Pk, ek〉〉 and a sequence of
parameterizations 〈p1 ∈ P ∗1 , . . . , pk ∈ P ∗k 〉 of these commands
such that ek(. . . e1(γ, p1), . . . , pk) = γ′. We can now precisely
formalize an access control scheme.

Definition 3 (Scheme) An access control scheme is a state
transition system S = 〈Γ,Ψ, Q〉, where Γ is the set of access
control states, Ψ is the set of commands over Γ, and Q is the
set of queries over Γ. ♦

We now give an example to demonstrate the structure.

Example 3 DAC is the discretionary access control scheme,
defined by D =

〈
ΓD,ΨD, QD

〉
. Its states, ΓD, are defined by

the sets 〈S,O,R,M〉, where:
• S is the set of subjects
• O is the set of objects
• R is the set of rights
• M : S ×O → 2R is the access matrix
DAC’s commands, ΨD, include the following.
• CreateObject(S, O), which adds an object

• DestroyObject(S, O), which deletes an object
• CreateSubject(S, S), which adds an subject
• DestroySubject(S, S), which deletes an subject
• Grant(S, S, O, R), which grants a right over an object

to a subject
• Revoke(S, S, O, R), which revokes a right over an

object from a subject
Finally, DAC’s queries, QD, include the following.
• Access(S, S, O, R), which asks whether a user has a

right over an object
• SubjectExist(S, S), which asks whether a subject exists

♦

B. Formalizing Workloads

An access control workload describes an abstraction of
the access control needs of an environment. A workload
specifies both an operational component describing the relevant
operations that must be supported, as well as an invocation
component that describes how those operations are expected
to be used. The operational component can be viewed as
the collection of high-level commands and queries that the
application would like to execute, and hence can be formalized
as an (abstract) access control state machine using Definition 3.
We note that, while formalized in the same way, workloads and
schemes differ in their intention. While a scheme represents
a functioning piece of software, a workload is built by the
analyst to represent the higher-level desired functionality of
a system, without necessarily being appropriate for direct
implementation. We discuss possible ways to more formally
express this difference in intention in Section VIII.

The invocation component describes the ways in which the
system is typically used; i.e., the order in which the high-
level commands and queries are executed. At a minimum, the
invocation component should be able to dictate the probabilities
with which various commands are executed and queries are
asked during paths of execution. Our framework allows the
invocation component to remain flexible. We discuss the
invocation mechanism and present a particular instantiation of
this concept in Section V-A.

Definition 4 (Workload) An access control workload is de-
fined by

〈
S, IS

〉
, where:

• S = 〈Γ,Ψ, Q〉 is an abstract access control scheme and
acts as the operational component

• IS is an invocation mechanism over S, e.g., an instance
of Definition 11 (cf. Section V-A) ♦

Note that it is not always obvious how to transform an
abstract description of a desired access control policy into a
machine-level specification for use as the scheme component
of a workload. We discuss this problem in Section VIII. We
now give an example of a workload operational component.

Example 4 Consider an environment that grants users dis-
cretionary control over their own resources, but allows ad-
ministrators to have full access to any object. This workload,

WA =
〈
A, IA

〉
, utilizes as its operational component the

administrative DAC scheme (ADAC), A. The ADAC scheme
is similar to the DAC scheme from Example 3, but must also
maintain the set of administrators, who have full access to each
object in the system. It is defined as A =

〈
ΓA,ΨA, QA

〉
. Its

states, ΓA, are defined by the sets 〈S,A,O,R,M〉, where:
• S is the set of subjects
• A ⊆ S is the set of administrators
• O is the set of objects
• R is the set of rights
• M : S ×O → 2R is the access matrix
ADAC’s commands, ΨA, include the following.
• CreateObject(S, O), which adds an object
• DestroyObject(S, O), which deletes an object
• CreateSubject(S, S), which adds an subject
• DestroySubject(S, S), which deletes an subject
• Grant(S, S, O, R), which grants a right over an object

to a subject
• Revoke(S, S, O, R), which revokes a right over an

object from a subject
• GrantAdmin(S, S), which grants administrative status
• RevokeAdmin(S, S), which revokes administrative status
Finally, ADAC’s queries, QA, include the following.
• Access(S, S, O, R), which asks whether a user has a

right over an object
• SubjectAdmin(S, S), which asks whether a subject is an

administrator
• SubjectExist(S, S), which asks whether a subject exists

message ♦

C. Implementing a Workload in a Scheme

Once the analyst selects an appropriate set of candidate
access control schemes, she must verify each scheme’s ability
to safely execute the operations required by the workload. To
do so, the analyst demonstrates the existence of mappings from
the workload’s operational component to each of the candidate
access control schemes. These mappings provide a translation
from the workload’s state representation and actions to those
of each candidate scheme. Moreover, these mappings are used
to guarantee that the safety properties of the workload are
preserved in each candidate scheme.

Definition 5 (Implementation) Given an access control
workload W =

〈
W, IW

〉
in which W =

〈
ΓW ,ΨW , QW

〉
,

and an access control scheme S =
〈
ΓS ,ΨS , QS

〉
, an imple-

mentation of W in S is a set of mappings σ = 〈σΓ, σΨ, σQ〉,
where:
• σΓ : ΓW → ΓS is the state mapping
• σΨ : ΨW →

(
ΨS
)+

is the command mapping (each
ψ ∈ ΨW is mapped to a sequence 〈ψ1, . . . , ψk〉, where
each ψi is a command in ΨS)

• σQ : QW → QS is the query mapping ♦

While Definition 5 describes the structure of an implemen-
tation, the properties that such an implementation must satisfy

are defined by the application in question. One particularly
natural set of properties that an implementation might be
required to preserve is the set of compositional security analysis
instances [5]. The compositional security analysis instance
is a generalization of simple safety analysis [1] to arbitrary
quantified boolean formulas over queries.

Definition 6 (Compositional Security Analysis) Given an
access control scheme S = 〈Γ,Ψ, Q〉, a compositional security
analysis instance has the form 〈γ, ϕ,Π〉, where γ ∈ Γ is a
state, ϕ is a propositional formula over Q, and Π ∈ {∃,∀} is
a quantifier. If Π = ∃, the instance asks whether there exists
γ′ ∈ Γ such that γ ∗7→Ψ γ′ and γ′ ` ϕ (whether ϕ is possible).
If Π = ∀, the instance asks whether for every γ′ ∈ Γ such that
γ
∗7→Ψ γ′, γ′ ` ϕ (whether ϕ is necessary). ♦

The compositional security analysis instance is a natural
language for expressing many types of practical policies (e.g.,
“Bob cannot edit payroll data while his wife, Alice, is also
an employee.” [5]). An implementation that preserves all
compositional security analysis instances is said to be strongly
security-preserving. Unfortunately, directly proving that a
mapping is strongly security-preserving can be quite expensive,
as it requires the analysis of all possible compositional security
analysis instances. For this reason, Tripunitara and Li presented
the state-matching reduction [5], a type of mapping that is
defined by a set of structural properties that are necessary
and sufficient for being strongly security-preserving. Using
the state-matching reduction is advantageous, as it is easier
to prove that a mapping satisfies these structural requirements
than it is to directly prove that it preserves all compositional
security analysis instances. We now present the state-matching
implementation, a type of implementation based on (and
maintaining the security properties of) Tripunitara and Li’s
state-matching reduction.

Definition 7 (State-Matching Implementation) Given
an access control workload W =

〈
W, IW

〉
in which

W =
〈
ΓW ,ΨW , QW

〉
, an access control scheme,

S =
〈
ΓS ,ΨS , QS

〉
, and an implementation σ = 〈σΓ, σΨ, σQ〉

of W in S, we say that two states γW and σΓ

(
γW
)

= γS

are equivalent with respect to the implementation σ (and
denote this equivalence as γW ∼σ γS) when for every
qW = 〈n, P,`〉 ∈ QW (with qS = σQ

(
qW
)
) and every

pW ∈ P ∗ (with pS = σΓ

(
pW
)
), γW ` qW

(
pW
)

if and only
if γS ` qS

(
pS
)
.

An implementation σ of W in S is said to be a state-
matching implementation if for every γW ∈ ΓW , with γS =
σΓ

(
γW
)
, the following two properties hold:

1) For every state γW1 ∈ ΓW such that γW ∗7→ΨW γW1 ,
there exists a state γS1 ∈ ΓS such that γS ∗7→ΨS γS1 and
γW1 ∼σ γS1 .

2) For every state γS1 ∈ ΓS such that γS ∗7→ΨS γS1 , there
exists a state γW1 ∈ ΓW such that γW ∗7→ΨW γW1 and
γW1 ∼σ γS1 . ♦

The following proposition demonstrates the power of this
notion of implementation. The proof of Proposition 1 can be
found in Appendix A-A.

Proposition 1 Given an access control workload W =〈
W, IW

〉
in which W =

〈
ΓW ,ΨW , QW

〉
, an access control

scheme, S =
〈
ΓS ,ΨS , QS

〉
, and an implementation σ =

〈σΓ, σΨ, σQ〉 of W in S , σ is a state-matching implementation
if and only if it is strongly security-preserving; that is, every
compositional security analysis instance in W is true if and
only if the image of the instance under σ is true in S.

PROOF (SKETCH) In proving Proposition 1, we utilize a
previous result from Tripunitara and Li [5], which states
that a mapping is a state-matching reduction if and only
if it is strongly security-preserving. We show that, if an
implementation σ is a state-matching implementation of W
using S , there exist W ′ and S ′, schemes under Tripunitara and
Li’s definition that are equivalent toW and S , respectively. We
prove that this equivalence is strongly security-preserving, and
then than the implementation corresponds to a state-matching
reduction, σ′, from W ′ to S ′. This proves that σ′ is strongly
security-preserving, and finally that σ is. (This ends the “if”
direction.)

For the “only if” direction, we consider an implementation
that is strongly security-preserving. Again, we show that this
implementation corresponds to a Tripunitara-Li mapping, this
time deducing a state-matching reduction from the strongly
security-preserving mapping. We show that this state-matching
reduction is equivalent to our implementation, and thus that
the implementation is a state-matching implementation.

As a result of these security guarantees, we will require
that, in order for an implementation of workload W in
scheme S to be considered a safe implementation, that
implementation be state-matching. In addition, in this work
we restrict implementations to preserve the semantics of the
respective model with respect to accesses. We accomplish this
by requiring the query mapping to map the access queries in
the workload to the access queries in the scheme, thus forcing
the implementation of the workload to use the same procedure
for deciding accesses as the scheme uses. These restrictions on
implementations are examples of how an application can dictate
how a scheme can be used for the purpose of “simulating” a
workload. Previous work on various expressiveness properties
(e.g., [21]) can provide guidelines for choosing the type of
implementation that best suits expressiveness evaluation in the
context of the relevant application. Exploring the full range of
possible implementation properties and their corresponding
implementation structure is a subject of future work (see
Section VIII-B).

Consider ADAC from Example 4 and DAC from Example 3.
Despite the similarities between them, DAC does not seem to
admit a state-matching implementation of ADAC using DAC,
since DAC is unable to maintain information about the set
of administrators. For scenarios such as this, we explore the
ability to extend schemes in Section VI.

V. PHASE 2: COST ANALYSIS

As discussed in Section III, our approach to suitability
analysis is two-phased. In the previous section, we discussed the
first phase, expressiveness evaluation, which allows the analyst
to ensure that all candidate schemes are expressive enough to
safely meet the needs of the application. In this section, we
present the details of the second phase, cost analysis, which
explores more quantitative suitability measures.

A. Actor-based Invocation Mechanism

Recall from Section IV-B that an access control workload,
W =

〈
W, IW

〉
, consists of an operational component,W , and

an invocation mechanism over W . The invocation mechanism
describes the expected usage of the access control system within
the application being described. Most simply, this mechanism
could be a recorded trace of operations that will be “played
back” while its operating costs are recorded. However, this
violates several of the requirements from Section III-B. For
example, Domain Exploration requires that we are able to
alter input parameters. While this type of static invocation
mechanism does not preclude the varying of the initial access
control state, it does not allow the trace to react to these changes
(e.g., more users typically means more frequent execution of
commands and queries).

To overcome these types of issues, we define an invocation
mechanism utilizing the concepts of actors carrying out actions
within the system. Actors are human users, daemons, and other
entities that act on the access control system. We determine the
set of actors by extracting the active entities from an access
control state. We express the various ways in which actors
cooperate to complete a task using constrained workflows.
Within this structure, workflows express the dependency be-
tween related actions, and constraints express the restrictions
placed on which user can execute each action in a task. Finally,
actor machines express the behavior models for the actors
within the constraints imposed upon them by the constrained
workflow. Together, these structures enable the modeling and
simulation of complex and concurrent behaviors of the entities
that are active within a given workload.

We now formalize the notion of an action, which is the
basic component of work executed by an actor in the system.
An action is a partially parameterized command or query. The
free parameters are assigned statically by the executing actor’s
behavior machine or dynamically during execution.

Definition 8 (Action) Let S = 〈Γ,Ψ, Q〉 be an access con-
trol scheme and V a set of variable symbols. An access control
action from scheme S is defined as α = 〈n, a, C〉, where:

• n names the action
• a ∈ Ψ ∪Q ∪ {∅} is the command or query (whose set

of parameter spaces is P = 〈P1, . . . , Pj〉) that the action
executes. A value of ∅ indicates that the action does not
execute a command or query in the access control system.

• C ∈ (P1 ∪V) × . . . × (Pj ∪V) ∪ {∅} is the partial
parameterization. For each parameter in P , C specifies

E:
Delete
User

Account

C:
Approve
Deletion
Request

D: Co-
approve
Deletion
Request

B:
Request
Account
Deletion

Constraints:
{h6=, C, Di}

A:
Create

Document

Fig. 2: An example of a constrained workflow

a parameter value or a variable from V. For actions that
do not execute a command or query, C, like a, is ∅. ♦

Although actions that do not execute commands or queries
within a scheme seem counter-intuitive, they become important
in the context of workflows that link together multi-user tasks
within a workload. To describe various dependencies between
actions (executed by a single actor or a set of actors in
coordination), we present the notion of a constrained access
control workflow, which organizes the execution of actions.
Formally, this structure specifies the partial order describing
action dependence as well as a set of constraints that restrict
the set of users that can execute various actions.

Definition 9 (Constrained Workflow) Let S = 〈Γ,Ψ, Q〉
be an access control scheme and A a set of access control
actors within S . We say that W = 〈A,≺, C〉 is an constrained
access control workflow over the scheme S, where:
• A is the set of actions from scheme S
• ≺ ⊂ A×A is the partial order describing the dependency

relation between actions. If α1 ≺ α2, then α2 depends on
α1. That is, α2 cannot be executed unless a corresponding
execution of α1 has occurred.

