
TBA: A Hybrid of Logic and Extensional Access Control
Systems

Timothy L. Hinrichs1, William C. Garrison III2, Adam J. Lee2, Skip Saunders3, and
John C. Mitchell4

1 University of Chicago
2 University of Pittsburgh

3 MITRE Corporation
4 Stanford University

Abstract. Logical policy-based access control models are greatly expressive and
thus provide the flexibility for administrators to represent a wide variety of au-
thorization policies. Extensional access control models, on the other hand, utilize
simple data structures to better enable a less trained and non-administrative work-
force to participate in the day-to-day operations of the system. In this paper, we
formally study a hybrid approach, tag-based authorization (TBA), which com-
bines the ease of use of extensional systems while still maintaining a meaningful
degree of the expressiveness of logical systems. TBA employs an extensional
data structure to represent metadata tags associated with subjects and objects, as
well as a logical language for defining the access control policy in terms of those
tags. We formally define TBA and introduce variants that include tag ontologies
and delegation. We evaluate the resulting system by comparing to well-known
extensional and logical access control models.

1 Introduction

Logical access control systems, in which users write formal logic to express access
control policies, are expressive and supremely flexible but are hard to use because they
require fluency in formal logic. Extensional access control systems (e.g., the access
matrix, role-based access control, Bell-La Padula), in which users enter atomic values
(e.g., roles, rights, classifications) into simple data structures (e.g., a matrix or a pair
of binary relations), are in contrast easy to use but are far less flexible. Judging from
the prominence of extensional approaches in real-world organizations, ease-of-use is
more important than flexibility; nevertheless, the problems with extensional systems are
well known and can be addressed to a large extent with the flexibility of logical access
control systems. Thus, a hybrid approach to access control that achieves the flexibility
of logic and the usability of extensional systems would serve the community well.

As a case in point, MITRE recently published a report outlining the problems the
U.S. military has had with their extensional access control system in the context of
dynamic coalitions [18]. The main problem is the frequency with which partner coun-
tries enter and leave coalitions, causing the U.S. to make massive, frequent changes
to its authorization policy. Logical access control systems are better suited to making
large, frequent changes than extensional systems and so are an attractive alternative to

the current system; however, it seems clear that the entire military cannot be trained to
write formal logic in the near future. The right solution seems to be a combination of
extensional and logical systems that allows relatively untrained personnel to create and
contribute data while trained security experts write formal logic to express the desired
access control policy.

Building a hybrid access control system that combines logic and extensionality is
hard because the simplicity—and therefore usability—of extensional systems appears
fundamentally at odds with logic’s flexiblity. Extensionality’s simplicity comes from
its rigid commitment to a single representation of an access control policy, e.g., RBAC
grants subject s access to permission p when ∃r.UR(s, r) ∧ PA(r, p). Logic’s flexibil-
ity comes from its ability to represent a single policy in a myriad of ways—allowing
security experts to choose the form best suited for supporting new and unforeseen de-
mands. A hybrid system must therefore concede some of its flexibility by committing
to a single representation for some component of the access control policy and must
also concede some of its simplicity by allowing multiple representations of the policy.

In this paper, we formally study tag-based authorization (TBA), a hybrid access
control system that combines the flexibility of logical access control systems and the
usability of extensional systems. Relatively untrained people choose descriptive tags
for the system’s subjects and objects (similar to the tagging employed by many popular
and successful web applications, such as Flickr and YouTube), and trained security ex-
perts write logical policies that define access permissions using combinations of subject
and object tags (Section 2). One step we take to make TBA flexible yet easy to use is
including delegation but separating delegation decisions from access control decisions.
We replace delegation primitives inside the policy language with a scheme for combin-
ing policies outside the language (Section 3). We evaluate TBA by demonstrating its
ability to express a number of well-known access control paradigms (Section 4). Finally
we discuss related work (Section 5) and conclude (Section 6).

2 Tag-based Authorization

Tag-based authorization combines the strengths of logical access control systems and
extensional access control systems. Just as with logical access control, formal logic
is used to describe the authorization policy. Just as with extensional access control,
subjects and objects are ascribed a small set of simple properties when they are added
to the system (e.g., roles in Role-based Access Control or classifications and clearances
in Bell-La Padula). The properties ascribed to subjects and objects are tags that capture
all of the security-relevant properties of that subject or object. The authorization policy
is defined in terms of tags: it dictates which subject tags are sufficient for which rights
to which object tags. Because of the simplicity of tagging, relatively untrained users
can tag subjects and objects, while a relatively small number of administrators write the
logical authorization policy.

Formally, we use S to denote the set of subjects, O to denote the set of objects, and
R to denote the set of rights. T denotes the set of possible tags, and tag denotes the
function that maps subjects and objects to tag sets: tag : S ∪O → 2T . Tag denotes the
set of all possible tag functions.

An authorization policy is written in some logical access control language
〈P,L, |=〉. P is the set of all authorization policies; L is the set of queries, which we as-
sume always includes allow(s, o, r) for all subjects s, objects o, and rights r; |= dictates
which queries are true given an authorization policy and a tag function.

Definition 1 (Tag-based authorization (TBA)). For a logical language 〈P,L, |=〉, a
policy ∆ ∈ P , and a tag function tag where
• P: the set of all authorization policies
• L: the set of queries including allow(s, o, r) for all subjects s, objects o, rights r
• |=: a subset of P × Tag × L

authTBA(s, o, r) if and only if ∆, tag |= allow(s, o, r)

The following example illustrates TBA using DATALOG as the policy language.

