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Today’s Topics

Arithmetic modulo n (reminder)

Solving linear congruences
® Modular inverses
® Extended Euclidean algorithm and Bézout numbers

Solving systems of congruences
® Chinese remainder theorem

Primitive roots and discrete log



Defining arithmetic restricted to remainders
when dividing by m

Z., denotes the set of nonnegative integers less than m
® i.e., the remainders when dividing by m

Recall that mod “preserves” addition and multiplication
® (a+b)modm = ((amod m) + (b mod m)) mod m
® (ab) mod m = ((a mod m)(b mod m)) mod m

Thus, we can define versions of addition and multiplication
that are restricted to this set

® a+,b=(a+b)modm
® a-,,b=(a-b)modm
® These operations form arithmetic modulo m

Modular arithmetic behaves similarly to
standard arithmetic: Recap properties from §4.1
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Solving congruences via inverses

Consider the equation a + 8 = 2 (mod 11)

® In standard arithmetic, we’d subtract 8 from both sides
>1i.e., utilize the additive inverse

In modular arithmetic, additive inverses are easy to
compute!
® -8 =3 (mod 11)
® Thus, we can add 3 to both sides:
>a+8+3=2+3(mod11)
>a+11 =5 (mod 11)
>a =5 (mod 11)

® Note that adding any multiple of m preserves the value
(mod m)



Unfortunately, multiplicative inverses are not as
: simple

We cannot easily “divide by a” mod n
® What is the equivalent of 1/a mod n?

Linear congruences are of the form ax = b (mod m)
® Given values for a and b, how do we solve for x?
® We need a value, say a, where aa = 1 (mod m)

® |f we had this, we could multiply on both sides, then
simplify!

Good news: Bézout’s theorem says that there exist
integers s and t such that gcd(a, m) = sa + tm
® Assume a and m are coprime: How does this help us?



Extended Euclidean Algorithm

The extended Euclidean algorithm computes the GCD
of a and b, and computes the Bézout numbers s and t
which satisfy the Bézout identity:

gcd(a,b) = sa + tb



the Bézout numbers and GCD of 99 and 78
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Let this represent “a div b”
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= Find the Bezout numbers and GCD of 99 and 78
TRow | a b a/b | a%b

1 99 /8 1
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= Find the Bezout numbers and GCD of 99 and 78
PRow | a b a/b | a%b

1 99 /8 1 21
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the Bézout numbers and GCD of 99 and 78

a b a/b | a%b
1 99 78 1 21
2 e
3
4
5
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= Find the Bezout numbers and GCD of 99 and 78
PRow | a b a/b | a%b

1 99 /8 1 21

2 /8 21

3

4

5
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= Find the Bezout numbers and GCD of 99 and 78
PRow | a b a/b | a%b

1 99 /8 1 21

2 /8 21 3

3

4

5
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= Find the Bezout numbers and GCD of 99 and 78
PRow | a b a/b | a%b

1 99 /8 1 21

2 /8 21 3 15

3

4

5




the Bézout numbers and GCD of 99 and 78

a b a/b | a%b
1 99 78 1 21
2 7:3/ 21 4r3/15
3 21 15
4
5
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= Find the Bezout numbers and GCD of 99 and 78
PRow | a b a/b | a%b

1 99 /8 1 21

2 /8 21 3 15

3 21 15 1

4

5
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= Find the Bezout numbers and GCD of 99 and 78
PRow | a b a/b | a%b

1 99 /8 1 21

2 /8 21 3 15

3 21 15 1 6

4

5
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= Find the Bezout numbers and GCD of 99 and 78
PRow | a b a/b | a%b

1 99 /8 1 21

2 /8 21 3 15

3 21 15 1 6

4 15 6

5
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= Find the Bezout numbers and GCD of 99 and 78
TRow | a b | a/b | a%b

1 929 /8 1 21

2 /8 21 3 15

3 21 15 1 6

4 15 6 2

5
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= Find the Bezout numbers and GCD of 99 and 78
TRow | a b | a/b | a%b

1 929 /8 1 21

2 /8 21 3 15

3 21 15 1 6

4 15 6 2 3

5
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= Find the Bezout numbers and GCD of 99 and 78
PRow | a b a/b | a%b

1 99 /8 1 21

2 /8 21 3 15

3 21 15 1 6

4 15 6 2 3

5 6 3

6
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= Find the Bezout numbers and GCD of 99 and 78
PRow | a b a/b | a%b

1 99 /8 1 21

2 /8 21 3 15

3 21 15 1 6

4 15 6 2 3

5 6 3 2

6
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= Find the Bezout numbers and GCD of 99 and 78
PRow | a b a/b | a%b

1 99 /8 1 21

2 /8 21 3 15

3 21 15 1 6

4 15 6 2 3

5 6 3 2 0

6
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= Find the Bezout numbers and GCD of 99 and 78
PRow | a b a/b | a%b