• C is the set of constraints, where each constraint is of the
form 〈ρ, α1, α2〉. Here, ρ is a binary operator of the form
A×A→ {TRUE, FALSE}. A constraint restricts execution
of actions α1 and α2 to actors who satisfy the binary
operator ρ. For example, 〈6=, α1, α2〉 says that α1 and α2

must be executed by different actors. ♦

Within a workflow 〈A,≺, C〉, subsets of A that are pairwise
disjoint with respect to ≺ are referred to as tasks, and each
action within a task is referred to as a step in that task.

Example 5 Figure 2 displays a constrained workflow that
includes two tasks, corresponding to document creation and
account deletion. The former is a degenerate task containing
a single action. Execution of this action is thus effectively
unconstrained by the workflow. However, the task of deleting
an account requires the approval of two different administrators.
The workflow allows administrators to approve deletion of
accounts only after the deletion request, and the deletion can
only happen after it has been approved twice. Furthermore, the
example constraint requires that the two approval actions be
executed by two different administrators. ♦

We draw a distinction between the use of workflows here

and their use in, e.g., R2BAC [17]. While there exist access
control schemes with the native ability to enforce workflow
semantics, our goal is to represent workflow properties at the
access control workload level, and utilize implementations of
these workloads to ensure tasks execute according to these
higher-level constraints. This allows us to utilize even simple
access control schemes while still constraining actors to work
within such organizational policies as separation of duty.

To describe the patterns with which actors execute actions,
we employ actor machines, which are state machines that
describe each actor’s behavior. Each state in the machine is
labeled with an action name and a refining parameterization
(which assigns values to parameters that were left as variables
in the action specification). Transitions in this state machine are
labeled with rates akin to those used in continuous-time Markov
processes (e.g., [22]). We then generate representative traces
of actor behavior by probabilistically walking this machine,
following transitions with probabilities proportional to their
rates.

Definition 10 (Actor Machine) Let S = 〈Γ,Ψ, Q〉 be an
access control scheme, W = 〈A,≺, C〉 a constrained workflow
over S, and V a set of variable symbols. An actor machine
for S and G is the state machine 〈S,Φ, R〉, where:
• S is the set of states
• Φ : S → A × (P1 ∪V) × . . . × (Pj ∪V) labels each

state with an action and a refinement of the action’s
parameterization (i.e., parameters assigned by the action
remain the same, while parameters not assigned by the
action may be assigned to values)

• R : S × S → R is the set of rates of transitioning from
state to state ♦

The semantics of the execution of an actor machine are
as follows. R describes the rates of transitioning from one
state to another. In order to achieve the Markov property, the
time spent waiting to exit a state is exponentially distributed,
with rate parameter proportional to the sum of the rates of
all exiting transitions. When executing, an actor carries out a
state’s action upon entering the state. We distinguish between
entering a state and remaining in a state. Transitioning from a
state back to itself will result in a re-execution of the state’s
action. Remaining in a state while waiting for the next transition
to trigger will not result in a re-execution.

Example actor machines are demonstrated in Fig. 3. In
this example, we classify users into two categories of actors:
administrators and non-administrators. The former add users
and approve and execute user deletions, while the latter generate
documents and occasionally request to be deleted. Due to the
labeled rates on this machine, each administrator creates users
at the expected rate of one per month, and roughly 10% of
non-administrative users request deletion each month. High
rates on transitions leading to, e.g., approving deletions indicate
the rate at which these actions will be executed when enabled.
Transitions labeled with∞ occur immediately after completing
the preceding action.

Our actor-based invocation mechanism that will complete

Delete
User

Account

Approve
Deletion
Request

Co-
approve
Deletion
Request

Create
User

Create
Document

Request
Account
Deletion

2 d.�1

0.1 mo.�1

0.1 hr.�1

1

1

1

1

UsersAdministrators

0.1 mo.�1

0.1 mo.�1

0.1 hr.�1

Fig. 3: Example actor machines

Definition 4, then, consists of a constrained workflow, a set of
actor machines, and a method for extracting the current actors
and their assigned machines from an access control state.

Definition 11 (Actor-Based Invocation) Let S = 〈Γ,Ψ, Q〉
be an access control scheme. We say that IS =
〈W,A, A,GA, g〉 is an constrained, actor-based access control
invocation mechanism over the scheme S, where:
• W is a constrained workflow over S
• A is the set of all actors
• A : Γ→ ℘(A) is the actor relation, mapping each access

control state to the set of actors active in that state
• GA is the set of actor machines
• g : A → GA is the actor machine assignment, mapping

each actor to its actor machine ♦

B. Cost Measures

An important part of cost analysis is choosing relevant
cost measures. These measures should be representative of
the “problem” (i.e., what types of cost the analyst cares
about), while also enabling the definition of a cost function for
each candidate scheme (see Section V-C). For example, while
“operational cost per day” may be representative of access
control evaluation goals in industry, it is hard to assign costs in
this measure to each fully parameterized access control action.
A measure such as “average administrative personnel-hours
spent per access control operation,” on the other hand, is more
easily quantified and enables the same types of analyses.

In this paper, we make no commitment to any particular cost
measures but rather develop an analysis framework that operates
on any measure satisfying a number of simple properties. A
cost measure must include a set of elements representing the
costs, an associative and commutative operator that combines
two costs to produce another cost (e.g., addition), and a partial
order for comparing costs. Finally, we enforce that there are
no “negative” costs.

Definition 12 (Cost Measure) A cost measure is defined by
the ordered abelian monoid G = 〈G, •,�〉, where G is the
set of costs, • is the closed, associative, commutative accrual

operator over G with identity 0G, and � is a partial order over
G such that ∀a, b ∈ G : a� a • b ∧ b� a • b. ♦

Definition 12 can be used to encode a variety of interesting
access control measures, including several of those noted in
a recent NIST report on the assessment of access control
schemes [9]. For example, costs like “steps required for
assigning and dis-assigning user capabilities” and “number of
relationships required to create an access control policy” can
be represented using the cost measure 〈N,+,≤〉. Our notion
of measure is general enough to represent many other types of
costs as well. Measures for human work such as “personnel-
hours per operation” and “proportion of administrative work to
data-entry work” can be represented using the cost measures
〈Z+,+,≤〉 and 〈Z+ × Z+,+,≤〉, respectively. Maximum
memory usage can be represented using 〈N,max,≤〉.

A common desire is for an analyst to evaluate an access
control scheme using several different cost measures in parallel.
Thus, we define a vector of cost measures.

Definition 13 (Vector of Measures) Given cost measures
N1 = 〈N1, •1,�1〉, N2 = 〈N2, •2,�2〉, . . . , Ni =
〈Ni, •i,�i〉, let M = 〈M, •∗,�∗〉 be the vector of cost
measures N1,N2, . . . ,Ni, where:
• M = N1 ×N2 × · · · ×Ni.
• Given a1, b1 ∈ N1, a2, b2 ∈ N2, . . . ,
ai, bi ∈ Ni, 〈a1, a2, . . . , ai〉 •∗ 〈b1, b2, . . . , bi〉 =
〈a1 •1 b1, a2 •2 b2, . . . , ai •i bi〉.

• Given a1, b1 ∈ N1, a2, b2 ∈ N2, . . . , ai, bi ∈
Ni, 〈a1, a2, . . . , ai〉�∗ 〈b1, b2, . . . , bi〉 if and only if
a1�1 b1 ∧ a2�2 b2 ∧ . . . ∧ ai�i bi. ♦

Definition 13 gives a simple way of combining several
measures. As the following proposition states, a vector of
cost measures is also a cost measure, enabling the analyst to
use a combination of measures within our analysis framework.
We prove Proposition 2 in Appendix A-B.

Proposition 2 Given cost measures N1,N2, . . . ,Ni and
their associated cost vector, M, M is a cost measure.

PROOF (SKETCH) Given the definition of measure, we know
that all of Ni satisfy closure, associativity, identity, and non-
negativity. By algebra we show that, given these properties
and Definition 13, we can derive closure, associativity, identity,
and non-negativity for M = N1 ×N2 × · · · ×Ni.

Once a measure is chosen, the analyst must next model how
each candidate access control scheme accrues costs using that
measure. This requires assigning costs associated with each
fully parameterized access control action (command or query
execution). Such an assignment is a cost function.

C. Cost Functions

In order to calculate the total cost of a particular imple-
mentation, costs of executing the various actions within the
implementing schemes must be determined. Sometimes, the
cost of any execution of a particular command or query is
constant (e.g., creating a document requires a constant amount

of I/O). In other cases, the parameters of the command or
query affect the cost (e.g., adding a user to the system is
more expensive for classes of users with greater capabilities).
In addition, some costs depend on the current state (e.g.,
granting access to all documents with a certain property may
require inspecting each document, a procedure that grows in
cost with the number of documents in the system). Thus, in
general, the cost function is required to map each (command,
parameterization, state) or (query, parameterization, state) to
an element of the relevant cost measure.

Definition 14 (Cost Function) Let S = 〈Γ,Ψ, Q〉 be an
access control scheme, A a set of actions from scheme S,
and G = 〈G, •,�〉 a cost measure. A cost function for S in G
is a function `SG : A×Γ→ G, which which maps each access
control action and state to the member of the cost measure that
best represents the costs associated with executing the given
action in the given state. ♦

Although most cost functions are infinite (since the number
of states and parameterizations are usually infinite), we can
often generalize (as mentioned above) for actions whose costs
do not depend on the state and/or parameterization. In addition,
when state or parameters do affect the cost, the correlation is
generally formulaic (e.g., proportional to the size of certain
state elements) and is thus simple to describe in a compact
way. Finally, in cases where the relation between the state
or parameterization and the resulting cost is more complex,
we can often take advantage of the simulation-based nature
of the cost analysis process and the law of large numbers by
abstracting out parameters or state (or both) and reproducing
their effect via a probability distribution.

In addition to the cost functions that are of specific interest to
the analyst, our simulation process (Section V-D) also requires
the specification of each scheme’s time function. The time
function is formalized as a cost function, describing the duration
of time required to complete an access control action. The cost
measure of this specialized cost function is 〈R× time,+,≤〉.

D. Cost Analysis via Monte Carlo Simulation

In Section IV-C, we discussed the construction of imple-
mentations, which (in addition to their role in expressiveness
evaluation) provide a recipe for using each candidate scheme to
execute the access control actions needed by the application of
interest. In Section V-A, we discussed an actor-based invocation
mechanism, which serves as the second component of the
access control workload and provides us with a mechanism for
generating traces of access control actions that are characteristic
of usage within the desired application. Finally, in Section V-C,
we discussed cost functions, including the time function, which
allow us to quantify the costs of individual access control
actions as well as track the passage of time during the execution
of generated traces. Given these inputs, we can utilize an
automated cost analysis procedure that generates traces of
workload actions, translates these into traces of scheme actions,
then calculates the costs of these scheme actions.

Algorithm 1 Cost analysis simulation algorithm
Input: S, set of candidate schemes
Input: Σ, set of implementations (∀S ∈ S : σS ∈ Σ)
Input: C, set of cost measures (τ = 〈R× time,+,≤〉 ∈ C)
Input: L, set of cost functions (∀S ∈ S, C ∈ C : `SC ∈ L)
Input: I = 〈W,A, A,GA, g〉, invocation mechanism
Input: γ0 ∈ ΓW , start state
Input: Tf , goal time
Input: t, time step

procedure ACCOSTEVALSIM(S,Σ,C, L, I, γ0, Tf , t)
S← {} . Initialize set of running AC systems
T ← 0 . Initialize master clock
for all S = 〈Γ,Ψ, Q〉 ∈ S do . Initialize state

S← S ∪ {S}
AS ← {} . Set of running actor machines
γS ← σS(γ0) . Current state of scheme S
for all C ∈ C do

cSC ← 0C . Total cost of scheme S in C
for all α ∈ A(γS) do

AS ← AS ∪ {g(α)}
Tα ← 0 . Per-actor clock

while T ≤ Tf do . Main loop
T ← T + t . Increment clock
for all S ∈ S do . Each AC system

K = {} . Clear action list
for all α ∈ AS do . Choose next actions

if Ta < T then . Check actor busy state
〈k, Pk〉 ← NEXTACTION(g(α))
if k 6= ∅ ∧ WSAT(k, α, Pk) 6= ∅ then

Ta ← T + `Sτ (k) . Busy state
K ← K ∪ {〈k, α, Pk〉} . Save action

for all 〈k, α, Pk〉 ∈ K do . Compile costs
for all C ∈ C do

cSC ← cSC •C `
S
C(σS(〈k, α, Pk〉))

if k is a command then
γS ← σS(ek(γS , Pk)) . Update state

for all S ∈ S do
Log

〈
S, cSC1

, . . . , cSCm

〉

Algorithm 1 describes such a simulation procedure. First,
each candidate scheme is instantiated as a system. An actor
machine is then launched for each actor in the state of each
system. During the main loop, the clock is incremented and
each actor machine is inspected for the correct action to execute
next, as per the execution semantics of the actor machine
described in Section V-A. If an action is to be executed by
the actor during this time step, a reference monitor for the
workflow satisfiability problem (procedure WSAT) is consulted
to ensure that—with respect to the workflow and constraints—
the actor can execute the action without rendering the workflow
instance unsatisfiable. For independent actions (i.e., those in
{a : @a′, a′ ≺ a}), the workflow instance in question is a new,
blank instance added to the pool of partially executed instances.
For dependent actions (i.e., those in {a : ∃a′, a′ ≺ a}), the
instance is chosen from the existing instances which belong to
the same task as the current action in question.

After all action executions for a time step are collected (and
verified by the reference monitor), they are simulated within the
access control state and their costs are accrued into a running
total for each scheme/cost measure combination. (We note that
costs may also be accrued per user, per workflow, etc., by
trivially extending Algorithm 1.) The final step in the loop

adjusts the set of actors according to changes in the state. Once
a specified amount of time has passed in the simulated system
(denoted the goal time), the main loop breaks and the total
costs are output.

To address the requirement of Tractability, we present the
following theorem regarding the runtime of Algorithm 1. The
proof of this theorem utilizes previous work by Wang and
Li [17] on the complexity of deciding workflow satisfiability.

Theorem 3 Assuming that workflow constraints are restricted
to the binary operators {=, 6=} (i.e., constraints expressing
binding of duty and separation of duty)3, the simulation
procedure described in Algorithm 1 is pseudo-polynomial in
the number of simulated steps and FPT with parameter α, the
number of actions in the largest task (i.e., the size of the largest
disjoint subgraph of the workflow graph).