Example 1 (Basic Tag-Based Authorization). Consider two subjects—s1 and s2—and
two objects—o1 and o2—that are tagged as follows:
• tag(s1) = {US,Army, enduring freedom, signals}
• tag(s2) = {France,Navy}
• tag(o1) = {submarine, radar}
• tag(o2) = {Kandahar, sat 732, high res}

Further, consider the following policy.
allow(S,O, read) :− US ∈ tag(S), Navy ∈ tag(S), submarine ∈ tag(O)
allow(S,O, read) :− France ∈ tag(S), Navy ∈ tag(S), submarine ∈ tag(O)
allow(S,O, read) :− signals ∈ tag(S), submarine ∈ tag(O)
allow(S,O, read) :− US ∈ tag(S), enduring freedom ∈ tag(S),

high res ∈ tag(O), sat 732 ∈ tag(O)
This policy allows U.S. and French naval officers to access documents about sub-

marines (via rules 1 and 2), all signals officers to access documents about radar systems
(rule 3), and all members of the U.S. military serving on Operation Enduring Freedom
to access high resolution satellite photographs taken by sat 732 (rule 4). As a result,
subject s1 can access objects o1 and o2, while subject s2 can only access object o1. �

Tag-based authorization differs from standard logical access control systems in that
tag has a fixed semantics and is defined outside of the policy. The fixed semantics of tag
forces policy-writers to define an authorization policy at a higher level of abstraction
than the usual S × O × R. Policies in TBA are really concerned with access control
decisions over the space of tags where subjects and objects are replaced by tag sets:
2T × 2T ×R. This abstraction results in a less flexible system since tag-space may not
be the right one for a particular situation; however, the loss of flexibility is the price
of a more understandable system for the majority of users. Relatively untrained users
can contribute to the system by changing tag, yet trained administrators can utilize the
flexibility of logic for expressing an access control policy. Thus, TBA enables a more
thorough utilization of the spectrum of skills present in a typical workforce.

2.1 Tag Ontologies

One of TBA’s limitations is that the number of relevant tags for a given subject or
object can be large and must be managed properly to ensure that (i) everyone uses

the same tags to mean the same thing and (ii) people are not routinely forced to tag
subjects/objects with hundreds or thousands of tags, e.g., the tag boat may imply the
tag aquatic, aquatic might imply vehicle, and so on.

Both to help people reach consensus on tag meanings and to reduce the burden
of document tagging, we propose employing an ontology to encode the relationships
among tags. An ontology is helpful in the context of TBA in three ways. First, an ontol-
ogy states which tags imply other tags, thereby reducing the number of tags that must
be explicitly assigned to a subject or object; all tags implied are implicitly included,
e.g., tagging an object with boat implicitly includes the tags aquatic and vehicle. Sec-
ond, an ontology simplifies policy-writing because it states that some tag combinations
are illegal, e.g., short and tall, and the policy need not cover illegal tag combinations.
Third, an ontology helps people communicate the meanings of tags because it explic-
itly states the relationships to other tags, e.g., if bat implies animal, it is clear that bat
refers to an animal instead of sports equipment.

Formally, a tag ontology Γ is a set of statements in propositional logic where the
propositions are tags. A set of tagsG is a legal combination wheneverG∪Γ is logically
consistent. The set of tags implied by some tag set G is the set of all t such that G ∪ Γ
entails t, denoted CnΓ (G). We use CnΓ (tag) to denote the application of Cn to all
tag sets in the tag function tag.

Employing ontologies leads to a new version of tag-based authorization.

Definition 2 (Ontology-aided TBA). Suppose ∆ is a TBA premise set, tag is a tag
function, and Γ is an ontology. For every x ∈ S ∪O, tag(x) ∪ Γ must be consistent.

authTBA(s, o, r) iff ∆,CnΓ (tag) |= auth(s, o, r)

Example 2 (Ontology-Aided TBA). Consider a system containing some subject s and
some object o that can be described as follows:
• tag(s) = {France,Navy}
• tag(o) = {submarine, radar}

Further, assume that the policy is the following DATALOG.
auth(S,O, read) :− France ∈ tag(S), Navy ∈ tag(S), watercraft ∈ tag(O)

Intuitively, this policy allows French naval officers access to documents about water-
crafts. In the basic tag-based authorization model, subject s would be denied access to
object o because o is not explicitly tagged as a document about watercrafts. However,
given a tag ontology containing the assertion submarine ⇒ watercraft, subject s
would be permitted access because tag(o) would implicitly include watercraft. �

Ontology-aided TBA further enables all classes of users to contribute to the running
of the system. Untrained personnel, who contribute mainly through generating and tag-
ging data, can do so with even less effort thanks to the ability to tag with a smaller
number of more specific tags. Administrative personnel also benefit because they can
ignore incompatible tag combinations, inevitably leading to shorter policies.

3 Delegation

TBA employs a single logical policy to represent all access control decisions, but of-
ten that single policy is derived from many conceptually separate policies written by

different security experts. The standard approach to providing the illusion of a single
policy from multiple disparate policies is to include delegation primitives in the logical
policy language that dictate how the disparate policies are to be combined, e.g., [1, 14].
This approach is supremely flexible. For example, policy A might import policy B’s
decisions as long as policy C imports policy D’s decisions on a specific topic. The
downside to adding delegation to the language is that it can be difficult to understand
how a given set of policies contribute to the overall policy—it might require reasoning
about the logical consequences of all of the policies at once; moreover, small changes
to any one policy may radically alter how the policies are pieced together.

