CS 445: Data Structures
Final Examination: Study Guide

• Java prerequisites
 Topics:
 – Classes, objects, and references
 – Access modifiers
 – Arguments and parameters
 – Garbage collection
 Self-test questions: Appendix C

• Designing classes
 Topics:
 – Composition and inheritance
 – Access modifiers
 – static keyword
 – Overriding methods
 – Dynamic binding and method polymorphism
 – Reference type vs. object type
 – Interfaces
 – Typecasting
 – Generic interfaces, classes, and methods
 – Generic type declarations, including bounded types, type wildcards, and bounded wildcards
 – Assertions

 Self-test questions: Appendix D; Prelude; Java Interludes JI1, JI3
 Exercises:
 – Prelude: 1, 2
• Bag

Note: Since this was our first data structure, we covered several topics in this section even though they weren’t specific only to bags.

Topics:

– ADTs, collections, data structures and their relation to interfaces and classes
– Client vs. implementer
– Considering corner cases
– Test methods
– Bag ADT and interface
– Bag array vs. linked implementations
– Resizing arrays
– Inner classes, static and non-static

Self-test questions: Chapters 1–3
Exercises:

– Chapter 1: 1, 5
– Chapter 2: 1, 5, 6, 11
– Chapter 3: 1, 5, 12, 14

• Algorithm analysis

Topics:

– Asymptotic analysis
– Big-O notation
– Growth rates
– Amortized analysis
– Sum of the first n integers
– Analysis of bag implementations

Self-test questions: Chapter 4
Exercises:

– Chapter 4: 1–6, 10–12, 17
• Stack
 Topics:
 – Stack interface
 – Using stacks to match brackets
 – Using stacks to evaluate postfix
 – Using stacks to convert infix to postfix
 – Array vs. linked implementations of stack (runtime, memory usage)
 – Program stack / run-time stack

Self-test questions: Chapters 5, 6
Exercises:
 – Chapter 5: 1, 3, 6–8
 – Chapter 6: 1, 3, 5, 8, 9

• Recursion
 Topics:
 – Breaking problems into subproblems
 – Requirements for recursion to work
 – Activation records
 – Divide & conquer vs. general recursion
 – Tail recursion
 – Easy vs. hard recursive algorithms to make iterative
 – Overheads of recursion
 – Recursive backtracking
 * General goals
 * The specific structure we used (next, extend, isFullSoln, reject)
 – Analyzing recursive methods with recursion trees
 – Processing arrays recursively by specifying bounds of subarray

Self-test questions: Chapters 7, 18
Exercises:
 – Chapter 7: 1, 2, 5, 8, 16
 – Chapter 18: 4, 6, 7

3
• Sorting
Topics:
 – Simple sorts
 * Selection sort
 * Bubble sort
 * Insertion sort
 – Shell sort
 – Divide & conquer for sorting
 * Merge sort
 * Quicksort (including effect of pivot, pivot selection techniques)
 * Base cases
 – Sorting in-place vs. memory overhead
 – Stable sorting
 – Runtime analysis of sort methods

Self-test questions: Chapters 8, 9
Exercises:
 – Chapter 8: 1–3, 11, 13
 – Chapter 9: 1–4, 9

• List
Topics:
 – List ADT and uses
 – Array vs. linked implementations of List (runtime, memory usage)
 – Circular linked list
 – Doubly-linked list
 – Average case analysis

Self-test questions: Chapters 12–14
Exercises:
 – Chapter 12: 1, 2, 4, 5, 7, 8
 – Chapter 13: 1, 8, 9, 11
 – Chapter 14: 1, 2, 4, 15
• Iterator

 Topics:

 – Reasons for iterators
 – Iterator<T>, which classes should implement it, and why
 – Iterable<T>

 Self-test questions: Java Interlude 5, Chapter 15

 Exercises:

 – Chapter 15: 1–3, 10

• Tree and Binary Search Tree

 Topics:

 – Motivations for trees
 – Tree terminology
 – Recursive definitions of tree, binary tree, and BST
 – Developing tree operations recursively
 – Full, complete, balanced trees
 – Tree node classes
 – Traversals: Depth-first and breadth-first
 – Tree iterators, general strategy, reasons for the approach
 – BST operations and how they work
 – Analysis of BST operations

 Self-test questions: Chapters 23–25

 Exercises:

 – Chapter 23: 2–4, 6–8
 – Chapter 24: 4, 6, 7, 9
 – Chapter 25: 1, 2, 3, 5, 6, 7, 15
• Queue and Priority Queue

Topics:

– Queue ADT
– Linked Queue implementation
– Two-part circular linked Queue implementation
– Logically-circular array Queue implementation
– Analysis of Queue implementations
– PQ ADT
– Array implementations of PQ
– Heap implementations of PQ
– Analysis of PQ implementations

Self-test questions: Chapters 10, 11, 26

Exercises:

– Chapter 10: 1, 3, 5
– Chapter 11: 3–6, 10
– Chapter 26: 1, 2, 5