PROOF (SKETCH) By far, the step of Algorithm 1 that dom-
inates its complexity is the call to WSAT, as the workflow
satisfiability problem (WSP) is NP-complete. The call to WSAT
is nested within loops which will cause it to be called S ·T ·A
times. By [17], WSP is solvable in O(C ·Aα), yielding a total
complexity of O

(
S · C · T ·Aα+1

)
, which is in FPT with fixed

parameter α (maximum number of actions in a task).

Algorithm 2 Monte Carlo application of Algorithm 1
Input: S, set of candidate schemes
Input: Σ, set of implementations (∀S ∈ S : σS ∈ Σ)
Input: C, set of cost measures (τ = 〈R× time,+,≤〉 ∈ C)
Input: L, set of cost functions (∀S ∈ S, C ∈ C : `SC ∈ L)
Input: I = 〈W,A, A,GA, g〉, invocation mechanism
Input: Pr (γ), probability distribution over start states
Input: χ, number of Monte Carlo runs
Input: Tf , goal time
Input: t, time step

procedure ACCOSTEVALMC(S,Σ,C, L, I,Pr (γ), χ, Tf , t)
for all [1, χ] do . Monte Carlo loop

γ0 ← random sample from Pr (γ)
ACCOSTEVALSIM

(
S,Σ,C,L, I, γ0, Tf , t

)
Algorithm 1 executes a single run of the system. We next

discuss two approaches to utilizing this algorithm: using the
Monte Carlo technique to generate large numbers of data
points for trend analysis using scatter plots, and using fixed-
sample-size point estimates for calculating cost assessments
with a particular confidence interval for a small set of important
input configurations. Algorithm 2 demonstrates the former. This
algorithm repeatedly calls Algorithm 1 using randomly sampled
start states in an attempt to exploit the potentially large variance
between executions. An advantage of this approach is the
detection of trends across a variety of start states. Furthermore,
the repeated execution contributes to the complexity of the full
analysis by only a multiplicative factor. As such, Monte Carlo
analysis—like single run analysis—is in FPT.

3A recent result by Crampton et al. [18] allows the use of a wider range of
constraints (including those over organizational hierarchies) while preserving
the complexity result. For brevity and simplicity, we consider only {=, 6=} as
constraint operators in this work.

Algorithm 3 Confidence-bounding application of Algorithm 1

Input: S, set of candidate schemes
Input: Σ, set of implementations (∀S ∈ S : σS ∈ Σ)
Input: C, set of cost measures (τ = 〈R× time,+,≤〉 ∈ C)
Input: L, set of cost functions (∀S ∈ S, C ∈ C : `SC ∈ L)
Input: I = 〈W,A, A,GA, g〉, invocation mechanism
Input: γ0, start state
Input: Tf , goal time
Input: t, time step
Input: u ∈ (0, 1), desired confidence level
Input: v ∈ (0, 1), desired tolerance

procedure ACCOSTEVALCI(S,Σ,C, L, I, γ0, Tf , t, u, v)
n← ∅
while t|n|−1,1−u/2

√
S2(n)
|n| > v · X̄(n) do

n← n ∪ ACCOSTEVALSIM
(
S,Σ,C, L, I, γ0, Tf , t

)

In the interest of the Accuracy requirement, we consider
a second approach, which allows the analyst to achieve an
intended confidence in the cost value generated for a particular
start state. With this approach, we decide the number of
simulation runs to conduct based on a desired confidence and
the assumption of a normal distribution of costs across runs.
We use the fixed-sample-size procedure for point estimate of a
mean, which says that the confidence interval for a mean is:

X̄(n)± t|n|−1,1−α2

√
S2(n)

|n|

where X̄(n) is the sample mean, S
2(n)
|n| is the sample variance,

and tν,γ is the critical point for the t-distribution with ν degrees
of freedom. The resulting range is an approximate 100(1−α)-
percent confidence interval for the expected average cost of
the scheme. During simulation, we repeatedly calculate the
confidence interval for incrementing n, terminating when a
satisfactory confidence is reached. For example, assuming we
desire a 90-percent confidence interval of no more than 0.1 of
the mean, we run the simulation repeatedly until:

t|n|−1,0.95

√
S2(n)

|n| ≤ 0.1X̄(n)

Algorithm 3 demonstrates the use of this approach to execute
Algorithm 1 until a desired confidence is reached, rather than
executing for a fixed number of runs.

We note that our cost analysis procedure evaluates particular
implementations of the workload within candidate schemes,
and thus cannot make formal claims about schemes in general.
However, in practice, an analyst will be concerned primarily
with the costs associated with the specific implementation she
has designed; the existence of more efficient, though unknown,
implementations is not particularly helpful in choosing an
access control scheme. Finding optimal implementations is an
orthogonal problem that we discuss in Section VIII.

VI. ACCESS CONTROL EXTENSIONS

In the event that a scheme does not admit a safe implemen-
tation of the workload, the analyst may attempt to enable the

Read access
Write access

Information flow

T � E

 T �E QT �E

T
�T

 T QT

E
�E

 E QE

Fig. 4: A graphical representation of an access control scheme
T augmented with an auxiliary machine E

construction of such an implementation by augmenting the
scheme with additional functionality.4 Intuitively, extending an
access control scheme expands its protected state, commands,
and/or queries. One must use care, however, when constructing
such extensions. Although virtually any changes to an access
control scheme will yield another valid scheme, not all changes
will yield a scheme that preserves the security properties of
the original. As an extreme example, almost any scheme will
be “broken” if we add a grant-all command that grants all
permissions to all subjects (similar to McLean’s System Z [23]).

To maintain the intuition behind the concept of an extension,
we require that the changes made to the scheme at most enable
additional implementations (i.e., do not preclude the use of any
implementations possible in the original). Specifically, in order
to safely extend a scheme, one must prove that the extended
scheme does not violate any of the security properties of the
original. One can prove safety by viewing the original scheme
as a workload operational description, and demonstrating a
state-matching implementation of the original scheme within
the extended scheme. This proves that the extended scheme can
be used transparently in place of the original, and is therefore
a safe extension. The violation of even simple safety resulting
from extending a scheme with the above grant-all command
can be detected by attempting (and failing) to construct such
an implementation of the original scheme within this extended
version while preserving simple safety.

In this paper, we explore a particular class of extensions
that we call auxiliary machines (AMs).

Definition 15 (Auxiliary Machine) An access control auxil-
iary machine for augmenting an access control scheme over
the set of access control states Γ0 is a state-transition system
〈Γ,Ψ, Q〉, where:
• Γ is the set of auxiliary states.
• Ψ is the set of commands over Γ0 × Γ where we enforce

that ∀〈n, P, e〉 ∈ Ψ, p ∈ P ∗, γ0 ∈ Γ0, γ ∈ Γ,∃γ′ ∈ Γ :
e(〈γ0, γ〉, p) = 〈γ0, γ

′〉 (i.e., commands can reference the
original scheme’s state, but cannot alter it).

• Q is the set of queries over Γ0×Γ (i.e., that can reference
the original scheme’s state). ♦

Augmenting an access control scheme with an auxiliary
machine is achieved by computing the cross product of the

4Note that it is not always possible to extend a scheme in a way that enables
a particular implementation.

states of the two machines and the union of the commands and
queries, as follows, and is represented graphically in Fig. 4.

Definition 16 (Augmented Scheme) Let S =〈
ΓS ,ΨS , QS

〉
be an access control scheme,

U =
〈
ΓU ,ΨU , QU

〉
be an access control auxiliary

machine. The augmented access control scheme formed
by augmenting scheme S with AM U , is the scheme
S ◦ U =

〈
ΓS◦U ,ΨS◦U , QS◦U

〉
where:

• ΓS◦U = ΓS × ΓU

• ΨS◦U = ΨS ∪ΨU

• QS◦U = QS ∪QU ♦

Definitions 15 and 16 give us the following theorem, which
proves that the class of extensions that can be represented as
auxiliary machines encode safe extensions to any access control
scheme with respect to the state-matching implementation.

Theorem 4 Given access control scheme S =
〈
ΓS ,ΨS , QS

〉
and access control auxiliary machine U =

〈
ΓU ,ΨU , QU

〉
,

there exists a state-matching implementation of S in S ◦ U .

PROOF (SKETCH) Intuitively, a scheme extended with an
auxiliary machine can behave exactly as it would without
the AM—it must answer the original queries in the same way
as the original scheme, and it is forbidden from modifying
elements of the original scheme’s state in ways the original
could not. Thus, to satisfy property (1) of the state-matching
implementation, we map each state and action in the original
to the same state or action in the augmented scheme, and the
AM state is not utilized.

When considering only the original queries, the unmodified
scheme can also easily mimic the augmented scheme, since
these queries are guaranteed only to reference state that
both schemes change in the same way (via the original
commands). This satisfies property (2) of the state-matching
implementation.

While these security properties of auxiliary machines and
augmented schemes enable the analyst to use the constructs
without fear of contaminating the original schemes, they do not
imply that the use of AMs (or extensions in general) is without
penalty. Since AMs would be implemented as additional trusted
code that communicates in a secure way with the original access
control software, one may be concerned if a high proportion
of the total state is stored within the AM, or if a large amount
of communication needs to occur between the original state
and the AM state. These types of concerns can be addressed
by choosing appropriate cost measures for cost analysis.

Having presented a notion of scheme extensions and proven
that it is safe, we now revisit the implementation of ADAC
(Example 4) using DAC (Example 3).

Example 6 Recall that the workload WA (Example 4) differs
from the DAC scheme D (Example 3) mainly in that WA has
administrators with full rights to the system. In particular, the
query SubjectAdmin is problematic, as the DAC scheme D
has no way of maintaining the list of administrative users. One
natural attempt at fixing this problem is to create a special

object within D, rights over which indicate administrator
status. Another possibility is to create a special right that
administrators have over all objects. Such approaches fail to
allow a safe implementation, because they invalidate security
analysis instances. In particular, these approaches alter the
value of query Access for certain parameterizations.

Instead, we construct an auxiliary machine that stores
the additional information and answers the additional query
regarding administrative status of subjects. We extend DAC
with auxiliary machine M =

〈
ΓM,ΨM, QM

〉
. The AM’s

states, ΓM, are defined by the sets 〈A,N〉, where:
• A ⊆ S is the set of administrators
• N : A×O → 2R is the “hidden” access matrix that keeps

track of the access rights each administrative subject would
revert to upon losing administrator status

The extension’s commands, ΨM, include the following.
• GrantAdmin(S, S), which grants administrative privilege

to a subject
• RevokeAdmin(S, S), which revokes administrative privi-

lege from a subject
• SoftGrant(S, S, O, R), which grants a right over an

object to a subject in the hidden access matrix
• SoftRevoke(S, S, O, R), which revokes a right over

an object from a subject in the hidden access matrix
Finally, QM includes the following.
• SubjectAdmin(S, S), which asks whether a subject is an

administrator
• HiddenAccess(S, S, O, R), which asks whether a user

has a right over an object in the hidden access matrix ♦

Example 7 The AM described in Example 6 can augment the
DAC scheme with the ability to keep track of which subjects
are administrators, as well as which rights each would have
if they lost such status. The implementation of WA using
DAC ◦M then has several non-trivial tasks. When a subject is
added to A, the system must copy all current access for that
subject from M to N and then grant that subject all accesses
in M . This procedure is reversed when removing a user from
A, and any rights granted to or revoked from a user in A are
recorded in N and do not affect M . ♦

VII. CASE STUDY

In this section, we discuss an example scenario which we will
use to demonstrate a full analysis using our framework. This
case study explores a workload based on a group messaging
scenario with conflicts of interest.

A. Workload description

Group-centric Secure Information Sharing (g-SIS) [10]
has been proposed as a new approach to access control
that differs from the dissemination-centric approach that has
inspired the development of schemes such as RBAC and DAC.
Dissemination-centric models focus on bestowing policies
upon objects as they are produced, sometimes refining these
policies at later times. These policies are then referenced as

consumers access these objects. The g-SIS approach, on the
other hand, addresses collaboration- and subscription-based
systems. In the g-SIS models, groups can be brought together
to share information as they work toward a common goal.
Accesses are decided not by attaching policies to objects,
but in a time-variant way by inspecting the users’ historical
membership in groups. For example, an online periodical may
offer a base subscription in which users have access to issues
published during their subscription, and only while they remain
subscribed. They might also offer (for an additional fee) current
subscribers access to back issues, or former subscribers the
ability to access issues published during their subscription.

The current state-of-the-art in implementations based on g-
SIS is a formal specification in linear temporal logic for formal
analysis [12]. The creators of g-SIS speculate that, with respect
to expressiveness, these models may be equivalent to more
traditional, dissemination-centric sharing models. However, they
believe that the g-SIS approach will better enable the type of
information sharing common in collaborative settings. Schemes
inspired by g-SIS, then, would aim to provide an application-
specific solution to access control. These schemes would aim
to satisfy a category of applications that current models fail
to capture, despite (possibly) possessing the expressive power
necessary to express the applications’ policies. Our framework
is designed to investigate and quantify exactly this type of
scenario, and as such this problem is a natural application of our
framework. Thus, to verify and quantify the claims about g-SIS,
we have modeled a group messaging workload after a particular
use case within g-SIS, and evaluated within this workload the
expressiveness and costs of common dissemination-centric
schemes as well as a particular instantiation of the g-SIS
approach within trust management.

B. Our g-SIS Workload

In our group messaging scenario, the main objects of interest
are messages posted to groups. Current members of a group
have access to the messages posted to it. When joining a group,
a user can choose to request a strict join (in which access
to previously posted messages is not granted) or a liberal
join (in which access to all previous messages is granted).
A similar decision is made when leaving a group. In the
spirit of discussions such as those that take place in program
committee meetings, we model workflows that accommodate
users who must temporarily take leave from a group due to
conflicts of interest, appointing temporary group administrators
(if necessary) during this time.