Instead of adding delegation inside the logical language, TBA adds delegation out-
side of the logical language, thereby separating delegation decisions from access control
decisions. In particular, we utilize constructs that arrange a set of policies into a partial
order, where if A ≺ B then B delegates to A. Not only is this form of delegation es-
pecially simple to understand, it allows different security experts to choose different
logical languages for writing their policies. The only restriction is that all of the logical
languages used in the partial order must make access control decisions that are axioma-
tizable in a common logical language; otherwise, there would be no way to combine the
access control decisions made by distinct policies. We call one of these partial orders of
policies a structured policy.

More precisely, a structured policy is comprised of (i) a set of basic policies, (ii)
a partial order of those policies, (iii) a set of guards on the partial order, (iv) a meta-
language in which access control decisions are axiomatizable, and (v) a conflict resolu-
tion operator. A partial order over the policies enables delegation and implicitly imposes
limits on the decisions delegated; the guards on the partial order explicitly limit the de-
cisions that are delegated. If policy A is greater in the partial order than B then A
delegates to B the decisions A does not make, and if that delegation is guarded by G
then B’s actual decisions are limited to those described by G. Because the ordering on
policies is partial instead of total, some access control decisions are ambiguous, and the
conflict resolution mechanism is used to disambiguate such decisions.

For example, in the U.S. military, basic policies might be written by the President,
his chiefs of staff, and others. The partial order includes a single maximal policy: the
President’s. If the President allows or denies a request, the decision has been made; oth-
erwise, the chiefs of staff have the opportunity to make a decision. The Army chief of
staff is restricted from making decisions the Air Force chief of staff ought to make be-
cause of guards that restrict the Army to the Army-pertinent decisions and the Air Force
to the Air Force-pertinent decisions. If the Army and Air Force make opposing deci-
sions about a request that is pertinent to them both, the conflict resolution mechanism
dictates whose decision will be enforced.

Definition 3 (Structured Policy). A structured policy is a five-tuple 〈P,≺, G,N, res〉.
• P : a finite set of basic policies. If policy q is written in logical language
〈Pq,Lq, |=q〉 then both allow(s, o, r) and deny(s, o, r) belong to Lq for all s, o, r.
• ≺: a binary relation over P whose transitive closure is irreflexive (i.e., no cycles)
• G: a set of functions guardB≺C : S ×O ×R→ {true, false} for every B ≺ C
• N : the meta language, i.e., a logical language 〈P∗,L∗, |=∗〉 such that

– all subsets of
⋃
q∈P Lq are included in P∗

– L∗ includes allow(s, o, r) and deny(s, o, r) for all s,o,r.
• res : 2L

∗ × S × O × R → {allow, deny} is a conflict resolution operator: if
allow(s, o, r) is part of its input but deny(s, o, r) is not then it returns allow, and
vice versa.

In this definition, the guard for an ordering B ≺ C is formalized as a function that
dictates which subset of access control requests B is permitted to make. In practice that
function is expressed in a logical policy language. For example, the guard might itself
be a TBA (structured) policy, thereby deciding which requests are pertinent forB based
on the tags for the subjects and objects.

Example 3 (Guards). Suppose the President wanted to scope the policy of his Army
Chief of Staff so that it could only make authorization decisions about the objects the
Army is primarily responsible for. If all such objects are tagged with army, the guard
on the ordering Army ≺ Pres might be expressed as

allow(S,O,R) :− army ∈ tag(O). �

Another noteworthy part of our structured policy definition is the meta-languageN .
N represents a logical language in which the access control decisions of all the basic
policies can be combined. Formally, the process of combining access control decisions
is achieved with N ’s entailment relation: given the decisions made by (possibly) differ-
ent policies, compute all the implications of those decisions. Technically, this requires
the premise sets of N to include all possible combinations of access control decisions
from the individual policy languages—a constraint included in the definition.

The final component of a structured policy that warrants discussion is the con-
flict resolution operator res. res is given the implications of all the appropriate pol-
icy decisions and must choose whether to allow or deny. For unambiguous cases
(where either allow or deny is present but not both), its behavior is fixed, but for
ambiguous cases where its input includes both allow and deny, it is free to make
either decision. Because the language of access control decisions is unconstrained,
those decisions can record a plethora of information important for conflict resolu-
tion, e.g., the source of the decision or its proof. Thus, the conflict resolution opera-
tor may be given not only a series of allow and deny statements but also statements
that justify each allow and deny. For example, for conflict resolution that utilizes
proofs, the individual policy decisions might always include a sentence of the form
explanation(allow/deny(s, o, r), proof). Thus, TBA makes no commitment to a par-
ticular conflict resolution operator or even the information upon which conflicts are re-
solved, as these issues have been studied heavily in the literature, e.g., [2,3,9,11,16,20].

The formal semantics of a structured policy is defined in terms of the decision a
given basic policy p makes about a given access control request 〈s, o, r〉. If p either
allows or denies the request, p’s decision stands; otherwise, p’s decision is the com-
bination of its partial decisions together with the union of the decisions made by the
policies to which p delegated (i.e., the policies immediately less than p in the policy or-
dering). A structured policy allows a request 〈s, o, r〉 if the conflict resolution operator
when applied to the union of the decisions made by the maximal policies in the ordering
returns allow; otherwise, the structured policy denies the request.

Furthermore, because the definition for a structured policy allows basic policies to
be written in different logical languages (including e.g., linear logic [7], first-order logic
[12], and ASP [3]), the formal semantics correctly addresses heterogenous collections
of basic policies, using |=p to denote the entailment relation for policy p.

