Lecture #25: Relations and Representations

Based on materials developed by Dr. Adam Lee
Binary relations establish a relationship between elements of two sets

Definition: Let A and B be two sets. A binary relation from A to B is a subset of $A \times B$.

In other words, a binary relation R is a set of ordered pairs (a_i, b_i) where $a_i \in A$ and $b_i \in B$.

Notation: We say that
- $a R b$ if $(a, b) \in R$
- $a \notin R b$ if $(a, b) \notin R$
Let’s say that Ankita and Braden are taking CS 441. Ankita is also taking Math 336. Furthermore, Carys is taking Art 212 and Business 444. Define a relation R that represents the relationship between people and classes.

Solution:

- Let the set P denote people, so $P = \{\text{Ankita, Braden, Carys}\}$
- Let the set C denote classes, so $C = \{\text{CS 441, Math 336, Art 212, Business 444}\}$
- By definition, $R \subseteq P \times C$
- From the above statement, we know that
 - $(\text{Ankita, CS 441}) \in R$
 - $(\text{Braden, CS 441}) \in R$
 - $(\text{Ankita, Math 336}) \in R$
 - $(\text{Carys, Art 212}) \in R$
 - $(\text{Carys, Business 444}) \in R$
- So, $R = \{(\text{Ankita, CS 441}), (\text{Braden, CS 441}), (\text{Ankita, Math 336}), (\text{Carys, Art 212}), (\text{Carys, Business 444})\}$
A relation can be represented as a directed graph

Let’s say that Ankita and Braden are taking CS 441. Ankita is also taking Math 336. Furthermore, Carys is taking Art 212 and Business 444. Define a relation R that represents the relationship between people and classes.

$R = \{(\text{Ankita}, \text{CS 441}), (\text{Braden}, \text{Art 212}), (\text{Carys}, \text{CS 441}), (\text{Carys}, \text{Business 444}), (\text{Ankita}, \text{Math 336})\}$

Elements of P (i.e., people):
- Ankita
- Braden
- Carys

Elements of C (i.e., classes):
- Art 212
- Business 444
- CS 441
- Math 336
A relation can be represented as a table, or 0,1-matrix.

Let’s say that Ankita and Braden are taking CS 441. Ankita is also taking Math 336. Furthermore, Carys is taking Art 212 and Business 444. Define a relation R that represents the relationship between people and classes.

<table>
<thead>
<tr>
<th>Name of the relation</th>
<th>Elements of C (i.e., courses)</th>
<th>Elements of P (i.e., people)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Braden, CS 441) ∈ R</td>
<td>Ankita, Business 444, CS 441, Math 336</td>
<td>Ankita, Braden, Carys</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ankita</th>
<th>Business 444</th>
<th>CS 441</th>
<th>Math 336</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Braden</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Carys</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Wait, doesn’t this mean that relations are the same as functions?

Not quite... Recall the following definition from Lecture #9.

Definition: Let A and B be nonempty sets. A function, f, is an assignment of exactly one element of set B to each element of set A.

This would mean that, e.g., a person only be enrolled in one course!

Reconciling this with our definition of a relation, we see that

1. Every function also defines a relation
2. Not every relation is a valid function

Let’s see some quick examples...
1. Consider $f : S \rightarrow G$
 - Clearly a function
 - Can also be represented as the relation $R = \{(\text{Anna}, \text{C}), (\text{Brian}, \text{A}), (\text{Christine}, \text{A})\}$

1. Consider the set $R = \{(A, 1), (A, 2)\}$
 - Clearly a relation
 - Cannot be represented as a function!
We can also define binary relations on a single set

Definition: A relation on the set A is a relation from A to A. That is, a relation on the set A is a subset of $A \times A$.

Example: Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation $R = \{(a, b) \mid a \text{ divides } b\}$?

Solution:
- 1 divides everything
- 2 divides itself and 4
- 3 divides itself
- 4 divides itself

So, $R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
Representing the last example as a graph...

Example: Let A be the set \(\{1, 2, 3, 4\}\). Which ordered pairs are in the relation \(R = \{(a, b) \mid a \text{ divides } b\}\)?
Question: Which of the following relations contain each of the pairs (1,1), (1,2), (2,1), (1,-1), and (2,2)?

- $R_1 = \{(a,b) \mid a \leq b\}$
- $R_2 = \{(a,b) \mid a > b\}$
- $R_3 = \{(a,b) \mid a = b \text{ or } a = -b\}$
- $R_4 = \{(a,b) \mid a = b\}$
- $R_5 = \{(a,b) \mid a = b + 1\}$
- $R_6 = \{(a,b) \mid a + b \leq 3\}$

Answer:

<table>
<thead>
<tr>
<th></th>
<th>(1,1)</th>
<th>(1,2)</th>
<th>(2,1)</th>
<th>(1,-1)</th>
<th>(2,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These are all relations on an infinite set!
Definition: A relation R on a set A is reflexive if $(a, a) \in R$ for every $a \in A$.