The group messaging workload, WG =
〈
G, IG

〉
, utilizes as

its operational component the abstract group messaging scheme
(GMS), G. GMS is defined as G =

〈
ΓG ,ΨG , QG

〉
. Its states, ΓG ,

are defined by the sets 〈U,G,M, T, Tc, O,A,R, TX〉, where:
• U is the set of users
• G is the set of groups
• M is the set of messages
• T is the ordered set of timestamps, including special

timestamp ∞
• Tc is the current timestamp

{coiApprove,
adminCoiApprove}

{LLeave, SJoin}

{approve, reject} SJoin

createGroup

adminCoiNominate

post

read

adminCoiRequestLLeave

adminCoiRequestSJoin

adminCoiRevoke

sLeave coiRequestSJoin

coiRequestLLeave

postread

requestSJoin

Non-administrators

Administrators

Fig. 5: Actor machines for the group messaging workload

• O ⊆ U ×G is the group ownership relation
• A ⊆ U ×G is the group administration relation
• R ⊆ U ×G× T × T is the group membership record
• TX ⊆ G×M × T is the messaging transcript
GMS’s commands, ΨG , include the following.
• CreateGroup(U, G), which creates a group
• GrantAdmin(U, U, G), which grants a user administra-

tive permission for a group
• RevokeAdmin(U, U, G), which revokes from a user

administrative permission for a group
• SAddMember(U, U, G), which strict-adds a user to a

group (i.e., adds the user without granting permission
to view existing messages)

• LAddMember(U, U, G), which liberal-adds a user to a
group (i.e., adds the user and grants permission to view
existing messages)

• SRemoveMember(U, U, G), which strict-removes a user
from a group (i.e., removes the user and revokes permis-
sion to view currently existing messages)

• LRemoveMember(U, U, G), which liberal-removes a user
from a group (i.e., removes the user without revoking
permission to view currently existing messages)

• Post(U, G, M), which posts a message to a group
Finally, GMS’s queries, QG , include the following.
• Access(U, M), which asks whether a user can view a

message
We fully define GMS in Appendix B-A. The invocation

mechanism for the group messaging workload, IG , is described

adminCoiNominate

adminCoiRequestLLeave

adminCoiRequestSJoin

adminCoiRevoke

adminCoiApproveLLeave

adminCoiApproveSJoin

requestSJoin

{approve, reject} SJoin

coiRequestLLeave

coiApproveLLeave

coiRequestSJoin

coiApproveSJoin

=

=

=

=

6=

6=

6=
=

6=

Fig. 6: Constrained workflow for the group messaging workload

by the actor graphs depicted in Fig. 55 and the constrained
workflow depicted in Fig. 6.

C. Expressiveness Evaluation

In the first phase of suitability analysis, we examine the
expressive power of our candidate schemes to determine
which are capable of safely implementing the workload. In
Appendix B, we formally describe these implementations and
prove that they are state-matching implementations. In this
section, we omit these details in favor of an intuitive discussion.
In particular, we explored the use of the following access
control schemes to implement the GMS workload:
• SD3-GM is a specially-parameterized instantiation of the

trust management language SD3 [24]. Given the flexibility
offered by a logical policy language, SD3-GM easily
implements the group messaging workload.

• DAC is a discretionary access control scheme based
on the Graham-Denning scheme [25]. DAC does not
admit an obvious state-matching implementation. Thus,
we extended DAC with an auxiliary machine to manage
the group-based metadata (e.g., the group membership
relation). DAC’s access matrix is updated after changes
are made to the AM data, allowing the Access query to
be answered as in the original DAC scheme.

• RBAC is a role-based access control scheme based on
NIST RBAC [26]. While SD3-GM is a near perfect fit for
the workload, and DAC is reduced to having its native
internal state used only as a projection of an auxiliary
machine, RBAC’s role relation can be used to maintain
more relevant state natively. We still utilize an AM for
RBAC, mainly to maintain the message-group relation
which cannot be maintained in any obvious way within
the RBAC state.

• GTRBAC (Generalized Temporal RBAC) is an extended
version of RBAC that adds temporal features such as the

5We omit the rates in Fig. 5, as these are varied during our cost analysis.

u1

create
u2

s-join
u3

l-join
u1

l-leave
u1

s-join

u1

u2

u3
Member,
Access

Non-member,
Access

time

Post

Fig. 7: An example scenario of accesses in a single group in
the group-messaging scenario

time-constrained activation of roles [27]. However, it does
not include the ability to make access decisions based
on the time at which a user joined a role or the time an
object was created. Thus, the features of GTRBAC beyond
those of RBAC do not contribute to a more efficient
implementation of GMS, and we thus dropped GTRBAC
from consideration.

At first blush, it may seem counter-intuitive that DAC
and RBAC require extensions to correctly support the GMS
workload. However, as demonstrated by Fig. 7, the group
messaging scenario can be unexpectedly difficult to represent
in dissemination-centric models. Although a group may seem to
conceptually resemble a role in role-based access control, roles
grant the same accesses to all members, while Fig. 7 shows that
even a simple series of events within a single group containing
a small number of users can lead to multiple disjoint sets of
accesses in GMS. In this particular example, all three users
have a different “view” of the objects in the group, despite all
being members. This single-group scenario is impossible to
represent in a role-based scheme with fewer than three roles,
indicating that any implementation of GMS in a role-based
scheme is very likely to exceed a role per user, reducing the
administrative value of utilizing roles at all [28], [29].

The following theorem asserts that each of our three
remaining candidate schemes satisfies our requirements for
a safe implementation of the group messaging workload.
This theorem is proved (individually for each scheme) in
Appendix B.

Theorem 5 There exists a state-matching implementation of
GMS in SD3-GM, and in each of our extended versions of
RBAC and DAC.

D. Cost Analysis

To perform cost analysis for the group messaging case
study described above, we consider cost measures representing
communication with the auxiliary machine (where applicable)
and maximum state size. We then defined cost functions over
these cost measures for RBAC, DAC, and SD3-GM. We used
these cost functions as inputs to an implementation we built of
(extended versions of) Algorithms 1 and 2. The implementation
of our simulator consists of about 2000 lines of Java code. We
take the Monte Carlo approach in order to gain insight into the
trends in the implementations’ costs across the variety of start
states, altering the number of users, number of administrators,
global rate of conflict-of-interest scenarios, and global rate of

0 2 4 6 8 10 12
Workload Size (x1000 elements)

0

5

10

15

20

25

30

35

M
a
x
im

u
m

 S
ta

te
 S

iz
e

(x
1

0
0

0
0

 e
le

m
e
n
ts

)

SD3-GM

RBAC

DAC

Workload

(a)

0 2 4 6 8 10 12 14 16
Baseline State Size (x10000 elements)

0

5

10

15

20

25

30

35

M
a
x
im

u
m

 S
ta

te
 S

iz
e

(x
1

0
0

0
0

 e
le

m
e
n
ts

)

RBAC

DAC

Baseline

(b)

0 20 40 60 80 100
Number of users

0

500

1000

1500

2000

2500

3000

M
a
x
im

u
m

 N
u
m

b
e
r

o
f

R
o
le

s Roles

Users

(c)

0 20 40 60 80 100
Number of users

0

1

2

3

4

5

6

E
x
te

n
si

o
n
 I
/O

 C
o
st

(x
1

0
0

0
0

 e
le

m
e
n
ts

)

SD3-GM

RBAC

DAC

(d)

0 20 40 60 80 100
Number of users

0.0

0.2

0.4

0.6

0.8

1.0
P
ro

p
o
rt

io
n
 o

f
C

O
I

W
o
rk

fl
o
w

s
C

o
m

p
le

te
d

SD3-GM

RBAC

DAC

(e)

1.0 1.5 2.0 2.5 3.0
COI Frequency

0

1

2

3

4

5

6

A
d
m

in
is

tr
a
ti

v
e
 O

v
e
rh

e
a
d
 p

e
r

U
se

r

SD3-GM

RBAC

DAC

(f)

Fig. 8: Group messaging case study results

message posting. We simulated the messaging environment
for 8-hour periods of interleaved action traces as described by
the group messaging workload’s actor machines (Fig. 5) and
constrained workflow (Fig. 6). We repeated this simulation for
1,000 Monte Carlo runs.

Figure 8 shows the results of the our evaluation of the
implementations of GMS. In Fig. 8a, we compare maximum
state size to the state size occupied by the equivalent GMS
state, demonstrating the additional storage needed to utilize
each candidate access control scheme. While SD3-GM utilized
a small constant amount of additional storage, both RBAC and
DAC required many times the storage of GMS.

In Fig. 8b, we look at maximum state size in a different way—
compared to the “baseline state,” which describes the amount
of storage needed to use the scheme naively to reproduce the
same accesses as the workload. For DAC, this is the access
matrix, including the appropriate accesses. For RBAC, this
includes the user-role and role-permission relations, assigning
each user to her own role with the permissions the user
has access to. Although the baseline state does not maintain
enough information to enable a state-matching (i.e., safe)
implementation, it allows a comparison to the storage of using
the scheme naively. As Fig. 8b shows, storage in both RBAC
and DAC exceeds this baseline, with DAC being particularly
excessive.

In Fig. 8c, we compare the number of users in the system
to the number of roles needed to represent the GMS state in

RBAC. The administrative value of the RBAC model diminishes
when the number of roles exceeds the number of users [28],
[29], and thus we assume that this scenario is evidence of
the RBAC system being used outside of the use cases it was
designed for. Thus, Fig. 8c is particularly strong evidence of
the ill-suitedness of RBAC to the group messaging workload,
since systems with less than 100 users can exceed 2,000 roles,
and on average there were over 14 times as many roles as
users.

Finally, as another proxy for implementation complexity,
Fig. 8d shows the amount of communication with an auxiliary
machine that occurred during a run, compared with the number
of users in the system. DAC’s much larger extension cost
was the result of this scheme having no appropriate state
elements that could store most of the information needed in
the group messaging workload, while RBAC performed better
due to its ability to store group membership, ownership, and
administration relations within its role relation.

In addition, we present in Fig. 8 several findings that,
although they do not support the selection of one scheme over
another, nonetheless provided insight into the group messaging
workload. In Fig. 8e, we show the relationship between the
number of users in the system and the proportion of attempted
conflict-of-interest workflows that are successfully completed
within the simulation run. We found that the main bottleneck
for completing COIs was the number of users. Thus, runs
with fewer users had both fewer COIs complete and a longer

0 20 40 60 80 100
Number of users

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
im

u
la

ti
o
n
 R

u
n
 T

im
e
 (

m
in

.)

Fig. 9: Run time for simulating 8-hour periods in the group
messaging workload

duration of time between the initialization and completion
of those that did. In Fig. 8f, we present the results of our
exploration of a related facet of this relationship, in which
we found a clear positive trend between the frequency with
which COIs are initiated and administrative work completed by
non-administrative users (i.e., those that had been nominated
to fulfill administrative duties temporarily).

E. Summary of Findings

The creators of g-SIS believed that dissemination-centric
sharing models could represent group-centric sharing [10].
However, we found that, without extensions, commonly-used
examples DAC and RBAC were not able to safely implement
a workload inspired by a particular scenario for which g-SIS
is well-suited. Although SD3 can also represent dissemination-
centric sharing, we have used a particular parameterization of
SD3 (which we call SD3-GM) to represent an instantiation of
the g-SIS model and implement group messaging workload in
an efficient way. Thus, it seems that at least some access control
schemes are capable of performing well in both dissemination-
centric and group-centric scenarios. By evaluating the relative
suitability of dissemination-centric schemes (extended versions
of DAC and RBAC) to the group messaging workload, we
have confirmed the suspicions in [10] that, although these
schemes can represent the workload, they cannot address it as
naturally, and suffer from inefficiencies. This highlights the
importance of conducting suitability analysis, especially for
novel applications, and confirms that expressiveness alone is
not enough to make decisions about access control schemes.

VIII. DISCUSSION

In this section, we first revisit each of the requirement for
suitability analysis frameworks outlined in Section III-B, and
then discuss a number of areas of future work related to the
suitability analysis problem.

A. Requirements Revisited

In Section III-B, we outlined six requirements to guide the
development of our suitability analysis framework. We now
discuss the degree to which each requirement was met.
• The Domain Exploration requirement is addressed equally

by the workload formalism developed in Section IV-B

and the Monte Carlo simulation procedure described in
Section V-D: the former leaves the state defining the
workload and the mechanisms that can alter it completely
in the hands of the analyst, while the latter facilitates cost
analysis over many such instances of the workload.

• Cooperative Interaction is met by combining the workflow
and actor graph formalisms developed in Section V-A with
the WSP solver leveraged by Algorithm 1 in Section V-D.
Specifically, constrained workflows articulate the ways in
which cooperation must be carried out, while the use of
actor graphs and the WSP solver ensures that all traces
generated during cost analysis are compliant with these
workflows.

• With respect to safety, we focused in this paper on a
particular notion of safe implementation—i.e., the state-
matching implementation (cf. Section IV-C)—and its use
in extending access control schemes and implementing
workloads. However, the use of this particular notion of
safe implementation is not required by our framework:
proofs of safety are carried out manually, and thus any
other notion of safe implementation could be used. As
such, our framework provides Tunable Safety.

• In contrast to safety analysis, cost analysis is a largely
automated procedure that is constrained by our framework.
However, as was demonstrated in Sections V-B and VII,
the notion of cost measure developed in this paper is
capable of representing a wide range of system- and
human-centric costs. Further, Proposition 2 shows that any
vector of measures is itself a cost measure, so many costs
can be considered in parallel. As such, our framework
meets the Tunable Costs requirement.

• Supporting multi-user workflows is seemingly at odds with
the Tractability requirement, as the workflow satisfiability
problem has been shown to be NP-complete [17]. However,
the proof of Theorem 3 makes use of recent results [17],
[18] to show that our Monte Carlo analysis process (via
Algorithms 1 and 2) is fixed-parameter tractable if the
length of workflows within the system is treated as a small
constant, as is typically the case in practice. In addition,
Fig. 9 shows the time required for 8-hour simulation runs
using our Java-based simulator on a 3.06 GHz Core 2
Duo with respect to the number of users in the system
(the most significant variable in the run time). This figure
shows that even with many users, simulating 8-hour runs
takes less than four minutes on commodity hardware. In
addition, since we utilize a Monte Carlo approach, the
multiple simulation runs are inherently parallelizable.

• In terms of the Accuracy requirement, Section V-D
discusses how to calculate confidence intervals for point
estimates of cost. Further, Algorithms 1 and 3 demonstrate
how the cost analysis process can be guided by a desired
confidence interval for specific configurations of interest
within the workload’s parameter space.

The analysis framework developed in this paper meets
each of the desiderata outlined in Section III-B, and provides

a flexible, efficient, and precise mechanism for analyzing
instances of the access control suitability analysis problem.

B. Open Problems and Future Work

We now discuss the future of application-aware suitability
analysis, including refinements to our existing framework
and ways in which this approach can be extended to the
formalization of more general security workloads.

Implementation Non-Existence: A proof that a particular
implementation does not exist is typically harder to produce
than a constructive existence proof. Thus, in our work so
far, when discussing a lack of an implementation, we often
resort to informal arguments for justification. Ideally, it would
be possible to more easily prove the non-existence of of an
implementation, since such proofs give higher confidence in
the necessity of extending access control schemes.

Implementation Optimality: The constructive nature of an
implementation of a workload in a scheme leads quite naturally
to the cost analysis of this scheme, as workload actions can be
translated into scheme actions by the implementation. Given an
access control scheme S and a workload W , we therefore carry
out the cost analysis of a particular implementation of W in
S, rather than the best implementation of W in S. It would
be useful to develop techniques for proving the optimality of
an implementation. This would enable analysts to make strong
claims about the (sub-)optimality of an access control scheme
for a given workload without needing to justify or defend the
implementations used during their analysis.

