Lecture #27: Relations and Representations
Definition: Let A and B be two sets. A **binary relation** from A to B is a subset of $A \times B$.

In other words, a binary relation R is a set of ordered pairs (a_i, b_i) where $a_i \in A$ and $b_i \in B$.

Notation: We say that
- $a R b$ if $(a,b) \in R$
- $a \not R b$ if $(a,b) \notin R$
Example: Course Enrollments

Let’s say that Alice and Bob are taking CS 441. Alice is also taking Math 336. Furthermore, Charlie is taking Art 212 and Business 444. Define a relation R that represents the relationship between people and classes.

Solution:

- Let the set P denote people, so P = {Alice, Bob, Charlie}
- Let the set C denote classes, so C = {CS 441, Math 336, Art 212, Business 444}
- By definition R ⊆ P × C
- From the above statement, we know that
 - (Alice, CS 441) ∈ R
 - (Bob, CS 441) ∈ R
 - (Alice, Math 336) ∈ R
 - (Charlie, Art 212) ∈ R
 - (Charlie, Business 444) ∈ R
- So, R = {(Alice, CS 441), (Bob, CS 441), (Alice, Math 336), (Charlie, Art 212), (Charlie, Business 444)}
A relation can also be represented as a graph

Let’s say that Alice and Bob are taking CS 441. Alice is also taking Math 336. Furthermore, Charlie is taking Art 212 and Business 444. Define a relation R that represents the relationship between people and classes.

$\{(\text{Alice}, \text{CS 441}) \in R\}$

Elements of P (i.e., people)

Elements of C (i.e., classes)
A relation can also be represented as a table

Let’s say that Alice and Bob are taking CS 441. Alice is also taking Math 336. Furthermore, Charlie is taking Art 212 and Business 444. Define a relation \(R \) that represents the relationship between people and classes.

<table>
<thead>
<tr>
<th>Name of the relation</th>
<th>Elements of C (i.e., courses)</th>
<th>Elements of P (i.e., people)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)</td>
<td>Art 212</td>
<td>Business 444</td>
</tr>
<tr>
<td>Alice</td>
<td></td>
<td>CS 441</td>
</tr>
<tr>
<td>Bob</td>
<td></td>
<td>Math 336</td>
</tr>
<tr>
<td>Charlie</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

\((Bob, CS 441) \in R \)
Wait, doesn’t this mean that relations are the same as functions?

Not quite... Recall the following definition from Lecture #9.

Definition: Let A and B be nonempty sets. A function, f, is an assignment of exactly one element of set B to each element of set A.

This would mean that, e.g., a person only be enrolled in one course!

Reconciling this with our definition of a relation, we see that

1. Every function is also a relation
2. Not every relation is a function

Let’s see some quick examples...
1. Consider $f : S \rightarrow G$
 - Clearly a function
 - Can also be represented as the relation $R = \{(\text{Anna, C}), (\text{Brian, A}), (\text{Christine, A})\}$

1. Consider the set $R = \{(A, 1), (A, 2)\}$
 - Clearly a relation
 - Cannot be represented as a function!
We can also define binary relations on a single set

Definition: A relation on the set A is a relation from A to A. That is, a relation on the set A is a subset of $A \times A$.

Example: Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation $R = \{(a, b) \mid a \text{ divides } b\}$?

Solution:

- 1 divides everything
- 2 divides itself and 4
- 3 divides itself
- 4 divides itself

So, $R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
Example: Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation $R = \{(a, b) \mid a \text{ divides } b\}$?
Question: Which of the following relations contain each of the pairs (1,1), (1,2), (2,1), (1,-1), and (2,2)?

- $R_1 = \{(a,b) \mid a \leq b\}$
- $R_2 = \{(a,b) \mid a > b\}$
- $R_3 = \{(a,b) \mid a = b \text{ or } a = -b\}$
- $R_4 = \{(a,b) \mid a = b\}$
- $R_5 = \{(a,b) \mid a = b + 1\}$
- $R_6 = \{(a,b) \mid a + b \leq 3\}$

Answer:

<table>
<thead>
<tr>
<th></th>
<th>(1,1)</th>
<th>(1,2)</th>
<th>(2,1)</th>
<th>(1,-1)</th>
<th>(2,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These are all relations on an infinite set!
Definition: A relation R on a set A is reflexive if $(a,a) \in R$ for every $a \in A$.

Note: Our “divides” relation on the set $A = \{1,2,3,4\}$ is reflexive.
Properties of Relations

Definition: A relation R on a set A is **symmetric** if \((b,a) \in R\) whenever \((a,b) \in R\) for every \(a,b \in A\). If R is a relation in which \((a,b) \in R\) and \((b,a) \in R\) implies that \(a=b\), we say that R is **antisymmetric**.