Definition 4 (Structured Policy Semantics). Consider a structured policy
〈P,≺, G, 〈P∗,L∗, |=∗〉, res〉, tag function tag, ontology Γ , and an access con-
trol request 〈s, o, r〉. First, for all x ∈ S ∪ O, tag(x) ∪ Γ is consistent. Second we
define the point semantics of policy p ∈ P on 〈s, o, r〉, written Point[p, s, o, r], which
is an element of P∗. Let S = {φ | p, CnΓ (tag) |=p φ}.
1. If S includes allow(s, o, r) and/or deny(s, o, r) then Point[p, s, o, r] = S.
2. Otherwise, Point[p, s, o, r] = S ∪

⋃
q ≺ p and

guardq≺p(s, o, r)

Point[q, s, o, r].

Finally we define the structured policy semantics.

authTBA(s, o, r) iff res

Cn∗
 ⋃
p | 6∃q.p≺q

Point[p, s, o, r]

 = allow

Admittedly the formal definitions for a structured policy are not so simple; however,
once the logical policy languages are chosen, explaining to policy writers how to use
a structured policy is especially simple: write basic policies to make access control
decisions and adjust the partial order and its guards to delegate those decisions.

Example 4 (Disjunctive decisions). Suppose an upper-level manager wants to ensure
that every employee is either given access to object o1 or object o2 but not both.
Moreover, she wants to delegate the choice to the low-level managers in the com-
pany. She can author a (first-order logic) policy, A, that says ∀s.(allow(s, o1, read) ∨
allow(s, o2, read)) and ∀s.(deny(s, o1, read) ∨ deny(s, o2, read)). Then if the low-
level manager policies are B1,. . . ,Bn, the upper-level manager ensures that Bi ≺ A
with appropriate guards for i ∈ {1, . . . , n}. Each policy Bi can then choose which of
the objects to grant for each employee. Furthermore, if one of the low-level managers
writes a policy that grants access to both objects or to neither, there will be a con-
flict, and the conflict resolution operator can choose to enforce A’s policy by arbitrarily
choosing between o1 and o2. �

In the technical report version of this paper [13], we show the algorithms used to
evaluate an ontology-aided, structured TBA policy to either allow or deny a given re-
quest; the algorithms are omitted here for brevity.

4 Evaluation

In this section, we evaluate the utility of TBA by exploring its expressive power. We first
demonstrate that various incarnations of TBA can be used to express a range of common
policy idioms. We then use the formal reduction framework developed by Tripunitara
and Li [17] to demonstrate that TBA is more expressive than several representative
access control schemes from the literature.

4.1 Representing Common Policy Idioms

Below we enumerate a list of well-known authorization policy idioms and show that
each can be represented using some tag-based authorization system. When using
tag-based authorization to represent each of these idioms, we use DATALOG as the
underlying policy language. In doing so, we assume that every request not explicitly
allowed is denied.

Access matrix. The access matrix uses a function matrix : S × O → 2R to store
the rights that each subject has over every object. An access is permitted under the
following condition: authmat(s, o, r) iff r ∈ matrix(s, o). To implement this scheme
using tag-based authorization, there must be a unique tag for each document (e.g., its
inode number) and each user (e.g., her uid). The policy consists of a series of simple
statements such as the one below.

allow(S,O, read) :− user123 ∈ tag(S), doc789 ∈ tag(O)

Attribute-based access control. In attribute-based authorization systems, access deci-
sions are made based on the attributes ascribed to a user by their organization. Basically,
ABAC is TBA without object tags (or, more formally, where every object is tagged with
the empty set). The following example allows any user to read doc789, provided that
she is a member of the security group and has not been blacklisted.

allow(S, doc789, read) :− security ∈ tag(S), blacklist 6∈ tag(S)

Role-based access control. In RBAC systems, users are assigned to roles representing
their job functions, and permissions are given to roles. Here we focus on RBAC1 as
defined in [10], where the roles are arranged in a hierarchy, and a user is granted access
when one of her roles is higher in the hierarchy than some role that is permitted access.

authRBAC1(s, o, r) iff ∃g, g′.UR(s, g) ∧ g ≥ g′ ∧ PA(g′, o, r))

To implement RBAC1 with tag-based authorization, the tag set is defined as T =
G ∪ G × R, i.e., the set of roles and the set of (role, right) tuples. Users are tagged
with their roles, and documents are tagged with (role, right) tuples. The role hierarchy
is axiomatized as an ontology Γ so that for every pair of roles such that g ≥ g′, we have
Γ |= g ⇒ g′. The following DATALOG policy implements RBAC1.

allow(S,O,R) :− G ∈ tag(S), 〈G,R〉 ∈ tag(O)

Discretionary access control (Linux). In the Linux authorization model, each ob-
ject has different rights for its owner, group, and the world. The Linux authoriza-
tion policy gives a user access if (i) the user owns the document and the owner has
access, (ii) the user belongs to the group that owns the document and the group
has access, or (iii) the world has access. To implement the Linux scheme with
TBA, the document tags T consist of the subjects S, groups G, and the rights tags
{userread, groupread, worldread}. Permissions other than read can be handled in a
similar manner. Each document is tagged with the user owner, the group owner, and a

subset of the rights tags, and each user is tagged with the groups she belongs to. The
Linux read policy is then given by the DATALOG fragment below.

allow(U,D, read) :− U ∈ tag(D), userread ∈ tag(D)
allow(U,D, read) :− G ∈ tag(D), groupread ∈ tag(D), G ∈ tag(U)
allow(U,D, read) :− worldread ∈ tag(D)

Mandatory (Lattice-Based) Access Control An LBAC system utilizes a set of classi-
fication/clearance levels (e.g., Secret, TopSecret) and a set of compartments (e.g., Nu-
clear, Submarine). Each subject and object is assigned a security classification: a level
and a set of compartments. There is a total ordering≤ on levels, which induces a partial
ordering on level/compartment-set pairs. (l1, c1) v (l2, c2) if and only if l1 ≤ l2 and
c1 ⊆ c2. Subjects can read objects whose security classifications are dominated by their
classification (no read up) and write documents whose classifications dominate their
classification (no write down).