Alternate Notions of Implementation: Recall that we
consider a type of safe implementation based on the state-
matching reduction, the strongest type of mapping studied in
previous work [5]. However, other notions of implementation
certainly exist in the literature (e.g., see [3], [4], [6]–[8]),
and are likely applicable within certain classes of workloads.
Understanding the benefits and limitations of using relaxed
notions of implementation is an important area of future work.
It is also important to explore relationships (e.g., implication,
equivalence) between known access control implementations,
as well as between implementations and mappings from
other domains. For example, the state-matching reduction
shares certain structural properties with weak simulations in
model checking. Alternate formalizations of the access control
problem could enable the application of analysis techniques
from other domains toward access control.

Quantifying Human Costs: Although the cost measures
and cost functions formalized in this paper are capable of
representing a wide-range of interesting costs, capturing human-
centric costs—such as, e.g., cognitive overheads for various
tasks, or error rates in policy formulation—is a difficult task.
Our focus in this paper lies in the utilization of these types of
costs measures, rather than in their capture. However, we are
inspired by recent work within the usable security community
on measuring exactly these types of phenomena (e.g., [30]–
[34]). These types of studies provide a roadmap for suitability
analysts that wish to incorporate human costs into their analyses,
and signal a shift in security analysis: quantitative analysis of

these systems cannot be done in a strictly pencil-and-paper
fashion, but must also include studies of the humans who
manipulate and administer these systems.

Beyond Access Control: This paper focuses on one
particular instance of the suitability analysis problem that is
specific to access control schemes. However, we believe that
suitability analysis can be cast in a more general manner and
applied to broader security workloads, as solutions to many
security problems need to balance formal requirements to be
upheld by a system with the real-world impacts and costs
of these solutions. As an example, consider the public key
infrastructure (PKI) upon which many web authentication and
authorization frameworks are built. Recently, there have been
high profile compromises of CAs in the web PKI domain
(e.g., [35], [36]). These failures have made clear the fragility
of the trust model and revocation mechanisms in the web space,
and have inspired the community to examine methods both for
reinforcing the system’s mechanisms to prevent fraudulent
certificate issuances and improving the robustness of the
revocation infrastructure (e.g., Perspectives [37], Sovereign
Keys [38], CA Transparency [39], etc.). However, there is
considerable debate in the community regarding what the
appropriate metrics for judging replacement systems should
be, and how the different proposals compare under realistic
conditions. A more general formulation of the suitability
analysis problem could enable better understanding of the
trade-offs between the formal guarantees and the real-world
costs incurred by such candidate infrastructures.

IX. CONCLUSION

Historically, most work regarding the formal analysis of
access control schemes has focused on evaluating expressive
power in absolute terms. By contrast, our goal in this paper was
to formalize the suitability analysis problem and to develop
a methodology for application-specific evaluation of access
control schemes. To this end, we have developed a formal
framework for specifying access control workloads, reasoning
about the abilities of candidate access control schemes to safely
service these workloads, safely augmenting schemes that are
incapable of implementing a given workload, and carrying out
cost-based analysis of the suitability of each candidate scheme
for servicing the workload. Formal proofs demonstrate the
soundness of our approach, and a detailed case study drawn
from the literature illustrates the applicability of our framework
for conducting real world suitability analyses. The framework
that we have developed is a first step toward understanding
the application-specific strengths of access control systems.
However, the basic techniques used in this framework appear
to be applicable to broader security problems, in which several
systems may be capable of meeting a set of security goals, but
the costs of using each candidate system vary.

Acknowledgements This work was supported in part by
the National Science Foundation under awards CNS-0964295,
CNS-1228697, and CNS-1228947.

REFERENCES

[1] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, “Protection in operating
systems,” Communications of the ACM, vol. 19, no. 8, pp. 461–471, Aug
1976.

[2] R. J. Lipton and L. Snyder, “A linear time algorithm for deciding subject
security,” J. ACM, vol. 24, no. 3, pp. 455–464, 1977.

[3] P. Ammann, R. J. Lipton, and R. S. Sandhu, “The expressive power of
multi-parent creation in monotonic access control models,” Journal of
Computer Security, vol. 4, no. 2/3, pp. 149–166, 1996.

[4] A. Chander, J. C. Mitchell, and D. Dean, “A state-transition model of
trust management and access control,” in 14th IEEE Computer Security
Foundations Workshop (CSFW’01), 2001, pp. 27–43.

[5] M. V. Tripunitara and N. Li, “A theory for comparing the expressive
power of access control models,” Journal of Computer Security, vol. 15,
no. 2, pp. 231–272, 2007.

[6] S. Osborne, R. Sandhu, and Q. Munawer, “Configuring role-based access
control to enforce mandatory and discretionary access control policies,”
ACM Transactions on Information and System Security, vol. 3, no. 2, pp.
85–106, May 2000.

[7] R. Sandhu, “Expressive power of the schematic protection model,”
Journal of Computer Security, vol. 1, no. 1, pp. 59–98, 1992.

[8] R. S. Sandhu and S. Ganta, “On testing for absence of rights in access
control models,” in IEEE Computer Security Foundations Workshop
(CSFW), 1993, pp. 109–118.

[9] V. C. Hu, D. F. Ferraiolo, and D. R. Kuhn, Assessment of Access Control
Systems. National Institute of Standards and Technology, 2006.

[10] R. Krishnan, R. Sandhu, J. Niu, and W. H. Winsborough, “Foundations for
group-centric secure information sharing models,” in ACM Symposium on
Access Control Models and Technologies (SACMAT), 2009, pp. 115–124.

[11] R. Krishnan, R. Sandhu, and W. H. Winsborough, “A Conceptual
Framework for Group-Centric Secure Information Sharing Categories
and Subject Descriptors,” in ACM Symposium on Information, Computer,
and Communications Security (ASIACCS), 2009.

[12] R. Krishnan, J. Niu, R. S. Sandhu, and W. H. Winsborough, “Group-
centric secure information-sharing models for isolated groups,” ACM
Trans. Inf. Syst. Secur., vol. 14, no. 3, p. 23, 2011.

[13] N. Li, J. C. Mitchell, and W. H. Winsborough, “Beyond proof-of-
compliance: security analysis in trust management,” Journal of the ACM,
vol. 52, no. 3, pp. 474–514, May 2005.

[14] Q. Wang, N. Li, and H. Chen, “On the security of delegation in access
control systems,” in European Symposium on Research in Computer
Security (ESORICS), Oct 2008, pp. 317–332.

[15] G. R. Ganger, “Generating representative synthetic workloads: An
unsolved problem,” in International CMG Conference, Dec 1995, pp.
1263–1269.

[16] K. S. Anderson, J. P. Bigus, E. Bouillet, P. Dube, N. Halim, Z. Liu, and
D. E. Pendarakis, “Sword: scalable and flexible workload generator for
distributed data processing systems,” in Winter Simulation Conference
(WSC), Dec 2006, pp. 2109–2116.

[17] Q. Wang and N. Li, “Satisfiability and Resiliency in Workflow Systems,”
in European Symposium on Research in Computer Security (ESORICS),
2007.

[18] J. Crampton, G. Gutin, and A. Yeo, “On the Parameterized Complexity of
the Workflow Satisfiability Problem,” in ACM Conference on Computer
and Communications Security (CCS), 2012, pp. 857–868.

[19] U.S. Air Force Scientific Advisory Board, “Networking to enable coalition
operations,” MITRE Corporation, Tech. Rep., 2004.

[20] “Horizontal integration: Broader access models for realizing information
dominance,” MITRE Corporation JASON Program Office, Tech. Rep.
JSR-04-13, 2004.

[21] T. L. Hinrichs, W. C. Garrison III, A. J. Lee, and J. C. Mitchell,
“Application-sensitive access control evaluation: Logical foundations
(extended version),” University of Pittsburgh Department of Computer
Science, Tech. Rep. TR-12-185, Nov 2011. [Online]. Available:
http://www.cs.pitt.edu/∼bill/pubs/T12a.pdf

[22] T. M. Liggett, Continuous Time Markov Processes: An Introduction,
ser. Graduate Studies in Mathematics Series. American Mathematical
Society, 2010.

[23] J. McLean, “Reasoning about security models,” in IEEE Symposium on
Security and Privacy, Apr. 1987, pp. 123–133.

[24] T. Jim, “SD3: A trust management system with certified evaluation,” in
IEEE Symposium on Security and Privacy, 2001, pp. 106–115.

[25] G. S. Graham and P. J. Denning, “Protection: principles and practice,” in
Proceedings of the May 16-18, 1972, spring joint computer conference,
ser. AFIPS ’72 (Spring). New York, NY, USA: ACM, 1972, pp. 417–429.

[26] D. F. Ferraiolo, R. S. Sandhu, S. I. Gavrila, D. R. Kuhn, and R. Chan-
dramouli, “Proposed nist standard for role-based access control,” ACM
Trans. Inf. Syst. Secur., vol. 4, no. 3, pp. 224–274, 2001.

[27] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor, “A generalized temporal
role-based access control model,” IEEE Transactions on Knowledge and
Data Engineering, vol. 17, no. 1, pp. 4–23, 2005.

[28] S. Lu, Y. Hong, Q. Liu, L. Wang, and R. Dssouli, “Access control in
e-health portal systems,” in 4th International Conference on Innovations
in Information Technology, Nov 2007, pp. 88–92.

[29] D. Zhang, K. Ramamohanarao, S. Versteeg, and R. Zhang, “RoleVAT:
Visual assessment of practical need for role based access control,” in
Twenty-Fifth Annual Computer Security Applications Conference (ACSAC
2009), Dec 2009, pp. 13–22.

[30] R. W. Reeder, L. Bauer, L. F. Cranor, M. K. Reiter, and K. Vaniea, “More
than skin deep: measuring effects of the underlying model on access-
control system usability,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI), 2011, pp. 2065–2074.

[31] L. Bauer, L. F. Cranor, R. W. Reeder, M. K. Reiter, and K. Vaniea, “A
user study of policy creation in a flexible access-control system,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI), 2008, pp. 543–552.

[32] R. W. Reeder, L. Bauer, L. F. Cranor, M. K. Reiter, K. Bacon, K. How,
and H. Strong, “Expandable grids for visualizing and authoring computer
security policies,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI), 2008, pp. 1473–1482.

[33] J. Clark, P. C. van Oorschot, and C. Adams, “Usability of anonymous
web browsing: an examination of tor interfaces and deployability,” in
Proceedings of the 3rd Symposium on Usable Privacy and Security
(SOUPS), 2007, pp. 41–51.

[34] A. Mazzia, K. LeFevre, and E. Adar, “The pviz comprehension tool for
social network privacy settings,” in Proceedings of the Eighth Symposium
on Usable Privacy and Security (SOUPS), 2012, pp. 13:1–13:12.

[35] BBC News, “Iranians hit in email hack attack,” September 2011.
[Online]. Available: http://www.bbc.co.uk/news/technology-14802673

[36] “Comodo Report of Incident - Comodo detected and thwarted
an intrusion on 26-MAR-2011,” March 2011. [Online]. Available:
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html

[37] D. Wendlandt, D. G. Andersen, and A. Perrig, “Perspectives: improving
ssh-style host authentication with multi-path probing.” USENIX 2008
Annual Technical Conference, June 2008.

[38] Electronic Frontier Foundation, “The sovereign keys project.” [Online].
Available: https://www.eff.org/sovereign-keys

[39] B. Laurie and A. Langley, “Certificate authority transparency and
auditability,” November 2011. [Online]. Available: http://www.links.org/
files/CertificateAuthorityTransparencyandAuditability.pdf

[40] J. Hromkovic, Algorithmics for Hard Problems: Introduction to Combi-
natorial Optimization, Randomization, Approximation, and Heuristics.
Berlin, Heidelberg: Springer-Verlag, 2010.

[41] N. Li, J.-W. Byun, and E. Bertino, “A critique of the ansi standard on
role-based access control,” IEEE Security & Privacy, vol. 5, no. 6, pp.
41–49, 2007.

APPENDIX A
PROOFS

A. Proof of Proposition 1

First, we restate our definition of access control scheme
from Section IV-A. For the purposes of this proof, we refer to
this notion of scheme as the GLH scheme.

Definition 3 A GLH scheme is a state transition system S =
〈Γ,Ψ, Q〉, where Γ is the set of access control states, Ψ is the
set of commands over Γ, and Q is the set of queries over Γ.♦

Next, we state the definition of scheme used by Tripunitara
and Li [5], which we refer to in this proof as the TL scheme.

http://www.cs.pitt.edu/~bill/pubs/T12a.pdf
http://www.bbc.co.uk/news/technology-14802673
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
https://www.eff.org/sovereign-keys
http://www.links.org/files/CertificateAuthorityTransparencyandAuditability.pdf
http://www.links.org/files/CertificateAuthorityTransparencyandAuditability.pdf

Definition 17 A TL scheme is a state-transition system S =
〈Γ, Q,`,Ψ〉, in which Γ is a set of states, Q is a set of queries,
` : Γ×Q→ {TRUE, FALSE} is called the entailment relation,
and Ψ is a set of state-transition rules. ♦

Recall that GLH schemes formalize transitions and state
inspection using commands and queries that accept parameters.
For transitions, a TL scheme specifies a set of state transition
rules, each a binary relation on the set of states. A running
system, then, must specify which transition rule is active. For
queries, a TL scheme specifies a set of (non-parameterized)
queries, and the entailment relation (rather than being indi-
vidually specified as a component of the query structure) is
specified for all queries as a separate component of the scheme.

A main result of Tripunitara and Li’s framework closely
mirrors Proposition 1, except for TL schemes and the state-
matching reduction rather than GLH schemes and the state-
matching implementation. We now present the definition of
state-matching reduction and the related theorem to Proposi-
tion 1.

Definition 18 (State-Matching Reduction [5]) Given two
access control schemes A =

〈
ΓA,ΨA, QA,`A

〉
and B =〈

ΓB,ΨB, QB,`B
〉
, and a mapping from A to B, σ :(

ΓA ×ΨA
)
∪QA →

(
ΓB ×ΨB

)
∪QB, we say that two states

γA and γB are equivalent under the mapping σ when for
every qA ∈ QA, γA `A qA if and only if γB `B σ

(
qA
)
.

A mapping σ from A to B is said to be a state-matching
reduction if for every γA ∈ ΓA and every ψA ∈ ΨA,〈
γB, ψB

〉
= σ

(〈
γA, ψA

〉)
has the following two properties:

1) For every state γA1 in scheme A such that γA ∗7→ψAγA1 ,
there exists a state γB1 such that γB ∗7→ψBγB1 and γA1 and
γB1 are equivalent under σ.

