Discrete Structures for Computer Science

William Garrison

bill@cs.pitt.edu 6311 Sennott Square

Lecture #20: Divisibility and Modular Arithmetic

Today's Topics

Integers and division

- Divisibility
- The division algorithm
- Modular arithmetic

STATE OF THE STATE

What is number theory?

Number theory is the branch of mathematics that explores the integers and their properties.

Number theory has many applications within computer science, including:

- Organizing data
- Encrypting sensitive data
- Developing error correcting codes
- Generating "random" numbers
- ...

We will only scratch the surface...

The notion of divisibility is one of the most basic properties of the integers

Definition: If a and b are integers and $a \neq 0$, we say that a divides b iff there is an integer c such that b = ac. We write $a \mid b$ to say that a divides b, and $a \nmid b$ to say that a does not divide b.

Mathematically:
$$a \mid b \leftrightarrow \exists c \in \mathbf{Z} (b = ac)$$

Note: If $a \mid b$, then

- a is called a factor of b
- $\bullet b$ is called a multiple of a

We've been using the notion of divisibility all along!

$$\bullet E = \{x \mid x = 2k \land k \in \mathbf{Z}\}\$$

TEST SEUTE

Division examples

Examples:

- Does 4 | 16?
- Does 3 | 11?
- Does 7 | 42?

Question: Let *n* and *d* be two positive integers. How many positive integers not exceeding *n* are divisible by *d*?

Answer: We want to count the number of integers of the form dk that are no more than n. That is, we want to know the number of integers k with $0 < dk \le n$, or $0 < k \le n/d$. Therefore, there are $\lfloor n/d \rfloor$ positive integers not exceeding n that are divisible by d.

Important properties of divisibility

Property 1: If $a \mid b$ and $a \mid c$, then $a \mid (b + c)$

Property 2: If $a \mid b$, then $a \mid bc$ for any integer c.

Property 3: If $a \mid b$ and $b \mid c$, then $a \mid c$.

THE STATE OF THE S

Division algorithm

Theorem: Let a be an integer and let d be a positive integer. There are unique integers q and r, with $0 \le r < d$, such that a = dq + r.

For historical reasons, the above theorem is called the division algorithm, even though it isn't an algorithm!

Terminology: Given a = dq + r

- a is called the dividend
- d is called the divisor
- q is called the quotient
- r is called the remainder
- $q = a \operatorname{div} d$
- $r = a \mod d$

div and mod are operators

Examples

Question: What are the quotient and remainder when 123 is divided by 23?

Answer: We have that $123 = 23 \times 5 + 8$. So the quotient is 123 div 23 = 5, and the remainder is 123 mod 23 = 8.

Question: What are the quotient and remainder when -11 is divided by 3?

Answer: Since -11 = $3 \times -4 + 1$, we have that the quotient is -4 and the remainder is 1.

Recall that since the remainder must be non-negative, $3 \times -3 - 2$ is not a valid use of the division theorem!

In-class exercises

Problems 1-4: On Top Hat

Sometimes, we care only about the remainder of an integer after it is divided by some other integer

Example: What time will it be 22 hours from now?

Answer: If it is 11 am now, it will be $(11 + 22) \mod 24 = 33 \mod 24 = 9$ am in 22 hours.

Since remainders can be so important, they have their own special notation!

Definition: If a and b are integers and m is a positive integer, we say that a is congruent to b modulo m iff $m \mid (a - b)$. We write this as $a \equiv b \pmod{m}$.

Note: $a \equiv b \pmod{m}$ iff $a \mod m = b \mod m$.

Examples:

- Is 17 congruent to 5 modulo 6?
- Is 24 congruent to 14 modulo 6?

SHIP OF THE PROPERTY OF THE PR

Properties of congruencies

Theorem: Let m be a positive integer. The integers a and b are congruent modulo m ($a \equiv b \pmod{m}$) iff there is an integer k such that a = b + km.

Theorem: Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then

- $(a+c) \equiv (b+d) \pmod{m}$
- $ac \equiv bd \pmod{m}$

These properties mean we can use addition and multiplication as usual, even if we are only considering remainders (mod m)

Proving one of these congruence rules

WTP: If m is a positive integer, $a \equiv b \pmod{m}$, and $c \equiv d \pmod{m}$, then $(a + c) \equiv (b + d) \pmod{m}$

Assume $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$

- So $m \mid (a-b)$ and $m \mid (c-d)$
- This means a b = km and c d = jm, for some integers k and j

Consider (a + c) - (b + d) = (a - b) + (c - d) = km + jm = m(j + k)

- Thus, $m \mid ((a+c)-(b+d))$
- This means $(a + c) \equiv (b + d) \pmod{m}$.

Defining arithmetic restricted to remainders when dividing by m

 \mathbf{Z}_m denotes the set of nonnegative integers less than m

• i.e., the remainders when dividing by m

From our previous theorem we can show that **mod** "preserves" addition and multiplication

- $(a+b) \bmod m = ((a \bmod m) + (b \bmod m)) \bmod m$
- $(ab) \mod m = ((a \mod m)(b \mod m)) \mod m$

Thus, we can define versions of addition and multiplication that are restricted to this set

- $\bullet \ a +_m b = (a+b) \bmod m$
- $a \cdot_m b = (a \cdot b) \mod m$

These operations form arithmetic modulo m

Examples

Use the definition of addition and multiplication in \mathbf{Z}_m to evaluate each of the following.

- \bullet 6 +₁₂ 10 = (6 + 10) mod 12
- = 16 mod 12 = 4

- $6 \cdot_{12} 10 = (6 \cdot 10) \mod 12$
- = 60 mod 12 = 0

15 ·₁₂ 22

- $15 \cdot_{12} 22 = (15 \cdot 22) \mod 12$
- \bullet = (3 · 10) mod 12
- = 30 mod 12 = 6

In-class exercises

Problem 5-6: On Top Hat

Final thoughts

- Number theory is the study of integers and their properties
- Divisibility, modular arithmetic, and congruency are important topics
 - Later in Chapter 4 we will see how these are used throughout computer science
- Next time:
 - Integer representations (Section 4.2)