To implement this policy idiom with tag-based authorization, the set of tags is the
set of all compartments and security levels. Each subject and object is tagged with its
level and all its compartments. Then the DATALOG (with negation) policy for the LBAC
no-read-up idiom is given below, where compartment tags are identified by comp, level
tags by level, and the total ordering on levels is represented by leq.

allow(S,O, read) :− allowlevel(S,O), allowcomp(S,O)
allowlevel(S,O) :− C ∈ tag(S), level(C),

E ∈ tag(O), level(E), leq(E,C)
allowcomp(S,O) :− ¬somecompmissing(S,O)
somecompmissing(S,O) :− C ∈ tag(O), comp(C), C 6∈ tag(S)

In the first rule, the first condition, allowlevel, ensures that the object’s security
level is less than the subject’s level. The second condition, allowcomp, ensures
that the object’s compartments are a subset of the subject’s compartments, which is
implemented by ensuring it is not the case that one of the object’s compartments fails
to be one of the subject’s compartments.

The RT Trust Management Language. RT [14] employs a form of role-based del-
egation that consists of the four types of rules shown in Table 1. Structured policies
of TBA can express a certain fragment of RT -style delegation. Given a set of rules of
types 1–3, where the delegation graph of those rules is acyclic, we can emulate those
rules by constructing a structured TBA policy. (The delegation graph consists of one
node per principal and an edge from A to B if A delegates to B.) The partial order ≺
includes B ≺ A if A delegates to B. Then by using a new right activate, we proceed
as follows for each of the rule types.

1. • Add allow(userB, roleA.R, activate) to policy A
2. • Add allow(S, roleA.R, activate) :− allow(S, roleB.R1, activate) to A
• Add 〈S, roleB.R1, activate〉 to guardB≺A for all S

3. • Add allow(S, roleA.R, activate) :− allow(S, roleB.R1, activate),
allow(S, roleC.R2, activate) to policy A

Type Rule Description
1 A.R← B User B is a member of the role R defined by user A
2 A.R← B.R1 A’s role R contains all members of B’s role R1

3 A.R← B.R1 ∩B.R2 A’s role R contains all users who are members of both B’s
role R1 and C’s role R2

4 A.R← A.R1.R2 A’s role R contains all users who are members of X’s role
R2 for some X in A’s role R1

Table 1. The four types of RT rules.

• Add 〈S, roleB.R1, activate〉 to guardB≺A for all S
• Add 〈S, roleC.R2, activate〉 to guardC≺A for all S

Rules of type (4) are not expressible since they cause the delegation graph to be
dependent on the contents of basic policies. Even if it were reasonable to require that
dynamic delegation graph to be acyclic, emulating type (4) rules would require chang-
ing ≺ each time a basic policy changed.

4.2 Formal Expressive Power Analysis

The preceding section demonstrates that TBA is capable of encoding many common
policy idioms, but says nothing about whether these encodings have the same safety
analysis properties of common implementations of these idioms. In [17], Tripunitara
and Li introduce a framework for comparing the expressiveness of access control sys-
tems that views an access control system as a state transition system and performs com-
parisons using a type of bisimulation and a generalized definition of safety. The crux
of their framework relies on demonstrating the existence or non-existence of a state-
matching reduction between two systems. Intuitively, a state-matching reduction from
A to B is a mapping from the states of A to the states of B so that an external observer
affecting access control changes and making queries can not distinguish whether she
is using A or B, and further implies that B maintains all safety analysis properties of
A. As a result, state-matching reductions are a way of analyzing the relative expressive
power of two systems.

First, we formally represent TBA within the definition of access control scheme
proposed by Tripunitara and Li [17], the representation that allows us to construct state-
matching reductions. Following this definition, an access control scheme is a state-
transition system 〈Γ, Ψ,Q,`〉, where:
• Γ is a set of states. Each state contains all the information needed to make an access

control decision at any given moment.
• Ψ is a state-transition rule that describes how the system changes state.
• Q is a set of queries. Each query is answered by true or false.
• ` is the entailment relation that determines whether a given query is true or false in

a given state.
In TBA, we assume the existence of a set T of possible tags, a set I of access rights,

and a logical language L used to define the policy. These components are not defined as
part of the system state, as they do not change. TBA is then defined as the state-transition
system

〈
ΓT , ΨT , QT ,`T

〉
. Each TBA state γT ∈ ΓT is defined by 〈S,O, tag, P 〉,

where S is the set of all subjects; O is the set of all objects; tag ⊆ (S ∪O) × T is

create_object(s, o)
O = O ∪ {o}
tag = tag ∪ {〈o, o.id〉}

destroy_object(s, o)
if(s has delete for o)

O = O − {o}
tag = tag − {〈o, o.id〉}

create_subject(s1, s2)
if(s1 can create subjects)

S = S ∪ {s2}
tag = tag ∪ {〈s2, s2.id〉}

destroy_subject(s1, s2)
if(s1 can delete subject s2)