Note: Our “divides” relation on the set $A = \{1, 2, 3, 4\}$ is reflexive.

Every $a \in A$ divides itself!
Properties of Relations

Definition: A relation R on a set A is **symmetric** if $(b,a) \in R$ whenever $(a,b) \in R$ for every $a,b \in A$. If R is a relation in which $(a,b) \in R$ and $(b,a) \in R$ implies that $a=b$, we say that R is **antisymmetric**.

Mathematically:
- Symmetric: $\forall a \forall b ((a,b) \in R \rightarrow (b,a) \in R)$
- Antisymmetric: $\forall a \forall b (((a,b) \in R \land (b,a) \in R) \rightarrow (a = b))$

Examples:
- Symmetric: $R = \{(1,1), (1,2), (2,1), (2,3), (3,2), (1,4), (4,1), (4,4)\}$
- Antisymmetric: $R = \{(1,1), (1,2), (1,3), (1,4), (2,4), (3,3), (4,4)\}$
Symmetric and Antisymmetric Relations

Symmetric relation
- Diagonal axis of symmetry
- Not all elements on the axis of symmetry need to be included in the relation

Antisymmetric relation
- No axis of symmetry
- Only symmetry occurs on diagonal
- Not all elements on the diagonal need to be included in the relation

R = {(1,1), (1,2), (2,1), (2,3), (3,2), (1,4), (4,1), (4,4)}

R = {(1,1), (1,2), (1,3), (1,4), (2,4), (3,3), (4,4)}
Definition: A relation R on a set A is **transitive** if, whenever $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$ for every $a,b,c \in A$.

Note: Our “divides” relation on the set $A = \{1,2,3,4\}$ is transitive.

Recall that: $a | b \land b | c \rightarrow a | c$

More common transitive relations include equality and comparison operators like $<, >, \leq, \text{ and } \geq$.
Examples, redux

Question: Which of the following relations are reflexive, symmetric, antisymmetric, and/or transitive?

- $R_1 = \{(a,b) \mid a \leq b\}$
- $R_2 = \{(a,b) \mid a > b\}$
- $R_3 = \{(a,b) \mid a = b \text{ or } a = -b\}$
- $R_4 = \{(a,b) \mid a = b\}$
- $R_5 = \{(a,b) \mid a = b + 1\}$
- $R_6 = \{(a,b) \mid a + b \leq 3\}$

Answer:

<table>
<thead>
<tr>
<th></th>
<th>Reflexive</th>
<th>Symmetric</th>
<th>Antisymmetric</th>
<th>Transitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R_2</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R_3</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>R_4</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R_5</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>R_6</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Relations can be combined using set operations

Example: Let R be the relation that pairs students with courses that they have taken. Let S be the relation that pairs students with courses that they need to graduate. What do the relations $R \cup S$, $R \cap S$, and $S - R$ represent?

Solution:

- $R \cup S =$ All pairs (a,b) where
 - student a has taken course b OR
 - student a needs to take course b to graduate

- $R \cap S =$ All pairs (a,b) where
 - Student a has taken course b AND
 - Student a needs course b to graduate

- $S - R =$ All pairs (a,b) where
 - Student a needs to take course b to graduate BUT
 - Student a has not yet taken course b
Definition: Let \(R \) be a relation from the set \(A \) to the set \(B \), and \(S \) be a relation from the set \(B \) to the set \(C \). The composite of \(R \) and \(S \) is the relation of ordered pairs \((a, c)\), where \(a \in A \) and \(c \in C \) for which there exists an element \(b \in B \) such that \((a, b) \in R\) and \((b, c) \in S\). We denote the composite of \(R \) and \(S \) by \(S \circ R \).

Example: What is the composite relation of \(R \) and \(S \)?

\[
R: \{1,2,3\} \rightarrow \{1,2,3,4\} \\
\quad \text{● } R = \{(1,1), (1,4), (2,3), (3,1), (3,4)\}
\]

\[
S: \{1,2,3,4\} \rightarrow \{0,1,2\} \\
\quad \text{● } S = \{(1,0), (2,0), (3,1), (3,2), (4,1)\}
\]

So: \(S \circ R = \{(1,0), (3,0), (1,1), (3,1), (2,1), (2,2)\} \)

We’ll use \(R^2 \) for \(R \circ R \), \(R^3 \) for \(R \circ R \circ R \), ..., and \(R^* \) for the combination of all arbitrary numbers of compositions of \(R \).
In-class exercises

Problem 1: List the ordered pairs of the relation R on $A = \{0,1,2,3,4\}$ where $(a,b) \in R$ iff $a + b = 4$.

Problem 2: Draw the graph and table representations of the above relation.

Problem 3: Is the above relation reflexive, symmetric, antisymmetric, and/or transitive?
Final Thoughts

Relations allow us to represent and reason about the relationships between sets.

Relations are more general than functions.

Relations are used all over...
- Mathematical operators
- Bindings between sets of objects
- Etc.

Next time: n-ary relations