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Lecture #27: Recursion and Structural Induction



There are many uses of induction in computer 
science!

Proof by induction is often used to reason about:
l Algorithm properties (correctness, etc.)
l Properties of data structures
l Membership in certain sets
l Determining whether certain expressions are well-formed
l …

To begin looking at how we can use induction to prove 
the above types of statements, we first need to 
learn about recursion



Sometimes, it is difficult or messy to define 
some object explicitly

Recursive objects are defined in terms of (other 
instances of) themselves

We often see the recursive versions of the following 
types of objects:
l Functions
l Sequences
l Sets
l Data structures

Let’s look at some examples…



Recursive functions are useful

When defining a recursive function whose domain is 
the set of natural numbers, we have two steps:

1. Basis step: Define the behavior of f(0)
2. Recursive step: Compute f(n+1) using f(0), …, f(n)

Example: Let f(0) = 3, f(n+1) = 2f(n) + 3
l f(1) = 2f(0) + 3 = 2(3) + 3 = 9
l f(2) = 2f(1) + 3 = 2(9) + 3 = 21
l f(3) = 2f(2) + 3 = 2(21) + 3 = 45
l f(4) = 2f(3) + 3 = 2(45) + 3 = 93
l …

Doesn’t this look a little bit like strong induction?



Some functions can be defined more precisely 
using recursion

Example:  Define the factorial function F(n) recursively
1. Basis step:  F(0) = 1
2. Recursive step:  F(n+1) = (n+1) × F(n)

Note:  F(4) = 4 × F(3)
                 = 4 × 3 × F(2)
                 = 4 × 3 × 2 × F(1)
                 = 4 × 3 × 2 × 1 × F(0)
                 = 4 × 3 × 2 × 1 × 1 = 24

Compare the above definition our old definition:
l F(n) = n × (n-1) × … × 2 × 1

The recursive definition avoids 
using the “…” shorthand!



It should be no surprise that we can also define 
recursive sequences

Example:  The Fibonacci numbers, {fn}, are defined as follows:
l f0 = 0
l f1 = 1
l fn = fn-1 + fn-2

Calculate: f2, f3, f4, and f5
l f2 = f1 + f0 = 0 + 1 = 1
l f3 = f2 + f1 = 1 + 1 = 2
l f4 = f3 + f2 = 2 + 1 = 3
l f5 = f4 + f3 = 3 + 2 = 5

This gives us the sequence {fn} = 0, 1, 1, 2, 3, 5, 8, 13, 21, …

This is like strong induction, since we need 
more than fn-1 to compute fn.



Recursion is used heavily in the study of strings

Let:  ∑ be defined as an alphabet
l Binary strings: ∑ = {0, 1}
l Lower case letters: ∑ = {a, b, c, …, z}

We can define the set ∑* containing all strings over the 
alphabet ∑ as follows:
1. Basis step: λ ∈ ∑*
2. Recursive step:  If w ∈ ∑* and x ∈ ∑, then wx ∈ ∑*

Example:  If ∑ = {0, 1}, then ∑* = {λ, 0, 1, 01, 11, …}

λ is the empty string containing 
no characters 



This recursive definition allows us to easily 
define important string operations

Definition:  The concatenation of two strings can be 
defined as follows:

1. Basis step: if w ∈ ∑*, then w⋄λ = w
2. Recursive step:  if w1 ∈ ∑*, w2 ∈ ∑*, and x ∈ ∑, then 

w1⋄(w2x) = (w1⋄w2)x

Example:  Concatenate the strings “Hello” and “World”
1. Hello⋄World = (Hello⋄Worl)d
2.                    = (Hello⋄Wor)ld
3.                    = (Hello⋄Wo)rld
4.                    = (Hello⋄W)orld
5.                    = (Hello⋄λ)World
6.                    = HelloWorld



This recursive definition allows us to easily 
define important string operations

Definition:  The length l(w) of a string can be defined 
as follows:

1. Basis step:  l(λ) = 0
2. Recursive step:  l(wx) = l(w) + 1 if w ∈ ∑* and x ∈ ∑

Example: l(1001) = l(100) + 1
                           = l(10) + 1 + 1
                           = l(1) + 1 + 1 + 1
                           = l(λ) + 1 + 1 + 1 + 1
                           = 0 + 1 + 1 + 1 + 1
                           = 4



We can define sets of well-formed formulae 
recursively

This is often used to specify the operations permissible in 
a given formal language (e.g., a programming language)

Example:  Defining propositional logic
1. Basis step:  ⟙, ⟘, and s are well-formed propositional logic 

statements (where s is a propositional variable)
2. Recursive step:  If E and F are well-formed statements, so are
 (¬E)
 (E ∧ F)
 (E ∨ F)
 (E → F)
 (E ↔ F)



Example

Question:  Is ((p ∧ q) → (((¬r) ∨ q) ∧ t)) well-formed?
l Basis tells us that p, q, r, t are well-formed
l 1st application: (p ∧ q), (¬r) are well-formed
l 2nd application: ((¬r) ∨ q) is well-formed
l 3rd application: (((¬r) ∨ q) ∧ t) is well-formed
l 4th application: ((p ∧ q) → (((¬r) ∨ q) ∧ t)) is well-formed

✔



In-class exercises

Problem 1:  Consider 𝑓: 𝐙×𝐍 → 𝐙 where 𝑓 𝑥, 𝑦 = 𝑥#. 
Construct a recursive definition for 𝑓 𝑥, 𝑦  that does 
not use exponentiation.

Problem 2:  Top Hat



Like other forms of induction, structural induction 
requires that we consider two cases

Basis step: Show that the result holds for the objects 
specified in the basis case of the recursive definition

Recursive step:  Show that if the result holds for the 
objects used to construct new elements using the 
recursive step of the definition (the inputs), then it 
holds for the new object (the output) as well.

To see how this works, let’s revisit string length…



Recall from earlier…

Definition:  The length l(w) of a string can be defined 
as follows:

1. Basis step:  l(λ) = 0
2. Recursive step:  l(wx) = l(w) + 1 if w ∈ ∑* and x ∈ ∑

Example: l(1001) = l(100) + 1
                           = l(10) + 1 + 1
                           = l(1) + 1 + 1 + 1
                           = l(λ) + 1 + 1 + 1 + 1
                           = 0 + 1 + 1 + 1 + 1
                           = 4



Prove that l(x⋄y) = l(x) + l(y) for x,y ∈ ∑*

P(n) ≡  

Base case:

I.H.:

Inductive step:

Conclusion:

P(0): l(x⋄λ) = l(x) = l(x) + 0 = l(x) + l(λ)

Assume that P(k) holds for an arbitrary integer k

We will now show that P(k) → P(k+1) 

Since we have proved the base case and the inductive 
case, the claim holds for all n by structural induction ❏

l(x⋄y) = l(x) + l(y) whenever x ∈ ∑* and l(y) = n

✔

n Consider the string x⋄ya, where x,y ∈ ∑*, a ∈ ∑ and l(y) = k
n l(x⋄ya) = l(x⋄y) + 1 by the recursive definition of l()
n           = l(x) + l(y) + 1 by the I.H.
n Since l(ya) = l(y) + 1 by the recursive defintion of l(), we have 

that l(x⋄ya) = l(x) + l(ya), where ya is a string of size k+1



Many common data structures used in computer 
science have recursive definitions

Example:  Rooted Trees

Base step:  A single node is a rooted tree

Recursive step:  If T1, T2, …, Tn are disjoint rooted trees 
with roots r1, r2, …, rn then introducing a new root r 
connected to r1, r2, …, rn forms a new rooted tree.



