Discrete Structures for Computer Science

William Garrison

bill@cs.pitt.edu 6311 Sennott Square

Lecture #23: Solving congruences

Today's Topics

Arithmetic modulo n (reminder)

Solving linear congruences

- Modular inverses
- Extended Euclidean algorithm and Bézout numbers

Solving systems of congruences

Chinese remainder theorem

Primitive roots and discrete log

Defining arithmetic restricted to remainders when dividing by m

 \mathbf{Z}_m denotes the set of nonnegative integers less than m

 \bullet i.e., the remainders when dividing by m

Recall that mod "preserves" addition and multiplication

- $(a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m$
- $(ab) \mod m = ((a \mod m)(b \mod m)) \mod m$

Thus, we can define versions of addition and multiplication that are restricted to this set

- $\bullet \ a +_m b = (a+b) \bmod m$
- $a \cdot_m b = (a \cdot b) \mod m$
- These operations form arithmetic modulo m

Modular arithmetic behaves similarly to standard arithmetic: Recap properties from § 4.1

REPORT OF THE PARTY OF THE PART

Solving congruences via inverses

Consider the equation $a + 8 \equiv 2 \pmod{11}$

- In standard arithmetic, we'd subtract 8 from both sides
 - ➣i.e., utilize the additive inverse

In modular arithmetic, additive inverses are easy to compute!

- $-8 \equiv 3 \pmod{11}$
- Thus, we can add 3 to both sides:

```
> a + 8 + 3 \equiv 2 + 3 (mod 11)
```

- \gg a + 11 \equiv 5 (mod 11)
- \gg a \equiv 5 (mod 11)
- Note that adding any multiple of m preserves the value (mod m)

Unfortunately, multiplicative inverses are not as simple

We cannot easily "divide by a" mod n

What is the equivalent of 1/a mod n?

Linear congruences are of the form $ax \equiv b \pmod{m}$

- Given values for a and b, how do we solve for x?
- We need a value, say \bar{a} , where $a\bar{a} \equiv 1 \pmod{m}$
- If we had this, we could multiply on both sides, then simplify!

Good news: Bézout's theorem says that there exist integers s and t such that gcd(a, m) = sa + tm

Assume a and m are coprime: How does this help us?

Extended Euclidean Algorithm

The extended Euclidean algorithm computes the GCD of a and b, **and** computes the Bézout numbers s and t which satisfy the Bézout identity:

$$gcd(a, b) = sa + tb$$

Row	a	b	a/b	a%b	d	S	t
1	99	78					
Let th	nis repre	esent "a	div b"		"a mo	d b"	
3							
4							
5							
6							

Row	a	b	a/b	a%b	d	S	t
1	99	78	1				
2							
3							
4							
5							
6							

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21			
2							
3							
4							
5							
6							

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21			
2							
3							
4							
5							
6							

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21			
2	78	21					
3							
4							
5							
6							

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21			
2	78	21	3				
3							
4							
5							
6							

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21			
2	78	21	3	15			
3							
4							
5							
6							

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21			
2	78	21	3	15			
3	21	15					
4							
5							
6							

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21			
2	78	21	3	15			
3	21	15	1				
4							
5							
6							

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21			
2	78	21	3	15			
3	21	15	1	6			
4							
5							
6							

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21			
2	78	21	3	15			
3	21	15	1	6			
4	15	6					
5							
6							

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21			
2	78	21	3	15			
3	21	15	1	6			
4	15	6	2				
5							
6							

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21			
2	78	21	3	15			
3	21	15	1	6			
4	15	6	2	3			
5							
6							

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21			
2	78	21	3	15			
3	21	15	1	6			
4	15	6	2	3			
5	6	3					
6							

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21			
2	78	21	3	15			
3	21	15	1	6			
4	15	6	2	3			
5	6	3	2				
6							

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21			
2	78	21	3	15			
3	21	15	1	6			
4	15	6	2	3			
5	6	3	2	0			
6							

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21			
2	78	21	3	15			
3	21	15	1	6			
4	15	6	2	3			
5	6	3	2	0			
6	3	0					

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21			
2	78	21	3	15			
3	21	15	1	6			
4	15	6	2	3			
5	6	3	2	0			
6	3	0		_			

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21			
2	78	21	3	15			
3	21	15	1	6			
4	15	6	2	3			
5	6	3	2	0			
6	3	0		_			

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21			
2	78	21	3	15			
3	21	15	1	6			
4	15	6	2	3			
5	6	3	2	0			
6	3	0	_		3	1	0

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21	3		
2	78	21	3	15	3		
3	21	15	1	6	3		
4	15	6	2	3	3		
5	6	3	2	0	3		
6	3	0	_	_	3	1	0