2) For every state γB1 in scheme B such that γB ∗7→ψBγB1 ,
there exists a state γA1 such that γA ∗7→ψAγA1 and γA1 and
γB1 are equivalent under σ. ♦

Theorem 6 (Rephrased, from [5]) Given two schemes A
and B, and a mapping, σ, from A to B, σ is a state-matching
reduction if and only if it is strongly security-preserving; that
is, every compositional security analysis instance in A is true
if and only if the image of the instance under σ is true in B.

Next, we restate the definition of state-matching implemen-
tation from Section IV-C.

Definition 7 Given an access control workload W =〈
W, IW

〉
in which W =

〈
ΓW ,ΨW , QW

〉
, an access con-

trol scheme, S =
〈
ΓS ,ΨS , QS

〉
, and an implementation

σ = 〈σΓ, σΨ, σQ〉 of W in S, we say that two states
γW and σΓ

(
γW
)

= γS are equivalent with respect to the
implementation σ (and denote this equivalence as γW ∼σ γS)
when for every qW = 〈n, P,`〉 ∈ QW (with qS = σQ

(
qW
)
)

and every pW ∈ P ∗ (with pS = σΓ

(
pW
)
), γW ` qW

(
pW
)

if
and only if γS ` qS

(
pS
)
.

An implementation σ of W in S is said to be a state-
matching implementation if for every γW ∈ ΓW , with γS =

σΓ

(
γW
)
, the following two properties hold:

1) For every state γW1 ∈ ΓW such that γW ∗7→ΨW γW1 ,
there exists a state γS1 ∈ ΓS such that γS ∗7→ΨS γS1 and
γW1 ∼σ γS1 .

2) For every state γS1 ∈ ΓS such that γS ∗7→ΨS γS1 , there
exists a state γW1 ∈ ΓW such that γW ∗7→ΨW γW1 and
γW1 ∼σ γS1 . ♦

Finally, we restate and prove Proposition 1.

Proposition 1 Given an access control workload W =〈
W, IW

〉
in which W =

〈
ΓW ,ΨW , QW

〉
, an access control

scheme, S =
〈
ΓS ,ΨS , QS

〉
, and an implementation σ =

〈σΓ, σΨ, σQ〉 of W in S , σ is a state-matching implementation
if and only if it is strongly security-preserving; that is, every
compositional security analysis instance in W is true if and
only if the image of the instance under σ is true in S.

PROOF Consider workload operational componentW , scheme
S, and implementation σW of W using S. We assume that
σW is a state-matching implementation and show that it must
be strongly security-preserving.

Construct TL scheme A from W (and, similarly, B from S)
as follows. Make ΓA equal to ΓW (preserve state information
exactly). Map each query-parameter pair q, P in W to the
single query qP in QA in scheme A. Encode these queries’
individual entailment relations (over parameters) in scheme A’s
entailment relation (over queries). Collapse all commands in
W into a binary relation over states. Encode this binary relation
as a single state transition rule in ΨA, where 〈γ1, γ2〉 ∈ ψA if
and only if ∃ψ ∈ ΨW , P ∈ P ∗ : e(γ1, P) = γ2.

Construct the reduction σA : (ΓA × ΨA → ΓB × ΨB) ∪
(QA → QB) from the implementation σW : (ΓW → ΓS) ∪
(ΨW → ΨS) ∪ (QW → QS) as follows. Encode the (state,
transition rule) mapping to be equivalent to the state mapping
of σW (trivial since there is only one transition rule). Copy
the query mapping in the obvious way.

Since A and B are crafted to encode the states, queries, and
reachability properties of W and S , and σA encodes σW , it is
clear that σA is strongly security-preserving if and only if σW

is. Thus, if we show that σA is a state-matching reduction, then
by Theorem 6, it is strongly security-preserving, and thus σW is
as well. These equivalences in encoding also make it clear that
σA is, indeed, a state-matching reduction (Definition 18), by
observation of the properties of σW as defined in Definition 7.

Thus, we have shown that an implementation is a state-
matching implementation only if it is strongly security-
preserving.

Next we assume that σW is strongly security-preserving and
show that it is a state-matching implementation. Construct A,
B, and σA as above. Since σW is strongly security-preserving,
so is σA. Thus, σA is a state-matching reduction by Theorem 6.
Finally, using an argument as above, σW is a state-matching
implementation.

Thus, we have shown that an implementation is a state-
matching implementation if it is strongly security-preserving,
and thus an implementation is state-matching if and only if it

is strongly security-preserving.

B. Proof of Proposition 2

First, we present several requisite definitions.

Definition 19 (Abelian Monoid) An abelian monoid, S =
〈S, •〉, is a set, S, together with a binary operation, •, that
satisfies the following properties.

1) Closure ∀a, b ∈ S, a • b ∈ S
2) Associativity ∀a, b, c ∈ S, (a • b) • c = a • (b • c)
3) Commutativity ∀a, b ∈ S, a • b = b • a
4) Identity ∃0 ∈ S,∀a ∈ S, a • 0 = a ♦

Definition 20 (Partially Ordered Set) A partially ordered
set, S = 〈S,�〉, is a set, S, together with a binary relation, �,
that satisfies the following properties.

1) Reflexivity ∀a ∈ S, a� a
2) Antisymmetry ∀a, b ∈ S, a� b ∧ b� a⇒ a = b
3) Transitivity ∀a, b, c ∈ S, a� b ∧ b� c⇒ a� c ♦

Definition 21 (Ordered Abelian Monoid) An ordered
abelian monoid, S = 〈S, •,�〉, is a set, S, together with a
binary operator, •, and binary relation, �, that satisfies the
following properties.

1) 〈S, •〉 is an abelian monoid
2) 〈S,�〉 is a partially ordered set ♦

Now, we restate the definition of a vector of cost measures
from Section V-B.

Definition 13 (Vector of Cost Measures) Given cost mea-
sures N1 = 〈N1, •1,�1〉, N2 = 〈N2, •2,�2〉, . . . , Ni =
〈Ni, •i,�i〉, let M = 〈M, •∗,�∗〉 be the vector of cost
measures N1,N2, . . . ,Ni, where:
• M = N1 ×N2 × · · · ×Ni.
• Given a1, b1 ∈ N1, a2, b2 ∈ N2, . . . ,
ai, bi ∈ Ni, 〈a1, a2, . . . , ai〉 •∗ 〈b1, b2, . . . , bi〉 =
〈a1 •1 b1, a2 •2 b2, . . . , ai •i bi〉.

• Given a1, b1 ∈ N1, a2, b2 ∈ N2, . . . , ai, bi ∈
Ni, 〈a1, a2, . . . , ai〉�∗ 〈b1, b2, . . . , bi〉 if and only if
a1�1 b1 ∧ a2�2 b2 ∧ . . . ∧ ai�i bi. ♦

Proposition 2 Given cost measures N1 = 〈N1, •1,�1〉,
N2 = 〈N2, •2,�2〉, . . . , Ni = 〈Ni, •i,�i〉, and their vector,
M = 〈M, •∗,�∗〉, M is a cost measure.

PROOF All of N1,N2, . . . ,Ni are cost measures. By the
definition of cost measure, they are all abelian monoids, and
thus are all closed, associative, and commutative, and all have
identities. Using N1 as an example, this implies:

1) ∀a, b ∈ N1, a •1 b ∈ N1

2) ∀a, b, c ∈ N1, (a •1 b) •1 c = a •1(b •1 c)
3) ∀a, b ∈ N1, a •1 b = b •1 a
4) ∃01 ∈ N1,∀a ∈ N1, a •1 01 = a

Let A,B,C ∈ M. By the definition of vector of cost
measures,

A = 〈a1, a2, . . . , ai〉

where
a1 ∈ N1, a2 ∈ N2, . . . , ai ∈ Ni

and similarly for B and C.
By the definition of vector,

A •∗B = 〈a1 •1 b1, a2 •2 b2, . . . , ai •i bi〉
By the closure of N1,N2, . . . ,Ni,

a1 •1 b1 ∈ N1, a2 •2 b2 ∈ N2, . . . , ai •i bi ∈ Ni

A •∗B ∈M

Thus, M satisfies the property of closure.
By the definition of vector,

(A •∗B) •∗ C =

〈(a1 •1 b1) •1 c1, (a2 •2 b2) •2 c2, . . . , (ai •i bi) •i ci〉
By the associativity of N1,N2, . . . ,Ni,

(A •∗B) •∗ C =

〈a1 •1 (b1 •1 c1), a2 •2 (b2 •2 c2), . . . , ai •i (bi •i ci)〉
(A •∗B) •∗ C = A •∗ (B •∗ C)

Thus, M satisfies the property of associativity.
By the definition of vector,

A •∗B = 〈a1 •1 b1, a2 •2 b2, . . . , ai •i bi〉
By the commutativity of N1,N2, . . . ,Ni,

A •∗B = 〈b1 •1 a1, b2 •2 a2, . . . , bi •i ai〉
A •∗B = B •∗A

Thus, M satisfies the property of commutativity.
By the definition of vector,

0 •∗A = 〈01 •1 a1, 02 •2 a2, . . . , 0i •i ai〉
By the identity of N1,N2, . . . ,Ni,

0 •∗A = 〈a1, a2, . . . , ai〉
0 •∗A = A

Thus, M satisfies the property of identity.
Since M satisfies closure, associativity, commutativity, and

identity, 〈M, •∗〉 is an abelian monoid.
All of N1,N2, . . . ,Ni are cost measures. Thus, they are all

partially ordered sets, and thus are all reflexive, antisymmetric,
and transitive. Using N1 as an example, this implies:

1) ∀a ∈ N1, a�1 a
2) ∀a, b ∈ N1, a�1 b ∧ b�1 a⇒ a = b
3) ∀a, b, c ∈ N1, a�1 b ∧ b�1 c⇒ a�1 c

Let A,B,C ∈ M. By the definition of vector of cost
measures,

A = 〈a1, a2, . . . , ai〉
where

a1 ∈ N1, a2 ∈ N2, . . . , ai ∈ Ni

and similarly for B and C.
By the reflexivity of N1,N2, . . . ,Ni,

a1�1 a1, a2�2 a2, . . . , ai�i ai

A�∗A

Thus, M satisfies the property of reflexivity.
Assume A�∗B ∧B�∗A. By the definition of vector,

a1�1 b1∧b1�1 a1∧a2�2 b2∧b2�2 a2∧. . .∧ai�i bi∧bi�i ai

By the antisymmetry of N1,N2, . . . ,Ni,

a1 = b1 ∧ a2 = b2 ∧ . . . ∧ ai = bi

A = B

A�∗B ∧B�∗A⇒ A = B

Thus, M satisfies the property of antisymmetry.
Assume A�∗B ∧B�∗ C. By the definition of vector,

a1�1 b1∧b1�1 c1∧a2�2 b2∧b2�2 c2∧. . .∧ai�i bi∧bi�i ci

By the transitivity of N1,N2, . . . ,Ni,

a1�1 c1 ∧ a2�2 c2 ∧ . . . ∧ ai�i ci

A�∗ C

A�∗B ∧B�∗ C ⇒ A�∗ C

Thus, M satisfies the property of transitivity.
Since M satisfies reflexivity, antisymmetry, and transitivity,

〈M,�〉 is a partially ordered set.
Since 〈M, •∗〉 is an abelian monoid and 〈M,�∗〉 is a

partially ordered set, M = 〈M, •∗,�∗〉 is an ordered abelian
monoid.

All of N1,N2, . . . ,Ni are cost measures. Thus, they all
satisfy non-negativity. Using N1 as an example, this means:

∀a, b ∈ N1, a�1 a •1 b

By the definition of vector,

A •∗B = 〈a1 •1 b1, a2 •2 b2, . . . , ai •i bi〉

By the non-negativity of N1,N2, . . . ,Ni,

a1�1 a1 •1 b1 ∧ a2�2 a2 •1 b2 ∧ · · · ∧ ai�i ai •i bi

By the definition of vector,

A�∗B

Thus, M satisfies the property of non-negativity.
Since M is an ordered abelian monoid and satisfies non-

negativity, M is a cost measure.

C. Proof of Theorem 3

Theorem 3 Assuming that workflow constraints are restricted
to the binary operators {=, 6=} (i.e., constraints expressing
binding of duty and separation of duty), the simulation
procedure described in Algorithm 1 is pseudo-polynomial in
the number of simulated steps and FPT with parameter α, the
number of actions in the largest task (i.e., the size of the largest
disjoint subgraph of the workflow graph).

PROOF Our proof is by observation of Algorithm 1. The first
loop (for all S =. . .) handles assignments and initializations.
The final loop (for all S ∈. . .) outputs results. The main loop,
then, contains all of the computationally intensive code.

The expensive section of the algorithm starts after several
nested loops, adding multiplicative factors for number of time
steps (Tf/t), number of schemes (|Σ|), and number of actors.
The steps with computational overhead are NEXTACTION,
which polls an actor machine for the next action, and WSAT,
which calculates whether a particular action can be taken by
an actor without causing any workflow instances to become
unsatisfiable. We defer in-depth discussion of the WSP problem
and its complexity to previous work [17], [18], but it is an
NP-complete problem with known algorithms that run in fixed
parameterized time with parameter α, the largest number of
steps in a workflow task.

By previous work [17], WSP can be solved in O(C ·Aα),
where C is the number of constraints, A is the maximum
number of actors, and α is the number of steps in the
largest task (i.e., the size of the largest disjoint subgraph
of the workflow graph). This greatly exceeds NEXTACTION,
which executes a single step in a continuous-time probabilistic
machine (polynomial in actor machine size). Thus, the dominant
factor in the complexity of Algorithm 1 is O

(
S · C · T ·Aα+1

)
,

where S is the number of schemes and T is the number of
time steps to simulate (Tf/t). Since T is an input, this means
the algorithm is pseudo-polynomial in T and FPT in α. Since
some consider FPT to be a generalization of pseudo-polynomial
time [40], we refer to the complexity of Algorithm 1 as FPT,
thus meeting our definition of tractable.

D. Proof of Theorem 4

Theorem 4 Given access control scheme S =
〈
ΓS ,ΨS , QS

〉
and access control auxiliary machine U =

〈
ΓU ,ΨU , QU

〉
,

there exists a state-matching implementation of S in S ◦ U .

PROOF By construction. Presented is a mapping, and proof
that the mapping satisfies the two properties for it to be a
state-matching implementation.