S = S − {s2}
tag = tag − {〈s2, s2.id〉}

assign_tags(s, x, T1)
if(s can edit tags for x)

for each t ∈ T1

tag = tag ∪ {〈x, t〉}

revoke_tags(s, x, T1)
if (u can edit tags for x)
for each t ∈ T1

tag = tag − {〈x, t〉}

transform_policy(s, P+, P−)
if(s can change P)

P = P − P− ∪ P+

Fig. 1. Command templates for TBA.

the tag relation, and contains the pair 〈s, t〉 for each subject s that has tag t and the
pair 〈o, t〉 for each object o that has tag t; and P is a set of policy sentences, written in
languageL. ΨT is then defined using the commands in Figure 1.QT includes all queries
of the following forms: (1) “Does subject s exist?”, (2) “Does subject s have tag t?”,
(3) “Does object o have tag t?”, (4) “Is policy sentence p in the policy?”, and (5) “Does
subject s have access i to object o?”. `T is defined as follows for queries of each of the
forms above: (1) true if and only if s ∈ S, (2) true if and only if 〈s, t〉 ∈ tag, (3) true
if and only if 〈o, t〉 ∈ tag, (4) true if and only if p ∈ P , and (5) true if and only if
∃T1 ⊆ T, T2 ⊆ T : ∀t1 ∈ T1, 〈o, t1〉 ∈ tag ∧ ∀t2 ∈ T2, 〈s, t2〉 ∈ tag ∧ ∃p ∈ P that
grants subjects with tag set T2 access i to objects with tag set T1 under language L.

We now present theorems comparing TBA to a number of well-known systems in
terms of state-matching reductions. We give the full proof for SDCO, while proofs
for the other systems are available in a technical report version of this paper. [13] We
first show that TBA is at least as expressive as a common discretionary access con-
trol scheme (SDCO), a common role-based access control scheme (ARBAC97), and a
common mandatory access control scheme (the Bell-La Padula model).

create_object(s, o)
O = O ∪ {o}
M [s, o] = own

destroy_object(s, o)
if own ∈M [s, o]

O = O − {o}

grant_own(s, s′, o)
if own ∈M [s, o]

M [s′, o] = M [s′, o] ∪ {own}
M [s, o] = M [s, o]− {own}

grant_i(s, s′, o)
if own ∈M [s, o]

M [s′, o] = M [s′, o] ∪ {i}

revoke_i(s, s′, o)
if own ∈M [s, o]

M [s′, o] = M [s′, o]− {i}

Fig. 2. Command templates for SDCO access control scheme. Commands with i in the name
exist for each i ∈ (I − own).

In SDCO, we assume the existence of I , the set of access rights, including own.
SDCO is then defined as the state-transition system

〈
ΓS , ΨS , QS ,`S

〉
. Each SDCO

state γS ∈ ΓS is defined by 〈S,O,M〉, where S is the set of subjects, O is the set of
objects, and M : S ×O → 2I is the access matrix. ΨS is defined using the commands
in Figure 2. QS includes all queries of the form “Does subject s have access i to object
o?”. `S is defined as true if and only if i ∈M [s, o].

Theorem 1. There exists a state-matching reduction from SDCO, BLP, ARBAC97 to
TBA.

Proof. (SDCO only) By construction. Presented is a mapping, and proof that the map-
ping satisfies the two properties for it to be a state-matching reduction by Tripunitara
and Li’s definition 7. The mapping, σ, needs to be able to map every 〈γ, ψ〉 in SDCO
to σ(〈γ, ψ〉) =

〈
γT , ψT

〉
in TBA, as well as every q in SDCO to σ(q) = qT in TBA.

Let σ(γ) = γT = 〈Sγ , Oγ , tagγ , Pγ〉 where Sγ = S ∪ {sim admin},
Oγ = O, tagγ = {∀s ∈ S : 〈s, s.id〉} ∪ {∀o ∈ O : 〈o, o.id〉}, Pγ =
{∀s ∈ S, o ∈ O,∀i ∈M [s, o] : “s.id : i : o.id”}.

Here, Lγ is the set of sentences of the form “t1 : i : t2” where t1, t2 ∈ T and i ∈ I .
A policy P is consistent only if ∀o ∈ O∃s ∈ S : “s.id : own : o.id” ∈ P ∧ t ∈
T 6= s.id =⇒ “t : own : o.id” /∈ P . The inference procedure for Lγ is as follows.
The sentence “t1 : i : t2” grants any subject with the tag t1 the right i to objects with
the tag t2. Since queries in SDCO have the same form as form-(4) queries in TBA, let
σ(q) = qT = q.

Let γ0 be a start state in SDCO. Produce γT0 in TBA using σ. Given γk such that
γ0
∗7→ψγk, we show that there exists γTk such that γT0