Row	а	b	a/b	a%b	d	S	t
1	99	78	1	21	3		
2	78	21	3	15	3		
3	21	15	1	6	3		
4	15	6	2	3	3		
5	6	3	2	0	3	K	
6	3	0	_	_	3	1	0

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21	3		
2	78	21	3	15	3		
3	21	15	1	6	3		
4	15	6	2	3	3		
5	6	3	2	0	3	0	
6	3	0	_	_	3	1	0

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21	3		
2	78	21	3	15	3		
3	21	15	1	6	3		
4	15	6	2	3	3		
5	6	3	2	0	3	0	
6	3	0		_	3	1	0

$$t = s_{previous} - \left(\frac{a}{b}\right) * t_{previous}$$

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21	3		
2	78	21	3	15	3		
3	21	15	1	6	3		
4	15	6	2	3	3		
5	6	3	2	0	3	0	1
6	3	0		_	3	1	0

$$t = s_{previous} - \left(\frac{a}{b}\right) * t_{previous}$$

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21	3		
2	78	21	3	15	3		
3	21	15	1	6	3		
4	15	6	2	3	3		
5	6	3	2	0	3	0	1
6	3	0		_	3	1	0

$$t = s_{previous} - \left(\frac{a}{b}\right) * t_{previous}$$

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21	3		
2	78	21	3	15	3		
3	21	15	1	6	3		
4	15	6	2	3	3	1	
5	6	3	2	0	3	0	1
6	3	0		_	3	1	0

$$t = s_{previous} - \left(\frac{a}{b}\right) * t_{previous}$$

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21	3		
2	78	21	3	15	3		
3	21	15	1	6	3		
4	15	6	2	3	3	1	-2
5	6	3	2	0	3	0	1
6	3	0		_	3	1	0

$$t = s_{previous} - \left(\frac{a}{b}\right) * t_{previous}$$

Row	a	р	a/b	a%b	d	S	t
1	99	78	1	21	3		
2	78	21	3	15	3		
3	21	15	1	6	3	-2	
4	15	6	2	3	3	1	-2
5	6	3	2	0	3	0	1
6	3	0		_	3	1	0

$$t = s_{previous} - \left(\frac{a}{b}\right) * t_{previous}$$

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21	3		
2	78	21	3	15	3		
3	21	15	1	6	3	-2	3
4	15	6	2	3	3	1	-2
5	6	3	2	0	3	0	1
6	3	0		_	3	1	0

$$t = s_{previous} - \left(\frac{a}{b}\right) * t_{previous}$$

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21	3		
2	78	21	3	15	3	3	
3	21	15	1	6	3	-2	3
4	15	6	2	3	3	1	-2
5	6	3	2	0	3	0	1
6	3	0	_	_	3	1	0

$$t = s_{previous} - \left(\frac{a}{b}\right) * t_{previous}$$

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21	3		
2	78	21	3	15	3	3	-11
3	21	15	1	6	3	-2	3
4	15	6	2	3	3	1	-2
5	6	3	2	0	3	0	1
6	3	0			3	1	0

$$t = s_{previous} - \left(\frac{a}{b}\right) * t_{previous}$$

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21	3	-11	
2	78	21	3	15	3	3	-11
3	21	15	1	6	3	-2	3
4	15	6	2	3	3	1	-2
5	6	3	2	0	3	0	1
6	3	0		_	3	1	0

$$t = s_{previous} - \left(\frac{a}{b}\right) * t_{previous}$$

Row	a	b	a/b	a%b	d	S	t
1	99	78	1	21	3	-11	14
2	78	21	3	15	3	3	-11
3	21	15	1	6	3	-2	3
4	15	6	2	3	3	1	-2
5	6	3	2	0	3	0	1
6	3	0			3	1	0

$$t = s_{previous} - \left(\frac{a}{b}\right) * t_{previous}$$

Row	a	Ь	a/b	a%b	d	S	t
1	99	78	1	21	3	-11	14
2	78	21	3	15	3	3	-11
3	To ch	neck v	our w	ork v	erify:	_	3
4	To check your work, verify: 99*(-11) + 78*14 = 3						
5	6	3	2	0	3	0	1
6	3	0	_	_	3	1	0

$$t = s_{previous} - \left(\frac{a}{b}\right) * t_{previous}$$

Bézout numbers for modular inverses

If a and m are coprime, then gcd(a, m) = 1

The extended Euclidean algorithm yields:

- 1 = gcd(a, m) = sa + tm
- So sa = 1 tm
- Since $km \equiv 0 \pmod{m}$ for any k, this means...
- sa \equiv 1 (mod m)

This means that, when a and m are coprime, the Bézout numbers reveal a's (multiplicative) inverse mod m (!)