Example Rooted Trees 

Base case:

One application:

Two applications:

…

…

…



Many common data structures used in computer 
science have recursive definitions

Example:  Extended binary trees

Base step:  The empty set is an extended binary tree

Recursive step:  If T1 and T2 are disjoint extended binary 
trees with roots r1 and r2, then introducing a new root 
r connected to r1 and r2 forms a new extended binary 
tree.



Example Extended Binary Trees 

Base case:       ∅

Step 1:

Step 2:

Step 3:

…

…



Many common data structures used in computer 
science have recursive definitions

Example:  Full binary trees

Base step:  A single root node r is a full binary tree

Recursive step:  If T1 and T2 are disjoint full binary trees 
with roots r1 and r2, then introducing a new root r 
connected to r1 and r2 forms a new full binary tree.



Example Full Binary Trees 

Base case:

Step 1:

Step 2:

…



Trees are used to parse expressions

(((3 + 6) × 7) – (4 + 2)) × 8

×

8-

×

7+

+

24

63

9

63
6

57

456



Trees are used to enable fast searches

Consider the set S = {56, 22, 34, 89, 99, 77, 16}

56

22 89

3416 9977

Question: Is 34 ∈ S? Question: Is 262 ∈ S?

34 < 56

34 > 22

YES! NO!

262 > 56

262 > 89



As with other recursively defined objects, we can 
define many properties of trees recursively

Definition:  Given a tree T, we can define the height of 
T recursively, as follows:

1. Basis step: If T consists only of the root node r, then h(T) = 0
2. Recursive step:  If T consists of a root r that connects to 

subtrees T1, …, Tn, then h(T) = 1 + max(h(T1), …, h(Tn))

Example:  What is the height of this tree T?

h(T) = 1 + max(h(L), h(R)) = 3

h(L) = 1 + h(L1) = 2

h(L1) = 1 + max(h(L11), h(L12)) = 1

h(L11) = 0 h(L12) = 0

h(R) = 1 + h(R1) = 1

h(R1) = 0



If T is a full binary tree, then the number of nodes in T 
(denoted n(T)) is less than or equal to 2h(T)+1-1

Claim:

Base case:

I.H. (Strong):

Inductive step:
n Let T1 and T2 be disjoint full binary trees of height ≤k
n By the I.H., n(T1) ≤ 2h(T1)+1-1 and n(T2) ≤ 2h(T2)+1-1
n Let r be a unique root element, and let T be the tree formed 

using r as a root, T1 as the left subtree of r, and T2 as the right 
subtree of r

Assume that claim holds for a tree of height ≤k, arb. k

Show that the claim holds for trees of height k+1

n(T) ≤ 2h(T)+1-1 

T contains only a root node.  In this case n(T) = 1 and 
h(T) = 0.  Note that 20+1-1 = 1, so the claim holds.

r

T2T1



If T is a full binary tree, then the number of nodes in T 
(denoted n(T)) is less than or equal to 2h(T)+1-1

Inductive step (cont.):  We have that

Conclusion:

n n(T) = 1 + n(T1) + n(T2)  by recursive formula of n(T)
n        ≤ 1 + 2h(T1)+1 - 1 + 2h(T2)+1 - 1 by I.H.
n        ≤ 2h(T1)+1 + 2h(T2)+1 – 1
n        ≤ 2 × max(2h(T1)+1, 2h(T2)+1) – 1 sum of 2 terms ≤ twice larger term
n        ≤ 2 × 2max(h(T1), h(T2))+1 – 1  max(2x, 2y) = 2max(x,y)

n        ≤ 2 × 2h(T) – 1   by recursive def’n of h(T)
n        ≤ 2h(T)+1 – 1

Since we have proved the base case and the inductive 
case, the claim holds by structural induction  ❏

r

T2T1



In-class exercises

Problem 3:  Use structural induction to prove that 
checking whether some number is contained in a 
binary search tree T involves at most h(T)+1 
comparison operations.



Final Thoughts

n Structural induction can be used to prove properties 
of recursive
l Functions
l Sequences
l Sets
l Data structures

n Next time, our final review session!


