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Lecture #23: Solving congruences



Today’s Topics

Arithmetic modulo 𝑛 (reminder)

Solving linear congruences
l Modular inverses
l Extended Euclidean algorithm and Bézout numbers

Solving systems of congruences
l Chinese remainder theorem

Primitive roots and discrete log



Defining arithmetic restricted to remainders 
when dividing by 𝑚

𝐙! denotes the set of nonnegative integers less than 𝑚
l i.e., the remainders when dividing by 𝑚

Recall that 𝐦𝐨𝐝 “preserves” addition and multiplication
l 𝑎 + 𝑏 	𝐦𝐨𝐝	𝑚 = 𝑎	𝐦𝐨𝐝	𝑚 + 𝑏	𝐦𝐨𝐝	𝑚 	𝐦𝐨𝐝	𝑚
l 𝑎𝑏 	𝐦𝐨𝐝	𝑚 = 𝑎	𝐦𝐨𝐝	𝑚 𝑏	𝐦𝐨𝐝	𝑚 	𝐦𝐨𝐝	𝑚

Thus, we can define versions of addition and multiplication 
that are restricted to this set

l 𝑎 +! 𝑏 = 𝑎 + 𝑏 	𝐦𝐨𝐝	𝑚
l 𝑎 ⋅! 𝑏 = 𝑎 ⋅ 𝑏 	𝐦𝐨𝐝	𝑚
l These operations form arithmetic modulo 𝑚

Modular arithmetic behaves similarly to 
standard arithmetic: Recap properties from §4.1



Solving congruences via inverses

Consider the equation a + 8 ≡ 2 (mod 11)
l In standard arithmetic, we’d subtract 8 from both sides

i.e., utilize the additive inverse

In modular arithmetic, additive inverses are easy to 
compute!

l –8 ≡ 3 (mod 11)
l Thus, we can add 3 to both sides:

a + 8 + 3 ≡ 2 + 3 (mod 11)
a + 11 ≡ 5 (mod 11)
a ≡ 5 (mod 11)

l Note that adding any multiple of m preserves the value 
(mod m)



Unfortunately, multiplicative inverses are not as 
simple

We cannot easily “divide by a” mod n
l What is the equivalent of 1/a mod n?

Linear congruences are of the form ax ≡ b (mod m)
l Given values for a and b, how do we solve for x?
l We need a value, say "a, where a"a ≡ 1 mod	m
l If we had this, we could multiply on both sides, then 

simplify!

Good news: Bézout’s theorem says that there exist 
integers s and t such that gcd(a, m) = sa + tm

l Assume a and m are coprime: How does this help us?



Extended Euclidean Algorithm

The extended Euclidean algorithm computes the GCD 
of a and b, and computes the Bézout numbers s and t 
which satisfy the Bézout identity:

gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78

2

3

4

5

6

Let this represent “a div b” “a mod b”