PART OF THE PART O

An example

Solve the following linear congruence:

$$57x \equiv 5 \pmod{98}$$

Using the extended Euclidean algorithm on 98 and 57, we can show that 98 * (-25) + 57 * 43 = 1, so 43 is the inverse of 57 (mod 98)

Multiply by 43 on both sides

- $57x * 43 \equiv 5 * 43 \pmod{98}$
- $x \equiv 215 \pmod{98}$
- $x \equiv 19 \pmod{98}$

THE SECOND

Solving systems of congruences

The Chinese Remainder Theorem: Let m_1 , m_2 , ..., m_n be pairwise coprime positive integers greater than 1 and a_1 , a_2 , ..., a_n arbitrary integers. Then the system:

- $x \equiv a_1 \pmod{m_1}$
- $x \equiv a_2 \pmod{m_2}$
- ...
- $x \equiv a_n \pmod{m_n}$

has a unique solution modulo $m = m_1 m_2 ... m_n$

Let m be the product of the moduli, and let M_k be the product of all but the kth modulus

- Let y_k be the inverse of M_k (mod m_k)
- Now, compute $x = a_1M_1y_1 + a_2M_2y_2 + ... + a_nM_ny_n$

THE TOTAL PROPERTY OF THE PARTY OF THE PARTY

Solving systems of congruences

In *Sunzi Suanjing*, the first known example of such problems was posed:

•
$$x \equiv 2 \pmod{3}$$
 $m_1 = 3, a_1 = 2$

•
$$x \equiv 3 \pmod{5}$$
 $m_2 = 5, a_2 = 3$

•
$$x \equiv 2 \pmod{7}$$
 $m_3 = 7, a_3 = 2$

m = 3*5*7 = 105, and M_k is the product of all but the kth modulus

$$\bullet$$
 M₁ = 5*7 = 35, M₂ = 3*7 = 21, M₃ = 3*5 = 15

• y_k is the inverse of M_k (mod m_k)

$$y_1 = 2 \text{ since } 35^2 = 70 \equiv 1 \pmod{3}$$

$$y_2 = 1 \text{ since } 21*1 = 21 \equiv 1 \pmod{5}$$

$$y_3 = 1 \text{ since } 15*1 = 15 \equiv 1 \pmod{7}$$

• Then, $x = a_1M_1y_1 + a_2M_2y_2 + a_3M_3y_3$

$$> x = 2*35*2 + 3*21*1 + 2*15*1 = 233 \equiv 23 \pmod{105}$$

In-class exercises

Problem 1: Find x where $8x \equiv 3 \pmod{13}$

Problem 2: Find x where:

- $x \equiv 2 \pmod{3}$
- $x \equiv 3 \pmod{5}$
- $x \equiv 4 \pmod{7}$

SEVERS TO SEVER SE

Fermat's Little Theorem

Theorem: If p is prime and a is an integer not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$

• This also means that $a^p \equiv a \pmod{p}$

Examples:

- Find 7²²² mod 11
 - Since 11 is prime, $7^{10} \equiv 1 \pmod{11}$
 - Thus, $7^{10k} \equiv 1 \pmod{11}$ for any integer k
 - So $7^{220} \equiv 1 \pmod{11}$, and $7^{222} \equiv 7^2 \equiv 5 \pmod{11}$
 - \bullet 7²²² mod 11 = 5
- Find 5¹⁴⁷ **mod** 13
 - $5^{144} \equiv 1 \pmod{13}$ so $5^{147} \equiv 5^3 \equiv 8 \pmod{13}$
 - 5^{147} mod 13 = 8

SET THE SET OF THE SET

Primitive roots

Definition: A primitive root modulo a prime p is an integer r in \mathbf{Z}_p such that every nonzero element of \mathbf{Z}_p is a power of r

- We sometimes call r a generator, since multiplying r by itself repeatedly can generate every element of \mathbf{Z}_p
- There is a primitive root in Z_D for every prime p

Corollary: If b is an integer in \mathbf{Z}_p and r is a primitive root modulo p, then there exists a unique exponent e in \mathbf{Z}_p such that $\mathbf{r}^e = \mathbf{b}$

- i.e., re **mod** p = b
- Here, e is called the discrete log of b modulo p with base r
 > log_r b = e (where the "mod p" is understood from context)

The discrete logarithm problem

Given a prime p, a primitive root r modulo p, and a positive integer $b \in \mathbf{Z}_p$, find a value e such that $r^e \mod p = b$

How would you solve this?

No known algorithm in polynomial time

Takeaways for solving congruences:

- We can invert addition with subtraction
- We can invert multiplication with modular inverses
- Inverting exponentiation is more difficult than it appears

Final thoughts

- We can solve congruences by inverting operations, similar to standard algebra
 - To do so with multiplication, we use Euclid's algorithm and Bézout numbers to calculate multiplicative modular inverses
- The Chinese Remainder Theorem allows us to solve systems of congruences with coprime moduli
- Fermat's Little Theorem and primitive roots will come up again in cryptography
 - Section 4.5-4.6, next time!