Let Q = S ◦ U .
The mapping, σ, needs to be able to map every γ ∈ ΓS ,

ψ ∈ ΨS , and q ∈ QS in scheme S to γQ ∈ ΓQ, ψQ ∈ ΨQ,
and qQ ∈ QQ in scheme Q = S ◦ U .

Let σ(γ) = 〈γ, γ∗〉, where γ∗ is an arbitrary auxiliary
machine-state for AM U . That is, let the AM component of the
state be arbitrary, but maintain the original scheme component
of the state.

Let σ(ψ) = ψ and σ(q) = q, since by Definition 16 the
commands and queries in S exist unaltered in S ◦ U .

Let γ0 be a start state in S. Produce γQ0 in S ◦ U using
σ. Given γk such that γ0

∗7→ψ γk, we show that there
exists γQk such that γQ0

∗7→ψQ γQk where, for all q and all
parameterizations P , γQk `qQ (σ(P)) if and only if γk `q (P).

From γQ0 = 〈γ0, γ∗〉, construct γQk by following the same
string of commands that were executed in transitioning from γ0

to γk. Since, by Definition 16, commands in S exist unaltered in
Q, the resulting state is γQk = 〈γk, γ∗〉. Thus, since S’s queries
also exist in Q, γQk `qQ (σ(P)) if and only if γk `q (P).

Therefore, we have proven property (1) for the state-matching
implementation.

We prove that property (2) for a state-matching implementa-
tion is satisfied by our mapping also by construction. Let γQ0
be the start-state in S ◦U corresponding to γ0, the start-state in
S . Then, if γQk is a state reachable from γQ0 and qQ is a query
in S ◦U whose corresponding query in S is q, we construct γk
from γ0 by executing each ψi ∈ ΨQ = 〈ψ1, . . . , ψk〉 such that
∃ψ′i ∈ ΨS : δ(ψ′i) = ψi. That is, we execute the same string
of commands used in transitioning from γQ0 to γQk , excluding
the commands that are a part of ΨU . By Definition 16, and by
an argument similar to above, γk ` q if and only if γQk ` qQ.

Therefore, we have proven property (2) for state-matching
implementations, and proven that our mapping σ is a state-
matching implementation.

APPENDIX B
EXPRESSIVENESS EVALUATION DETAILS

A. GMS

The GMS scheme is defined as G =
〈
ΓG ,ΨG , QG

〉
. Its states,

ΓG , are defined by the sets 〈U,G,M, T, Tc, O,A,R, TX〉,
where:
• U is the set of users
• G is the set of groups
• M is the set of messages
• T is the ordered set of timestamps, including special

timestamp ∞
• Tc is the current timestamp
• O ⊆ U ×G is the group ownership relation
• A ⊆ U ×G is the group administration relation
• R ⊆ U ×G× T × T is the group membership record
• TX ⊆ G×M × T is the messaging transcript
GMS’s commands, ΨG , include the following.

CreateGroup(u,g)
G← G ∪ {g}
O ← O ∪ {〈u, g〉}
A← A ∪ {〈u, g〉}
R← R ∪ {〈u, g, 0,∞〉}

GrantAdmin(o,u,g)
if 〈o, g〉 ∈ O

A← A ∪ {〈u, g〉}

RevokeAdmin(o,u,g)
if 〈o, g〉 ∈ O ∨ o = u

A← A− {〈u, g〉}

SAddMember(a,u,g)
if 〈a, g〉 ∈ A

R← R ∪ {〈u, g, Tc,∞〉}
Tc ← Tc + 1

LAddMember(a,u,g)
if 〈a, g〉 ∈ A

R← R ∪ {〈u, g, 0,∞〉}

SRemoveMember(a,u,g)
if 〈a, g〉 ∈ A ∨ a = u

R← R− {〈u, g, t, t′〉 : 〈u, g, t, t′〉 ∈ R}

LRemoveMember(a,u,g)
if 〈a, g〉 ∈ A

R← R ∪ {〈u, g, t, Tc〉 : 〈u, g, t,∞〉 ∈ R}
R← R− {〈u, g, t,∞〉 : 〈u, g, t,∞〉 ∈ R}

Post(u,g,m)
if ∃t ∈ T : 〈u, g, t,∞〉 ∈ R

TX ← TX ∪ {〈g,m, Tc〉}
Tc ← Tc + 1

Finally, GMS’s queries, QG , include the following.

Access(u,m)
∃g ∈ G, tl, t, tu ∈ T :

〈u, g, tl, tu〉 ∈ R ∧ 〈g,m, t〉 ∈ TX ∧ tl ≤ t ≤ tu

B. RBAC

RBAC is a role-based access control scheme,6 R =〈
ΓR,ΨR, QR

〉
. Its states, ΓR, are defined by the sets

〈U,R, P, UA, PA〉, where:
• U is the set of users
• R is the set of roles
• P is the set of permissions
• UA ⊆ U ×R is the user-assignment relation
• PA ⊆ P ×R is the permission-assignment relation
RBAC’s commands, ΨR, include the following.

AddRole(a, r)
if 〈a,admin〉 ∈ UA

R← R ∪ {r}

DeleteRole(a, r)
if 〈a,admin〉 ∈ UA

R← R− {r}

AssignUser(a, u, r)
if 〈a,admin〉 ∈ UA

UA← UA ∪ {〈u, r〉}

DeassignUser(a, u, r)
if 〈a,admin〉 ∈ UA

UA← UA− {〈u, r〉}

GrantPermission(a, p, r)
if 〈a,admin〉 ∈ UA

PA← PA ∪ {〈p, r〉}

RevokePermission(a, p, r)
if 〈a,admin〉 ∈ UA

PA← PA− {〈p, r〉}

Finally, RBAC’s queries, QR, include the following.

6There are many competing definitions for role-based access control schemes
in the literature. We derive our definition of RBAC from NIST RBAC [26].
We exclude from the state elements to maintain sessions as well as several
derived relations, changes which have also been suggested by others [41].

Access(u, p)
∃r ∈ R : 〈u, r〉 ∈ UR ∧ 〈r, p〉 ∈ PA

Assigned(u, r)
〈u, r〉 ∈ UR

We extend RBAC with AM U =
〈
ΓU ,ΨU , QU

〉
. The AM’s

states, ΓU , are defined by the sets 〈G,GM〉, where:
• G is the set of groups
• GM ⊆ G× P is the group-message relation
The extension’s commands, ΨU , include the following.

CreateGroup(u, g)
if 〈u,admin〉 ∈ UA

G← G ∪ {g}

AssociateWithGroup(u, g, p)
if 〈u,admin〉 ∈ UA

GM ← GM ∪ {〈g, p〉}

Finally, QU = ∅, and thus the extension does not add any
queries to the scheme.

We can now demonstrate the implementation of GMS using
RBAC ◦ U . To describe an implementation σR of GMS in
RBAC ◦ U , we must describe the state-to-state mapping (σRΓ),
the command-to-command mapping (σRΨ), and the query-to-
query mapping (σRQ).

First, we describe σRΓ , which maps a state in GMS, γG ∈ ΓG ,
to a state in RBAC◦U , σRΓ

(
γG
)

= γR ∈ ΓR, as follows. Users
are mapped in the obvious way. Each message m posted to
any group is mapped to a permission m ∈ P , which grants
read access to the message. Each such permission is then
assigned to role rm ∈ R. Each user is assigned to role rm for
each message m she has access to. We also store and assign
roles mg , og , and ag for current membership, ownership, and
administration of group g ∈ G, respectively. These roles allow
certain commands to be executed, but do not correspond to a
permission in P .

Now, we describe σRΨ , which maps commands in GMS to
strings of commands in RBAC ◦ U .
• CreateGroup(u, g) in GMS is mapped to the sequence

CreateGroup(u, g), AddRole(u, mg), AssignUser(u,

u, mg), AddRole(u, og), AssignUser(u, u, og),
AddRole(u, ag), AssignUser(u, u, ag) in RBAC ◦ U .

• GrantAdmin(u, u2, g) in GMS is mapped to
AssignUser(u, u2, ag) in RBAC ◦ U .

• RevokeAdmin(u, u2, g) in GMS is mapped to
DeassignUser(u, u2, ag) in RBAC ◦ U .

• SAddMember(u, u2, g) in GMS is mapped to
AssignUser(u, u2, mg) in RBAC ◦ U .

• LAddMember(u, u2, g) in GMS is mapped to
AssignUser(u, u2, mg) in RBAC ◦ U , followed
by AssignUser(u, u2, rm) for each m such that
〈g,m〉 ∈ GM .

• SRemoveMember(u, u2, g) in GMS is mapped to
DeassignUser(u, u2, mg) in RBAC ◦ U , followed by
DeassignUser(u, u2, rm) for each m such that 〈g,m〉 ∈
GM .

• LRemoveMember(u, u2, g) in GMS is mapped to
DeassignUser(u, u2, mg) in RBAC ◦ U .

• Post(u, g, m) in GMS is mapped to
AssociateWithGroup(u, g, m) in RBAC ◦ U , followed
by AssignUser(u, u2, rm) for each u2 such that
〈u2,m

g〉 ∈ UA.
Finally, σRQ maps Access(u, m) in GMS to Access(u, pm)

in RBAC ◦ U .

Theorem 7 σR is a state-matching implementation of GMS
in RBAC ◦ U .

PROOF First, we prove property (1) for state-matching imple-
mentations.

Let γ0 be a start state in GMS. Produce γR0 in RBAC ◦ U
using σRΓ . Given γk such that γ0

∗7→ γk, we show that there
exists γRk such that γR0

∗7→ γRk where, for all queries q =
〈n, P,`〉 ∈ QG and parameterizations p ∈ P ∗, γRk ` qR(p) if
and only if γk ` q(p).

Consider the case where γk = γ0, then let γRk = γR0 . By
inspection of the procedure for σRΓ , γk ` q(p) if and only if
γRk ` qR(p).

Next, consider some arbitrary γk reachable from γ0. We
construct γRk that is reachable from γR0 and that answers
every qR(p) in the same way that γk answers q(p), as per
σRΨ . Since γ0

∗7→ γk, there exists a sequence of commands
〈ψ1 = 〈n1, P1, e1〉, . . . , ψk = 〈nk, Pk, ek〉〉 and a sequence of
parameterizations 〈p1 ∈ P ∗1 , . . . , pk ∈ P ∗k 〉 of these commands
such that γk = ek(. . . e1(γ0, p1), . . . , pk). For each command/
parameterization pair 〈ψi, pi〉, we show that the same queries
change value between γi−1 and γi = ei(γi−1, pi) and between
γRi−1 = σRΨ (γi−1) and γRi = σRΨ (γi). Thus, by induction it
will be clear that γk ` q(p) if and only if γRk ` qR(p).
• If 〈ψi, pi〉 is an instance of CreateGroup, GrantAdmin,

RevokeAdmin, SAddMember, or LRemoveMember, no queries
are changed between γi−1 and γi. Since the corresponding
operations in RBAC ◦ U alter only the role relation for
roles with no permissions, similarly no queries are changed
between γRi−1 and γRi .

• If ψi is LAddMember, let pi = 〈u, u2, g〉, then Access

queries are changed to TRUE for user u2 and all messages
in group g. These same Access queries are explicitly made
TRUE by σRΨ by adding u2 to roles that grant precisely
these permissions.

• If ψi is SRemoveMember, let pi = 〈u, u2, g〉, then Access

queries are made FALSE for user u2 and all messages in
group g. These same Access queries are explicitly made
FALSE by σRΨ by removing u2 from the only roles with
these permissions.

• If ψi is Post, let pi = 〈u, g,m〉, then Access queries are
changed to TRUE for all users in group g and message m.
These same Access queries are explicitly made TRUE by
σRΨ by adding all users in group g to the role with the
permission corresponding to m.

Thus, we have proven property (1) for state-matching
implementations, and we proceed to prove property (2).

Let γR0 be the start-state in RBAC ◦ U corresponding to γ0,
the start-state in GMS. Then, if γRk is a state reachable from

γR0 , we construct γk, a state in GMS reachable from γ0, as
follows.

1) Consider each Access query changed to TRUE (i.e., each
permission granted) between γR0 and γRk . Let p = 〈u,m〉
be the parameterization of the Access query in question.
If permission m corresponds to a message in GMS,
execute CreateGroup to create a new group, and use
SAddMember to add u to this group (note that no queries
have changed yet, since the new group has no messages).
Finally, Post message m in the new group, granting only
the access in question.

2) Consider each Access query changed to FALSE (i.e., each
permission revoked) between γR0 and γRk . Let p = 〈u,m〉
be the parameterization of the Access query in question.
If permission m corresponds to a message in GMS, then
since u can access m in γ0, there exists group g that u
access to m through (i.e., ∃tl, t, tu ∈ T : 〈u, g, tl, tu〉 ∈
R∧〈g,m, t〉 ∈ TX∧tl ≤ t ≤ tu). Execute CreateGroup

to create a new group, and use SAddMember to add u to
this group. Next, Post all messages that u has access to
through g to this new group, with the exception of m
(note that no queries have changed yet; user u has not
gained or lost any accesses). Finally, use SRemoveMember

to remove u from g, revoking only the access in question.
These changes to transition between γ0 and γk in GMS

allow γk to answer each query in the same way as γRk .
Thus, γk ` q(p) if and only if γRk ` qR(p). Therefore, we
have proven property (2) for state-matching implementations,
and proven that the implementation σR is a state-matching
implementation.

C. DAC

DAC is a discretionary access control scheme based on the
Graham-Denning scheme [25], D =

〈
ΓD,ΨD, QD

〉
. Its states,

ΓD, are defined by the sets 〈S,O, I,M〉, where:
• S is the set of subjects
• O is the set of objects
• I is the set of access rights
• M : S ×O → 2I is the access matrix
DAC’s commands, ΨD, include the following.

Grant(s, t, o, i)
if own ∈M(s, o) ∧ i 6= own

M(t, o)←M(t, o) ∪ {i}

Revoke(s, t, o, i)
if own ∈M(s, o) ∧ i 6= own

M(t, o)←M(t, o)− {i}

Finally, DAC’s queries, QD, include the following.

Access(s, o, i)
i ∈M(s, o)

We extend DAC with AM V =
〈
ΓV ,ΨV , QV

〉
. The AM’s

states, ΓV , are defined by the sets 〈G,GM,W,A,B〉, where:
• G is the set of groups
• GM ⊆ G×O is the group-message relation
• W ⊆ S ×G is the group ownership relation

• A ⊆ S ×G is the group administration relation
• B ⊆ S ×G is the group membership relation

The extension’s commands, ΨV , include the following.