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1

2

3

4

5

6



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21

2

3

4

5

6



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21

2

3

4

5

6



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21

2 78 21

3

4

5

6



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21

2 78 21 3

3

4

5

6



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21

2 78 21 3 15

3

4

5

6



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21

2 78 21 3 15

3 21 15

4

5

6



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21

2 78 21 3 15

3 21 15 1

4

5

6



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21

2 78 21 3 15

3 21 15 1 6

4

5

6



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21

2 78 21 3 15

3 21 15 1 6

4 15 6

5

6



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21

2 78 21 3 15

3 21 15 1 6

4 15 6 2

5

6



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21

2 78 21 3 15

3 21 15 1 6

4 15 6 2 3

5

6



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21

2 78 21 3 15

3 21 15 1 6

4 15 6 2 3

5 6 3

6



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21

2 78 21 3 15

3 21 15 1 6

4 15 6 2 3

5 6 3 2

6



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21

2 78 21 3 15

3 21 15 1 6

4 15 6 2 3

5 6 3 2 0

6



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21

2 78 21 3 15

3 21 15 1 6

4 15 6 2 3

5 6 3 2 0

6 3 0



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21

2 78 21 3 15

3 21 15 1 6

4 15 6 2 3

5 6 3 2 0

6 3 0 — —



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21

2 78 21 3 15

3 21 15 1 6

4 15 6 2 3

5 6 3 2 0

6 3 0 — —



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21

2 78 21 3 15

3 21 15 1 6

4 15 6 2 3

5 6 3 2 0

6 3 0 — — 3 1 0



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21 3

2 78 21 3 15 3

3 21 15 1 6 3

4 15 6 2 3 3

5 6 3 2 0 3

6 3 0 — — 3 1 0



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21 3

2 78 21 3 15 3

3 21 15 1 6 3

4 15 6 2 3 3

5 6 3 2 0 3

6 3 0 — — 3 1 0



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21 3

2 78 21 3 15 3

3 21 15 1 6 3

4 15 6 2 3 3

5 6 3 2 0 3 0

6 3 0 — — 3 1 0



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21 3

2 78 21 3 15 3

3 21 15 1 6 3

4 15 6 2 3 3

5 6 3 2 0 3 0

6 3 0 — — 3 1 0



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21 3

2 78 21 3 15 3

3 21 15 1 6 3

4 15 6 2 3 3

5 6 3 2 0 3 0 1

6 3 0 — — 3 1 0



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21 3

2 78 21 3 15 3

3 21 15 1 6 3

4 15 6 2 3 3

5 6 3 2 0 3 0 1

6 3 0 — — 3 1 0



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21 3

2 78 21 3 15 3

3 21 15 1 6 3

4 15 6 2 3 3 1

5 6 3 2 0 3 0 1

6 3 0 — — 3 1 0



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21 3

2 78 21 3 15 3

3 21 15 1 6 3

4 15 6 2 3 3 1 -2

5 6 3 2 0 3 0 1

6 3 0 — — 3 1 0



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21 3

2 78 21 3 15 3

3 21 15 1 6 3 -2

4 15 6 2 3 3 1 -2

5 6 3 2 0 3 0 1

6 3 0 — — 3 1 0



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21 3

2 78 21 3 15 3

3 21 15 1 6 3 -2 3

4 15 6 2 3 3 1 -2

5 6 3 2 0 3 0 1

6 3 0 — — 3 1 0



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21 3

2 78 21 3 15 3 3

3 21 15 1 6 3 -2 3

4 15 6 2 3 3 1 -2

5 6 3 2 0 3 0 1

6 3 0 — — 3 1 0



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21 3

2 78 21 3 15 3 3 -11

3 21 15 1 6 3 -2 3

4 15 6 2 3 3 1 -2

5 6 3 2 0 3 0 1

6 3 0 — — 3 1 0



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21 3 -11

2 78 21 3 15 3 3 -11

3 21 15 1 6 3 -2 3

4 15 6 2 3 3 1 -2

5 6 3 2 0 3 0 1

6 3 0 — — 3 1 0



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21 3 -11 14

2 78 21 3 15 3 3 -11

3 21 15 1 6 3 -2 3

4 15 6 2 3 3 1 -2

5 6 3 2 0 3 0 1

6 3 0 — — 3 1 0



Find the Bézout numbers and GCD of 99 and 78

Row a b a/b a%b d s t

1 99 78 1 21 3 -11 14

2 78 21 3 15 3 3 -11

3 21 15 1 6 3 -2 3

4 15 6 2 3 3 1 -2

5 6 3 2 0 3 0 1

6 3 0 — — 3 1 0



Bézout numbers for modular inverses

If a and m are coprime, then gcd(a, m) = 1

The extended Euclidean algorithm yields:
l 1 = gcd(a, m) = sa + tm
l So sa = 1 – tm
l Since km ≡ 0 (mod m) for any k, this means…
l sa ≡ 1 (mod m)

This means that, when a and m are coprime, the Bézout 
numbers reveal a’s (multiplicative) inverse mod m (!)