Mathematically:

- Symmetric: \(\forall a \forall b ((a,b) \in R \rightarrow (b,a) \in R)\)
- Antisymmetric: \(\forall a \forall b (((a,b) \in R \land (b,a) \in R) \rightarrow (a = b))\)

Examples:

- Symmetric: \(R = \{(1,1), (1,2), (2,1), (2,3), (3,2), (1,4), (4,1), (4,4)\}\)
- Antisymmetric: \(R = \{(1,1), (1,2), (1,3), (1,4), (2,4), (3,3), (4,4)\}\)
Symmetric and Antisymmetric Relations

Symmetric relation
- Diagonal axis of symmetry
- Not all elements on the axis of symmetry need to be included in the relation

\[R = \{(1,1), (1,2), (2,1), (2,3), (3,2), (1,4), (4,1), (4,4)\} \]

Antisymmetric relation
- No axis of symmetry
- Only symmetry occurs on diagonal
- Not all elements on the diagonal need to be included in the relation

\[R = \{(1,1), (1,2), (1,3), (1,4), (2,4), (3,3), (4,4)\} \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Properties of Relations

Definition: A relation R on a set A is **transitive** if, whenever \((a,b) \in R\) and \((b,c) \in R\), then \((a,c) \in R\) for every \(a,b,c \in A\).

Note: Our “divides” relation on the set \(A = \{1,2,3,4\}\) is transitive.

Recall that: \(a|b \land b|c \rightarrow a|c\)

More common transitive relations include equality and comparison operators like \(<, >, \leq,\) and \(\geq\).
Examples, redux

Question: Which of the following relations are reflexive, symmetric, antisymmetric, and/or transitive?

- $R_1 = \{(a,b) \mid a \leq b\}$
- $R_2 = \{(a,b) \mid a > b\}$
- $R_3 = \{(a,b) \mid a = b \text{ or } a = -b\}$
- $R_4 = \{(a,b) \mid a = b\}$
- $R_5 = \{(a,b) \mid a = b + 1\}$
- $R_6 = \{(a,b) \mid a + b \leq 3\}$

Answer:

<table>
<thead>
<tr>
<th></th>
<th>Reflexive</th>
<th>Symmetric</th>
<th>Antisymmetric</th>
<th>Transitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: Let R be the relation that pairs students with courses that they have taken. Let S be the relation that pairs students with courses that they need to graduate. What do the relations $R \cup S$, $R \cap S$, and $S - R$ represent?

Solution:

- $R \cup S =$ All pairs (a,b) where
 - student a has taken course b OR
 - student a needs to take course b to graduate

- $R \cap S =$ All pairs (a,b) where
 - Student a has taken course b AND
 - Student a needs course b to graduate

- $S - R =$ All pairs (a,b) where
 - Student a needs to take course b to graduate BUT
 - Student a has not yet taken course b
Definition: Let \(R \) be a relation from the set \(A \) to the set \(B \), and \(S \) be a relation from the set \(B \) to the set \(C \). The **composite** of \(R \) and \(S \) is the relation of ordered pairs \((a, c) \), where \(a \in A \) and \(c \in C \) for which there exists an element \(b \in B \) such that \((a, b) \in R \) and \((b, c) \in S \). We denote the composite of \(R \) and \(S \) by \(R \circ S \).

Example: What is the composite relation of \(R \) and \(S \)?

\[
\begin{align*}
R: \{1,2,3\} &\to \{1,2,3,4\} \\
S: \{1,2,3,4\} &\to \{0,1,2\}
\end{align*}
\]

\[
\begin{align*}
R &= \{(1,1),(1,4),(2,3),(3,1),(3,4)\} \\
S &= \{(1,0),(2,0),(3,1),(3,2),(4,1)\}
\end{align*}
\]

So: \(R \circ S = \{(1,0), (3,0), (1,1), (3,1), (2,1), (2,2)\} \)
Problem 1: List the ordered pairs of the relation R from $A = \{0, 1, 2, 3, 4\}$ to $B = \{0, 1, 2, 3\}$ where $(a, b) \in R$ iff $a + b = 4$.

Problem 2: Draw the graph and table representations of the above relation.

Problem 3: Is the above relation reflexive, symmetric, antisymmetric, and/or transitive?
Final Thoughts

Relations allow us to represent and reason about the relationships between sets.

Relations are more general than functions.

Relations are use all over...
- Mathematical operators
- Bindings between sets of objects
- Etc.

Next time: n-ary relations