∗7→ψT γTk where, for all q, γTk ` qT if
and only if γk ` q. Consider the case where γk = γ0, then let γTk = γT0 . In γT0 = σ(γ0),
s will be given right i over o only using the following sentence in P : “s.id : i : o.id”.
Such a line will be entered if and only if i ∈ M [s, o], so for all q, γTk ` qT if and only
if γk ` q. Next, consider some arbitrary γk reachable from γ0. We construct γTk that is
reachable from γT0 and that answers every qT the same way γk answers q, as follows.
Consider each state-transition in the sequence γ0 7→ψ γ1 7→ψ . . . 7→ψ γk in the SDCO
system. If the state-transition in SDCO is the execution of create object(s,
o), we execute transform policy(sim admin, {“s.id : own : o.id”}, {})
followed by create object(s, o). If the state-transition in SDCO is the ex-
ecution of destroy object(s, o), we execute destroy object(s, o),
followed by transform policy(sim admin, {}, {∀t, i : “t : i : o.id”}).
If the state-transition in SDCO is the execution of grant own(s, s′,
o), we execute transform policy(sim admin, {“s′.id : own : o.id”},
{“s.id : own : o.id”}). If the state-transition in SDCO is the execution of grant i(s,
s′, o), then we execute transform policy(sim admin, {“s′.id : i : o.id”},
{}). If the state-transition in SDCO is the execution of revoke i(s, s′, o), then
we execute transform policy(sim admin, {}, {“s′.id : i : o.id”}). Now,
consider each possible query q. Since q is of the form “Does subject s have access i to
object o?”, qT is also “Does subject s have access i to object o?”. In this case, γk ` q if
and only if i has been granted to s by the owner of o. This is true if and only if we have
added the policy sentence “s.id : i : o.id” to P . Thus, γk ` q if and only if γTk ` qT .
Therefore, we’ve proven property (1) for state-matching reductions.

We prove that property (2) for a state-matching reduction is satisfied by our mapping
also by construction. Let γT0 be the start-state in TBA corresponding to γ0, the start-
state in SDCO. Then, if γTk is a state reachable from γT0 and qT is a query in TBA
whose corresponding query in SDCO is q, we construct γk, a state in SDCO reachable
from γ0 as follows. For each sentence in P of the form “s.id : own : o.id”, we execute
create object(s, o). Then, for each sentence in P of the form “s′.id : i : o.id”
where i 6= own, we execute grant i(s, s′, o), where s is the owner of o. Since q
is of the form “Does subject s have access i to object o?”, qT is also “Does subject s
have access i to object o?”, which means that γTk ` qT iff “s.id : i : o.id” ∈ P . The
condition that qT is true is the only one in which we would have added the right i to
M [s, o], and therefore γk ` q iff γTk ` qT . Therefore, we’ve proven property (2) for
state-matching reductions, and thus our mapping σ is a state-matching reduction. �

Since a state-matching reduction from A to B proves that B is at least as expressive
as A, the above results show that TBA is at least as expressive as SDCO, ARBAC97,
and BLP. The next results ensure that none of these schemes are as expressive as TBA.

Theorem 2. There exists no state-matching reduction from TBA to SDCO, BLP, or
ABAC97.

Proof. (SDCO only) By contradiction. Assume there is a state-matching reduction from
TBA to SDCO. In TBA, adopt as γ a state where s ∈ S, o ∈ O, P = {}, and L is as
described in Theorem 1 except the inference procedure is augmented as follows. The
sentence “t1 : i∗ : t2”, in addition to granting subjects with tag t1 the right i∗ over ob-
jects with tag t2, also grants such subjects the right i′ over the same objects, regardless
of whether P also contains the sentence “t1 : i′ : t2”. Languages like this can be used to
express a heirarchy of rights, e.g., the execute right carries with it automatic read right.
Let q1 = “Does s have right i∗ to o?” and let q2 = “Does s have right i′ to o?”.

Observe that γ ` ¬q1 ∧ ¬q2. Consider the state γS in SDCO that is equivalent
to γ (if there does not exist one, the contradiction of the existence of a state-matching
reduction is found). We know that γS ` ¬qS1 ∧¬qS2 . Observe that, given i∗ 6= own, there
exists γ̃S reachable from γS such that γ̃S ` qS1 ∧ ¬qS2 via the execution of grant i∗.
However, the only γ̃ such that γ̃ ` q1 is that in which ∃t1, t2 ∈ T : “t1 : i∗ : t2” ∈
P∧〈s, t1〉, 〈o, t2〉 ∈ tag. Due to the inference procedure ofL, such a γ̃ ` q1∧q2, leaving
no such γ̃ ` q1 ∧ ¬q2, meaning there is no γ̃ that is equivalent to γ̃S . This contradicts
property (2) for state-matching reductions, giving us the needed contradiction and proof
of the non-existence of a state-matching reduction from TBA to SDCO. �

When a state-matching reduction from A to B is accompanied by the nonexistence
of a state-matching reduction in the reverse direction, it proves that B is strictly more
expressive thanA. As a result, we have shown that TBA is strictly more expressive than
all of SDCO, ARBAC97, and BLP.

5 Related Work

TBA has been studied informally in [15, 19], though that work allows tags on sub-
jects but not objects. Section 4 compares TBA to several well-known authorization

paradigms. We do not survey related work on tag ontologies, which have been studied
extensively by the Semantic Web community, but as evidence of viability simply point
to two organizations employing ontologies to handle large terminologies: the U.S. Na-
tional Cancer Institute (NCI Thesaurus http://www.cancer.gov/cancertopics/
terminologyresources) and the U.S. National Library of Medicine (SNOMED-
CT http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html).
In this section, we discuss work related to structured policies, conflict resolution, and
delegation.

Policy Structure. Structured policies can be seen as combining two operations on
policies: the “override” operator in [6] (also called “exceptions” in [4]) and the “scop-
ing” operator in [6, 16]. Our choice to employ these two policy combination operators
instead of a richer framework [6, 8] was driven by our desire for a conceptually simple
and therefore highly usable framework; these two operators seemed to be the minimal
necessary to support delegation.