An example

Solve the following linear congruence:

57x ≡ 5 mod	98

Using the extended Euclidean algorithm on 98 and 57, 
we can show that 98 * (-25) + 57 * 43 = 1, so 43 is the 
inverse of 57 (mod 98)

Multiply by 43 on both sides
l 57x * 43 ≡ 5 * 43 (mod 98)
l x ≡ 215 (mod 98)
l x ≡ 19 (mod 98)



Solving systems of congruences

The Chinese Remainder Theorem: Let m1, m2, …, mn 
be pairwise coprime positive integers greater than 1 
and a1, a2, …, an arbitrary integers. Then the system:

l x ≡ a1 (mod m1)
l x ≡ a2 (mod m2)
l …
l x ≡ an (mod mn)

has a unique solution modulo m = m1m2…mn

Let m be the product of the moduli, and let Mk be the 
product of all but the kth modulus

l Let yk be the inverse of Mk (mod mk)
l Now, compute x = a1M1y1 + a2M2y2 + … + anMnyn



Solving systems of congruences

In Sunzi Suanjing, the first known example of such 
problems was posed:

l x ≡ 2 (mod 3) m1 = 3, a1 = 2
l x ≡ 3 (mod 5) m2 = 5, a2 = 3
l x ≡ 2 (mod 7) m3 = 7, a3 = 2

m = 3*5*7 = 105, and Mk is the product of all but the 
kth modulus

l M1 = 5*7 = 35, M2 = 3*7 = 21, M3 = 3*5 = 15
l yk is the inverse of Mk (mod mk)

y1 = 2 since 35*2 = 70 ≡ 1 (mod 3)
y2 = 1 since 21*1 = 21 ≡ 1 (mod 5)
y3 = 1 since 15*1 = 15 ≡ 1 (mod 7)

l Then, x = a1M1y1 + a2M2y2 + a3M3y3

x = 2*35*2 + 3*21*1 + 2*15*1 = 233 ≡ 23 (mod 105)



In-class exercises

Problem 1:  Find x where 8x ≡ 3 (mod 13)

Problem 2:  Find x where:
l x ≡ 2 (mod 3)
l x ≡ 3 (mod 5)
l x ≡ 4 (mod 7)



Fermat’s Little Theorem

Theorem:  If p is prime and a is an integer not 
divisible by p, then ap-1 ≡ 1 (mod p)

l This also means that ap ≡ a (mod p)

Examples:
n Find 7222 mod 11

l Since 11 is prime, 710 ≡ 1 (mod 11)
l Thus, 710k ≡ 1 (mod 11) for any integer k
l So 7220 ≡ 1 (mod 11), and 7222 ≡ 72 ≡ 5 (mod 11)
l 7222 mod 11 = 5

n Find 5147 mod 13
l 5144 ≡ 1 (mod 13) so 5147 ≡ 53 ≡ 8 mod 13
l 5147 mod 13 = 8



Primitive roots

Definition:  A primitive root modulo a prime p is an 
integer r in Zp such that every nonzero element of Zp is 
a power of r

l We sometimes call r a generator, since multiplying r by 
itself repeatedly can generate every element of Zp

l There is a primitive root in Zp for every prime p

Corollary:  If b is an integer in Zp and r is a primitive 
root modulo p, then there exists a unique exponent e 
in Zp such that re = b

l i.e., re mod p = b
l Here, e is called the discrete log of b modulo p with base r

logr b = e  (where the “mod p” is understood from context)



The discrete logarithm problem

Given a prime p, a primitive root r modulo p, and a 
positive integer b ∈ Zp, find a value e such that
re mod p = b

How would you solve this?
l No known algorithm in polynomial time

Takeaways for solving congruences:
l We can invert addition with subtraction
l We can invert multiplication with modular inverses
l Inverting exponentiation is more difficult than it appears



Final thoughts

n We can solve congruences by inverting operations, 
similar to standard algebra
l To do so with multiplication, we use Euclid’s algorithm and 

Bézout numbers to calculate multiplicative modular 
inverses

n The Chinese Remainder Theorem allows us to solve 
systems of congruences with coprime moduli

n Fermat’s Little Theorem and primitive roots will 
come up again in cryptography
l Section 4.5–4.6, next time!


