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Reminder: What is an algorithm?

Definition: An algorithm is a finite sequence of precise 
instructions for solving a problem

Note these important features!
l Finite: In order to execute, it must be finite
l Sequence: The steps needs to be in the correct order
l Precise: Each step must be unambiguous
l Instructions: Each step can be carried out
l Solving a problem: ?



Reminder: Big-O notation

Definition: Let 𝑓 and 𝑔 be functions from the set of 
integers (or real numbers) to the set of real numbers. 
We say that 𝑓 𝑥 is 𝑂 𝑔 𝑥 if there are constants 𝐶
and 𝑘 such that 𝑓 𝑥 ≤ 𝐶 𝑔 𝑥 whenever 𝑥 ≥ 𝑘.

l 𝐶 and 𝑘 are referred to as witnesses which prove the 
relationship

Formally, 𝑂 𝑔 𝑥 is a set of functions:
𝑂 𝑔 𝑥 = 𝑓 | ∃𝑘, 𝐶 ∀𝑥 𝑥 ≥ 𝑘 → 𝑓 𝑥 ≤ 𝐶 𝑔 𝑥

Examples:
l 2𝑥! is 𝑂 𝑥! because of witnesses 𝐶 = 3 and 𝑘 = 1:

2𝑥! ≤ 3𝑥! whenever 𝑥 ≥ 1
l 3𝑥 + 5 is 𝑂 𝑥 because of witnesses 𝐶 = 4 and 𝑘 = 5:

3𝑥 + 5 ≤ 4𝑥 when 𝑥 ≥ 5

When considering positive values only, 
we will often drop the absolute value



Reminder: Related notations to big-O

Definition: Let 𝑓 and 𝑔 be functions from the set of 
integers (or real numbers) to the set of real numbers. We 
say that 𝑓 𝑥  is Ω 𝑔 𝑥  if there are constants 𝐶 and 𝑘 such 
that 𝑓 𝑥 ≥ 𝐶 𝑔 𝑥  whenever 𝑥 ≥ 𝑘.

l If big-O represents an asymptotic upper bound, big-Omega 
represents an asymptotic lower bound

l (Asymptotic = at scale, as 𝑥 increases toward infinity)

Examples:
l 2𝑥! is Ω 𝑥! , Ω 𝑥 , and Ω 1

 In addition to being 𝑂 𝑥! , 𝑂 𝑥" , 𝑂 𝑥# , …

When 𝑓 𝑥  is both 𝑂 𝑔 𝑥  and Ω 𝑔 𝑥 , we say it is 
Θ 𝑔 𝑥 , so 2𝑥! is Θ 𝑥!

l “Big theta”



Reminder: Why does algorithm analysis 
matter?

“The growth of 𝑓 𝑥  is bounded above by some 
multiple of 𝑔 𝑥 .”

l What does this tell us, if 𝑓 𝑥  describes an algorithm’s cost 
to solve an instance of size 𝑥?

Big-O notation is used in algorithm analysis to group 
algorithms together

l Simple growth rate is more important than exact runtime
l Algorithm analysis describes how algorithms scale to larger 

and larger problem instances
l The difference between algorithms is much wider than the 

differences in hardware can overcome
l Hardware improvements are constant multiplicative factors



Today: Applying growth rates to algorithms

Resource utilization functions and applying big-O

Complexity of algorithms
l Worst case
l Best case
l Average case



Let’s motivate with an example

Problem: Sum the integers from 1 through n

Analysis idea: Identify repeated instructions, count 
frequency

Algorithm A

sum := 0
for i := 1 to n
 sum := sum + i
return sum

Algorithm B

sum := 0
for i := 1 to n
 for j := 1 to i
  sum := sum + 1
return sum

Algorithm C

sum := n*(n+1)/2
return sum



How many operations for these algorithms?

Algorithm A Algorithm B Algorithm C

Additions 𝑛 𝑛 ∗ (𝑛 + 1)
2

1

Multiplications 1

Divisions 1

Total operations 𝑛
𝑛2

2 +
𝑛
2

3

Some operations may take longer…

… but as the input gets larger, the frequency 
is the most important factor



How many operations does this work out to be, 
for different inputs?