CreateGroup(s, g)
G← G ∪ {g}
W ←W ∪ {〈s, g〉}
A← A ∪ {〈s, g〉}
B ← B ∪ {〈s, g〉}

AssociateWithGroup(s, g, o)
if 〈s, g〉 ∈ B

GM ← GM ∪ {〈g, o〉}

GrantAdmin(s, t, g)
if 〈s, g〉 ∈W

A← A ∪ {〈t, g〉}

RevokeAdmin(s, t, g)
if 〈s, g〉 ∈W ∨ s = t

A← A− {〈t, g〉}

GrantMember(s, t, g)
if 〈s, g〉 ∈ A

B ← B ∪ {〈u, g〉}

RevokeMember(s, t, g)
if 〈s, g〉 ∈ A

B ← B − {〈u, g〉}

Finally, QV = ∅, and thus the extension does not add any
queries to the scheme.

We can now demonstrate the implementation of GMS using
DAC ◦ V . To describe an implementation σD of GMS in
DAC◦V , we must describe the state-to-state mapping (σDΓ), the
command-to-command mapping (σDΨ), and the query-to-query
mapping (σDQ).

First, we describe σDΓ , which maps a state in GMS, γG ∈ ΓG ,
to a state in DAC ◦ V , σDΓ

(
γG
)

= γD ∈ ΓD, as follows. Users
in GMS are mapped to subjects in DAC ◦ V . Each message
m posted to any group is mapped to an object m ∈ O. Since
GMS considers only read access, DAC’s I is statically set to
{r}. The group-message relation is stored in V along with
relations for group ownership, administration, and membership.
DAC’s M maintains a “flattened” view of the current accesses,
and thus M(s, o) = {r} if the GMS user corresponding to s
has access to the GMS message corresponding to object o. The
projection of the accesses maintained in M will be updated
by σDΨ whenever the more semantically meaningful structures
in V’s state are changed.

Next, we describe σDΨ , which maps commands in GMS to
strings of commands in DAC ◦ V .

• CreateGroup(u, g) in GMS is mapped to
CreateGroup(u, g) in DAC ◦ V .

• GrantAdmin(u, u2, g) in GMS is mapped to
GrantAdmin(u, u2, g) in DAC ◦ V .

• RevokeAdmin(u, u2, g) in GMS is mapped to
RevokeAdmin(u, u2, g) in DAC ◦ V .

• SAddMember(u, u2, g) in GMS is mapped to
GrantMember(u, u2, g) in DAC ◦ V .

• LAddMember(u, u2, g) in GMS is mapped to
GrantMember(u, u2, g) in DAC ◦ V , followed

by Grant(u, u2, m, r) for each m such that
〈g,m〉 ∈ GM .

• SRemoveMember(u, u2, g) in GMS is mapped to
RevokeMember(u, u2, g) in DAC ◦ V , followed by
Revoke(u, u2, m, r) for each m such that 〈g,m〉 ∈
GM .

• LRemoveMember(u, u2, g) in GMS is mapped to
RevokeMember(u, u2, g) in DAC ◦ V .

• Post(u, g, m) in GMS is mapped to
AssociateWithGroup(u, g, m) in DAC◦V , followed by
Grant(u, u2, m, r) for each u2 such that 〈u2, g〉 ∈ B.

Finally, σDQ maps Access(u, m) in GMS to Access(u, m,

r) in DAC ◦ V .

Theorem 8 σD is a state-matching implementation of GMS
in DAC ◦ V .

PROOF First, we prove property (1) for state-matching imple-
mentations.

Let γ0 be a start state in GMS. Produce γD0 in DAC◦V using
σDΓ . Given γk such that γ0

∗7→ γk, we show that there exists γDk
such that γD0

∗7→ γDk where, for all queries q = 〈n, P,`〉 ∈ QG
and parameterizations p ∈ P ∗, γDk ` qD(p) if and only if
γk ` q(p).

Consider the case where γk = γ0, then let γDk = γD0 . By
inspection of the procedure for σDΓ , γk ` q(p) if and only if
γDk ` qD(p).

Next, consider some arbitrary γk reachable from γ0. We
construct γDk that is reachable from γD0 and that answers
every qD(p) in the same way that γk answers q(p), as per
σDΨ . Since γ0

∗7→ γk, there exists a sequence of commands
〈ψ1 = 〈n1, P1, e1〉, . . . , ψk = 〈nk, Pk, ek〉〉 and a sequence of
parameterizations 〈p1 ∈ P ∗1 , . . . , pk ∈ P ∗k 〉 of these commands
such that γk = ek(. . . e1(γ0, p1), . . . , pk). For each command/
parameterization pair 〈ψi, pi〉, we show that the same queries
change value between γi−1 and γi = ei(γi−1, pi) and between
γDi−1 = σDΨ(γi−1) and γDi = σDΨ(γi). Thus, by induction it
will be clear that γk ` q(p) if and only if γDk ` qD(p).

• If 〈ψi, pi〉 is an instance of CreateGroup, GrantAdmin,
RevokeAdmin, SAddMember, or LRemoveMember, no queries
are changed between γi−1 and γi. Since the corresponding
operations in DAC ◦ V alter only the extension state
(not granting any new accesses), similarly no queries
are changed between γDi−1 and γDi .

• If ψi is LAddMember, let pi = 〈u, u2, g〉, then Access

queries are changed to TRUE for user u2 and all messages
in group g. These same Access queries are explicitly made
TRUE by σDΨ through executions of the Grant command.

• If ψi is SRemoveMember, let pi = 〈u, u2, g〉, then Access

queries are made FALSE for user u2 and all messages in
group g. These same Access queries are explicitly made
FALSE by σDΨ through executions of the Revoke command.

• If ψi is Post, let pi = 〈u, g,m〉, then Access queries are
changed to TRUE for all users in group g and message m.
These same Access queries are explicitly made TRUE by
σDΨ through executions of the Grant command.

Thus, we have proven property (1) for state-matching
implementations, and we proceed to prove property (2).

Let γD0 be the start-state in DAC ◦ V corresponding to γ0,
the start-state in GMS. Then, if γDk is a state reachable from
γD0 , we construct γk, a state in GMS reachable from γ0, as
follows.

1) Consider each Access query changed to TRUE (i.e., each
access granted) between γD0 and γDk . Let p = 〈u,m, r〉
be the parameterization of the Access query in question
(if the access is any right but r, it will not affect the
GMS state). If object m corresponds to a message in
GMS, execute CreateGroup to create a new group, and
use SAddMember to add u to this group (note that no
queries have changed yet, since the new group has no
messages). Finally, Post message m in the new group,
granting only the access in question.

2) Consider each Access query changed to FALSE (i.e., each
access revoked) between γD0 and γDk . Let p = 〈u,m, r〉
be the parameterization of the Access query in question.
If object m corresponds to a message in GMS, then since
u can access m in γ0, there exists group g that u has
access to m through (i.e., ∃tl, t, tu ∈ T : 〈u, g, tl, tu〉 ∈
R∧〈g,m, t〉 ∈ TX∧tl ≤ t ≤ tu). Execute CreateGroup

to create a new group, and use SAddMember to add u to
this group. Next, Post all messages that u has access to
through g to this new group, with the exception of m
(note that no queries have changed yet; user u has not
gained or lost any accesses). Finally, use SRemoveMember

to remove u from g, revoking only the access in question.
These changes to transition between γ0 and γk in GMS

allow γk to answer each query in the same way as γDk .
Thus, γk ` q(p) if and only if γDk ` qD(p). Therefore, we
have proven property (2) for state-matching implementations,
and proven that the implementation σD is a state-matching
implementation.

D. SD3-GM
SD3-GM is the group-messaging instantiation of the SD3

trust management scheme, S =
〈
ΓS ,ΨS , QS

〉
. Its states, ΓS ,

are defined by the set P , the set of policy sentences written in
the SD3 policy language. The following static policy sentences
enforce the access semantics and the current membership
semantics.

ACCESS(U, M) :− MEMBER(U, G, T1, T2),

POST(G, M, T),

LESSEQ(T1, T),

LESSEQ(T, T2)

CURRMEMBER(U, G) :− MEMBER(U, G, T, ∞)

Here, LESSEQ is the inherent “less-than-or-equal” predicate for
timestamps.

SD3-GM’s commands, ΨS , include the following.

CreateGroup(u,g)
P ← P ∪ {“OWN(u,g)”, “ADMIN(u,g)”, “MEMBER(u,g,0,∞)”}

GrantAdmin(o,u,g)
if eval(“OWN(o,g)”)

P ← P ∪ {“ADMIN(u,g)”}

RevokeAdmin(o,u,g)
if eval(“OWN(o,g)”) ∨ o = u

P ← P − {“ADMIN(u,g)”}

SAddMember(a,u,g)
if eval(“ADMIN(a,g)”)

P ← P ∪ {“MEMBER(u,g,Tc,∞)”}
P ← P ∪ {“TIME(Tc + 1)”} − {“TIME(Tc)”}

LAddMember(a,u,g)
if eval(“ADMIN(a,g)”)

P ← P ∪ {“MEMBER(u,g,0,∞)”}

SRemoveMember(a,u,g)
if eval(“ADMIN(o,g)”) ∨ o = u

P ← P − {“MEMBER(u,g,∗,∗)”}

LRemoveMember(a,u,g)
if eval(“ADMIN(a,g)”)

P ← P ∪{“MEMBER(u,g,t,Tc)”}−{“MEMBER(u,g,t,∞)”}
(where “MEMBER(u,g,t,∞)” ∈ P)

Post(u,g,m)
if eval(“CURRMEMBER(u,g)”)

P ← P ∪ {“POST(g,m,Tc)”}
P ← P ∪ {“TIME(Tc + 1)”} − {“TIME(Tc)”}

Finally, SD3-GM’s queries, QS , include the following.
Access(u,m)

eval(“ACCESS(u,m)”)

To describe an implementation σS of GMS in SD3-GM, we
must describe the state-to-state mapping (σSΓ), the command-
to-command mapping (σSΨ), and the query-to-query mapping
(σSQ).

First, we describe σSΓ , which maps a state in GMS, γG ∈ ΓG ,
to a state in SD3-GM, σSΓ

(
γG
)

= γS ∈ ΓS , as follows.
• For Tc in GMS, “TIME(Tc)” is added to P in SD3-GM.
• For each 〈u, g〉 ∈ O in GMS, “OWN(u,g)” is added to P

in SD3-GM.
• For each 〈u, g〉 ∈ A in GMS, “ADMIN(u,g)” is added to
P in SD3-GM.

• For each 〈u, g, t1, t2〉 ∈ R in GMS, “MEMBER(u,g,t1,t2)”
is added to P in SD3-GM.

• For each 〈g,m, t〉 ∈ TX in GMS, “POST(g,m,t)” is
added to P in SD3-GM.

Then, σSΨ and σSQ are both identity mappings. That is,
commands and queries are both mapped to their identically-
named versions in SD3-GM.

Theorem 9 σS is a state-matching implementation of GMS
in SD3-GM.

PROOF First, we prove property (1) for state-matching imple-
mentations.

Let γ0 be a start state in GMS. Produce γS0 in SD3-GM using
σSΓ . Given γk such that γ0

∗7→ γk, we show that there exists γSk
such that γS0

∗7→ γSk where, for all queries q = 〈n, P,`〉 ∈ QG
and parameterizations p ∈ P ∗, γSk ` qS(p) if and only if
γk ` q(p).

Consider the case where γk = γ0, then let γSk = γS0 . By
inspection of the procedure for σSΓ , γk ` q(p) if and only if
γSk ` qS(p).

Next, consider some arbitrary γk reachable from γ0. We
construct γSk this is reachable from γS0 and that answers
every qS(p) in the same way that γk answers q(p), as per
σSΨ. Since γ0

∗7→ γk, there exists a sequence of commands
〈ψ1 = 〈n1, P1, e1〉, . . . , ψk = 〈nk, Pk, ek〉〉 and a sequence of
parameterizations 〈p1 ∈ P ∗1 , . . . , pk ∈ P ∗k 〉 of these commands
such that γk = ek(. . . e1(γ0, p1), . . . , pk). For each command/
parameterization pair 〈ψi, pi〉, we show that the same queries
change value between γi−1 and γi = ei(γi−1, pi) and between
γSi−1 = σSΨ(γi−1) and γSi = σSΨ(γi). Thus, by induction it will
be clear that γk ` q(p) if and only if γSk ` qS(p). In the case
of σS , the implementation is a strict bisimulation, and GMS
and SD3-GM move in strict lock-step.
• If 〈ψi, pi〉 is an instance of CreateGroup, GrantAdmin,

RevokeAdmin, SAddMember, or LRemoveMember, no queries
are changed between γi−1 and γi. Since the corresponding
operations in SD3-GM behave identically, no queries are
changed between γRi−1 and γRi .

• If ψi is LAddMember, let pi = 〈u, u2, g〉, then Access

queries are changed to TRUE for user u2 and all messages
in group g. These same Access queries are also made
TRUE by σSΨ.

• If ψi is SRemoveMember, let pi = 〈u, u2, g〉, then Access

queries are made FALSE for user u2 and all messages in
group g. These same Access queries are also made FALSE
by σSΨ.

• If ψi is Post, let pi = 〈u, g,m〉, then Access queries are
changed to TRUE for all users in group g and message m.
These same Access queries are also made TRUE by σSΨ.

Thus, we have proven property (1) for state-matching
implementations, and we proceed to prove property (2).

Let γS0 be the start-state in SD3-GM corresponding to γ0,
the start-state in GMS. Then, if γSk is a state reachable from
γS0 , we construct γk, a state in GMS reachable from γ0, as
follows. Since both σSΓ and σSQ are the identity mapping, for
each command and parameterization executed between γS0 and
γSk , we can execute the identically-named command with the
same parameterization in GMS, leading to a state in which all
queries are answered in the same way.

Thus, γk ` q(p) if and only if γSk ` qS(p). Therefore, we
have proven property (2) for state-matching implementations,
and proven that the implementation σS is a state-matching
implementation.

	Introduction
	Related Work
	A New Approach
	Problem Definition
	Solution Requirements
	Framework Overview

	Phase 1: Expressiveness Evaluation
	Formalizing Access Control Schemes
	Formalizing Workloads
	Implementing a Workload in a Scheme

	Phase 2: Cost Analysis
	Actor-based Invocation Mechanism
	Cost Measures
	Cost Functions
	Cost Analysis via Monte Carlo Simulation

	Access Control Extensions
	Case Study
	Workload description
	Our g-SIS Workload
	Expressiveness Evaluation
	Cost Analysis
	Summary of Findings

	Discussion
	Requirements Revisited
	Open Problems and Future Work

	Conclusion
	References
	Appendix A: Proofs
	Proof of thm:smimplementation
	Proof of thm:vector
	Proof of thm:complexity
	Proof of thm:auxm

	Appendix B: Expressiveness Evaluation Details
	GMS
	RBAC
	DAC
	SD3-GM