1 99 /8 1 21

2 /8 21 3 15

3 21 15 1 6

4 15 6 2 3

5 6 3 2 0

6 3 0
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= Find the Bezout numbers and GCD of 99 and 78
PRow | a b a/b | a%b

1 99 /8 1 21

2 /8 21 3 15

3 21 15 1 6

4 15 6 2 3

5 6 3 2 0

6 3 0 — —
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= Find the Bezout numbers and GCD of 99 and 78
PRow | a b a/b | a%b

1 99 /8 1 21

2 /8 21 3 15

3 21 15 1 6

4 15 6 2 3

5 6 3 2 0

6 3 0 — —
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= Find the Bezout numbers and GCD of 99 and 78
PRow | a b a/b | a%b

1 99 /8 1 21

2 /8 21 3 15

3 21 15 1 6

4 15 6 2 3

5 6 3 2 0

6 3 0 — —




i Find the Bézout numbers and GCD of 99 and 78
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| Row | a b | a/b | a%b | d s t

1 29 /8 1 21 3

2 | 78 | 21 3 15 | 3

30 21 | 15 1 6 3

4 | 15 | 6 2 3 3
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= Find the Bezout numbers and GCD of 99 and 78
PRow | a b a/b | a%b

1 99 /8 1 21

2 /8 21 3 15

3 21 15 1 6

4 15 6 2 3

5 6 3 2 0

6 3 0 — — \




i Find the Bézout numbers and GCD of 99 and 78
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| Row | a b | a/b | a%b | d s t

1 29 /8 1 21 3

2 | 78 | 21 3 15 | 3

30 21 | 15 1 6 3

4 | 15 | 6 2 3 3




i Find the Bézout numbers and GCD of 99 and 78
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| Row | a b | a/b | a%b | d s t

1 29 /8 1 21 3

2 | 78 | 21 3 15 | 3

30 21 | 15 1 6 3

4 | 15 | 6 2 3 3

5 6 3 2 0 3 0

6 | 3| 0o | — | — | 3| 1] o0

a

U = Sprevious — (b) * Cyrevious



i Find the Bézout numbers and GCD of 99 and 78
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| Row | a b | a/b | a%b | d s t

1 29 /8 1 21 3

2 | 78 | 21 3 15 | 3

30 21 | 15 1 6 3

4 | 15 | 6 2 3 3

5 6 3 2 0 3 0 1

6 | 3| 0o | — | — | 3| 1] o0

a

t = Sprevious o (b) * tprevious



i Find the Bézout numbers and GCD of 99 and 78

(Lol
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| Row | a b | a/b | a%b | d s t

1 29 /8 1 21 3

2 | 78 | 21 3 15 | 3

30 21 | 15 1 6 3

4 | 15 | 6 2 3 3

5 6 3 2 0 3 0\1

6 | 3| 0o | — | — | 3| 1] o0

a

t = Sprevious o (b) * tprevious



i Find the Bézout numbers and GCD of 99 and 78
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| Row | a b | a/b | a%b | d s t

1 29 /8 1 21 3

2 | 78 | 21 3 15 | 3

30 21 | 15 1 6 3

4 | 15 | 6 2 3 3 1

5 6 3 2 0 3 0 1

6 | 3| 0o | — | — | 3| 1] o0

a

t = Sprevious o (b) * tprevious



the Bézout numbers and GCD of 99 and 78

U = Sprevious — (

Row a b a/b | a%b
1 99 78 1 21
2 78 21 3 15
3 21 15 1 6
4 15 6 2 3
5 6 3 2 0
6 3 0 — —

a

b) * tprevious




the Bézout numbers and GCD of 99 and 78

U = Sprevious — (

Row a b a/b | a%b
1 99 78 1 21
2 78 21 3 15
3 21 15 1 6
4 15 6 2 3
5 6 3 2 0
6 3 0 — —

a

b) * tprevious




the Bézout numbers and GCD of 99 and 78

U = Sprevious — (

Row a b a/b | a%b
1 99 78 1 21
2 78 21 3 15
3 21 15 1 6
4 15 6 2 3
5 6 3 2 0
6 3 0 — —

a

b) * tprevious




the Bézout numbers and GCD of 99 and 78

U = Sprevious — (

Row a b a/b | a%b
1 99 78 1 21
2 78 21 3 15
3 21 15 1 6
4 15 6 2 3
5 6 3 2 0
6 3 0 — —

a

b) * tprevious




the Bézout numbers and GCD of 99 and 78

U = Sprevious — (

b) * tprevious

Row a b a/b | a%b t

1 99 78 1 21

2 78 21 3 15 -11
3 21 15 1 6 3

4 15 6 2 3 -2
5 6 3 2 0 1

6 3 0 — — 0

a




the Bézout numbers and GCD of 99 and 78

U = Sprevious — (

b) * tprevious

Row a b a/b | a%b S t

1 99 78 1 21 -11

2 78 21 3 15 3 -11
3 21 15 1 6 -2 3

4 15 6 2 3 1 -2
5 6 3 2 0 0 1

6 3 0 — — 1 0

a




the Bézout numbers and GCD of 99 and 78

U = Sprevious — (

b) * tprevious

Row a b a/b | a%b S t
1 99 78 1 21 -11 14
2 78 21 3 15 3 -11
3 21 15 1 6 -2 3
4 15 6 2 3 1 -2
5 6 3 2 0 0 1
6 3 0 — — 1 0

a




ST Find the Bezout numbers and GCD of 99 and 78
7
["Row | a b | a/b | a%b | d s t
1| 99 | 78 | 1 | 21 | 3 | -11 | 14
2 | 78 | 21 3 | 15 | 3 3| 11
3 -3