Conflict resolution. Conflict resolution is important in the context of structured
policies, where conflicts must be resolved within basic policies as well as across poli-
cies. We make no commitment to a particular scheme but provide a framework for
implementing other proposals in the literature. Our framework is based on the premise
of a fixed global operator such as [3, 9, 16], though user-settable conflict resolution
schemes for each policy such as in [2,11,20] can be achieved by building them into the
entailment relations for the individual policies.

Trust Management and delegation. Trust management [5] is concerned with dis-
tributed authorization and therefore focuses extensively on delegation. TBA’s delega-
tion functionality was designed for simplicity, and as shown in Section 4 is less powerful
than RT ’s delegation primitives. This decision was made to improve usability, with an
acknowledged decrease of flexibility and expressiveness.

6 Conclusion

Logical access control systems are attractive for their power and flexibility, while ex-
tensional access control systems are known for their simplicity and the ease with which
relatively untrained users can contribute. Tag-based authorization combines these qual-
ities into a single system. Subjects and objects are assigned tags, and access is decided
by a policy over those tags. TBA is powerful and flexible through its logical policy,
and achieves nearly the expressiveness of existing logical access control systems. At
the same time, it is simple to describe and allows relatively untrained personnel to as-
sign tags to objects, more fully utilizing a diverse workforce. Tag ontologies can further
simplify both object tagging and policy writing. In addition, our approach to delegation
externalizes the mechanism through which policies are combined, enabling different
sub-policies to be written in distinct languages.

To evaluate TBA, we explored its ability to express common access control policy
idioms and its formal expressive power. We show via simple example instantiations
that TBA is capable of expressing the access matrix, attribute-based, role-based, dis-
cretionary and mandatory access control paradigms. Then, by utilizing the reduction
framework of Tripunitara and Li, we show that TBA is strictly more expressive than

http://www.cancer.gov/cancertopics/terminologyresources
http://www.cancer.gov/cancertopics/terminologyresources
http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html

specific, common implementations of these paradigms, namely SDCO (a common ac-
cess matrix system), ARBAC97 (a common role-based system), and BLP (the U.S.
military’s extended mandatory system). Thus, TBA is not only much more intuitive to
describe and use than other current logical authorization systems, but also strictly more
expressive than current extensional access control systems, making it a true hybrid of
these two types of access control metaphors.

References
1. Moritz Y. Becker, Cedric Y. Fournet, and Andrew D. Gordon. SecPAL: Design and semantics

of a decentralized authorization language. JCS, 2009.
2. Elisa Bertino, Barbara Catania, Elena Ferrari, and Paolo Perlasca. A logical framework for

reasoning about access control models. ACM TISSEC, 6(1):71–127, 2003.
3. Elisa Bertino, Elena Ferrari, Francesco Buccafurri, and Pasquale Rullo. A logical framework

for reasoning on data access control policies. In IEEE CSFW, 1999.
4. Elisa Bertino, Sushil Jajodia, and Pierangela Samarati. A flexible authorization mechanism

for relational data management systems. ACM TISSEC, 17(2):101–140, 1999.
5. Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. In Proceed-

ings of the IEEE Symposium on Security and Privacy, pages 164–173, 1996.
6. Piero A. Bonatti, Sabrina D. di Vimercati, and Pierangela Samarati. A modular approach to

composing access control policies. In ACM CCS, pages 164–173, 2000.
7. Kevin D. Bowers, Lujo Bauer, Deepak Garg, Frank Pfenning, and Michael K. Reiter. Con-

sumable credentials in logic-based access-control systems. In NDSS, pages 143–157, 2007.
8. Glenn Bruns and Michael Huth. Access-control policies via belnap logic: Effective and

efficient composition and analysis. In IEEE CSF, 2008.
9. Laurence Cholvy and Frederic Cuppens. Analyzing consistency of security policies. In IEEE

S&P, 1997.
10. Jason Crampton. Understanding and developing role-based administrative models. In ACM

CCS, pages 158–167, 2005.
11. Frederic Cuppens, Laurence Cholvy, Claire Saurel, and Jerome Carrere. Merging security

policies: analysis of a practical example. In IEEE CSFW, 1998.
12. Joseph Y. Halpern and Vicky Weissman. Using first-order logic to reason about policies. In

IEEE CSFW, 2003.
13. Timothy Hinrichs, William Garrison, Adam Lee, Skip Saunders, and John Mitchell. TBA: A

hybrid of logic and extensional access control systems (Extended version). Technical Report
TR-11-182, University of Pittsburgh, October 2011.

14. Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-based trust-
management framework. In IEEE S&P, 2002.

15. Maryam Najafian Razavi and Lee Iverson. Supporting selective information sharing with
people-tagging. In CHI Extended Abstracts, pages 3423–3428, 2008.

16. Carlos Ribeiro, Andre Zuquete, Paulo Ferreira, and Paulo Guedes. SPL: An access control
language for security policies with complex constraints. In NDSS, 2001.

17. Mahesh V. Tripunitara and Ninghui Li. A theory for comparing the expressive power of
access control models. JCS, 15(2):231–272, 2007.

18. U.S. Air Force Scientific Advisory Board. Networking to enable coalition operations. Tech-
nical report, MITRE Corporation, 2004.

19. Qihua Wang, Hongxia Jin, and Ninghui Li. Usable access control in collaborative environ-
ments: Authorization based on people-tagging. In ESORICS, pages 268–284, 2009.

20. Duminda Wijesekera and Sushil Jajodia. Policy algebras for access control - the predicate
case. In ACM CCS, pages 171–180, 2001.

	TBA: A Hybrid of Logic and Extensional Access Control Systems