To check youf work, verii‘y:
4 99 x (—11) + 78 * 14 = 3 -2
5 6 3 2 0 3 0 1

6 | 3| 0o | — | — | 3| 1] o0

a

t = Sprevious o (b) * tprevious



smBezout numbers for modular inverses

If a and m are coprime, then gcd(a, m) =1

The extended Euclidean algorithm yields:
® 1=gcd(a, m) =sa+tm
® Sosa=1-tm
® Since km = 0 (mod m) for any k, this means...
® sa =1 (mod m)

This means that, when a and m are coprime, the Bézout
numbers reveal a’s (multiplicative) inverse mod m (!)



An example

Solve the following linear congruence:

57x = 5 (mod 98)

Using the extended Euclidean algorithm on 98 and 57,
we can show that 98 * (-25) + 57 * 43 =1, so 43 is the

inverse of 57 (mod 98)

Multiply by 43 on both sides
® 57x *43 =5 7% 43 (mod 98)
® x = 215 (mod 98)
® x = 19 (mod 98)



s Solving systems of congruences

The Chinese Remainder Theorem: Let m,, m,, ..., m_
be pairwise coprime positive integers greater than 1
and a,, a,, ..., Q, arbitrary integers. Then the system:

® X = a, (mod m,)

® X = a, (mod m,)

o ..

® x = a, (mod m,)

has a unique solution modulo m = m;m,...m,

Let m be the product of the moduli, and let M, be the
product of all but the kth modulus

® Let y, be the inverse of M, (mod m,)
® Now, compute x = aMy; + a,Myy, + ... + a,My,



In Sunzi Suanjing, the first known example of such
problems was posed:

® x =2 (mod 3) m,=3,a,=2
® x = 3 (mod 5) m,=5 a=3
® x =2 (mod7) m;=7,a;=2

m = 3*5*7 = 105, and M, is the product of all but the
kth modulus
® M;=57=35M,=37=21, M3=3"5=15
® y, is the inverse of M, (mod m,)
>y, =2 since 352 =70 =1 (mod 3)
>y, =1since 21*1 =21 =1 (mod 5)
>y3 =1since 15*1 =15 =1 (mod 7)
® Then, x = a;Myy; + a;Myy, + asM3y;
>x = 2*35*2 + 3*21*1 + 2*15*1 = 233 = 23 (mod 105)



In-class exercises

Problem 1: Find x where 8x = 3 (mod 13)

Problem 2: Find x where:
® x =2 (mod 3)
® x = 3 (mod 5)
® x =4 (mod7)



Fermat’s Little Theorem

Theorem: If p is prime and a is an integer not
divisible by p, then aP' = 1 (mod p)

® This also means that aP = a (mod p)

Examples:
B Find 7222 mod 11

® Since 11 is prime, 7' =1 (mod 11)
® Thus, 7% =1 (mod 11) for any integer k
® So 7220 =1 (mod 11), and 7?22 = 7?2 = 5 (mod 11)
® 7222mod 11 =5
B Find 5% mod 13
® 5% =1 (mod 13)so 5% =53=8 mod 13
® 5% mod 13 =8



Primitive roots

Definition: A primitive root modulo a prime p is an
integer r in Z; such that every nonzero element of Z, is
a power of r

® We sometimes call r a generator, since multiplying r by
itself repeatedly can generate every element of Z,

® There is a primitive root in Z, for every prime p

Corollary: If b is an integer in Z, and r is a primitive
root modulo p, then there exists a unique exponent e
inZ,such thatre=D
®ie,rmodp=>b
® Here, e is called the discrete log of b modulo p with base r
>log, b = e (where the “mod p” is understood from context)



#= lhe discrete logarithm problem

Given a prime p, a primitive root r modulo p, and a
positive integer b € Z,, find a value e such that
remodp=>b

How would you solve this?
® No known algorithm in polynomial time

Takeaways for solving congruences:
® We can invert addition with subtraction
® We can invert multiplication with modular inverses
® Inverting exponentiation is more difficult than it appears



Final thoughts

B We can solve congruences by inverting operations,
similar to standard algebra

® To do so with multiplication, we use Euclid’s algorithm and
Bézout numbers to calculate multiplicative modular
inverses

B The Chinese Remainder Theorem allows us to solve
systems of congruences with coprime moduli

B Fermat’s Little Theorem and primitive roots will
come up again in cryptography
® Section 4.5-4.6, next time!