Algorithm A Algorithm B Algorithm C

n = 1 1 1 3

n = 10 10 55 3

n = 100 100 5,050 3

n = 1000 1,000 500,500 3

Algorithm analysis focuses on trends as the 
problem instances grow in size

(Measure runtimes as input size grows)

Next year, computers might be twice as fast, but 
a bad algorithm is still 500 times slower



How do we measure the runtime of an 
algorithm?

First, consider expressing the runtime as a function
l Domain: Natural numbers (Why?)
l Preimages represent the size of a problem instance

We rarely need to articulate this function exactly
l Different hardware can change multiplicative constants
l Optimization can reduce constants and lower-order terms
l As such, growth rates are effective at describing what is 

inherent in the algorithm
(rather than how it is implemented)

For runtime: Identify the operations that happen most 
frequently, and determine the growth rate of how 
many



Practice: Max algorithm, pseudocode

procedure max(a1, a2, …, an: integers)
max := 1
for i := 2 to n

if ai > amax then
max := i

return max

What is the most frequent operations?

How many of these operations occur, 
expressed as a growth rate?   Θ(n)



What about an algorithm with variability, 
even for a given size?

procedure linear search(x: integer, a1, a2, …, an: distinct integers)
i := 1
while (i ≤ n and x ≠ ai)

i := i + 1
if i ≤ n then location := i
else location := 0
return location {location is the subscript of the term that 
equals x, or is 0 if x is not found}



We can consider different scenarios for an 
algorithm

Worst case runtime
l Growth rate of the worst possible input of size 𝑛

This is the default, if a case is not specified
l e.g., Linear search for the very last item, or an item that is 

not found

Best case runtime
l Growth rate of the best possible input of size 𝑛
l e.g., Linear search for the very first item

Average case runtime
l Growth rate of the average input of size 𝑛
l Average in what way? Need a probability distribution over 

possible inputs
Note: We can use big-O, big-Ω, 

and big-Θ for each case!



Worst case? Best case?

procedure linear search(x: integer, a1, a2, …, an: distinct integers)
i := 1
while (i ≤ n and x ≠ ai)

i := i + 1
if i ≤ n then location := i
else location := 0
return location {location is the subscript of the term that 
equals x, or is 0 if x is not found}



What about average case?

In order to calculate runtime in the average case, we need 
a probability distribution for inputs

l i.e., how frequently each input is expected
l What if we almost always search for the first item?
l What if we almost always search for an item that can’t be 

found?

Most commonly, we’ll consider the uniform distribution, 
where all inputs are equally likely

l For instance, consider linear search where the target is found, 
and each location is equally likely to contain the target

l Average the cost, weighted by the probability for each input

&
"∈$%&'()

Pr 𝑖 ×Cost 𝑖

Demonstrate for linear search!



Let’s analyze bubble sort

procedure bubble sort(a1, a2, …, an: real numbers)
for i := 1 to n-1

for j := 1 to n-1
if aj > aj+1 then swap aj and aj+1

How many operations? (i.e., comparisons)
l Outer loop has Θ 𝑛  iterations
l Inner loop has Θ 𝑛  iterations for each outer-loop iteration
l Work inside loop (plus loop overhead) is Θ 1
l Remember that repetition can be calculated using 

multiplication
l Total runtime: Θ 𝑛 ∗ 𝑛 ∗ 1 = Θ 𝑛!



What about an improved version?

procedure bubble sort(a1, a2, …, an: real numbers)
for i := 1 to n-1

for j := 1 to n-i
if aj > aj+1 then swap aj and aj+1

How many operations? (i.e., comparisons)
l Outer loop has Θ 𝑛  iterations
l Inner loop changes as the algorithm proceeds

𝑂 𝑛  iterations
Ω 1  iterations

l 𝑂 𝑛!  and Ω 𝑛 . Can we get an exact bound?



Common growth rates and their terminologies 
for complexity

Complexity in 𝑛 Terminology

Θ 1 Constant complexity

Θ log 𝑛 Logarithmic complexity

Θ 𝑛 Linear complexity

Θ 𝑛 log 𝑛 Linearithmic complexity

Θ 𝑛! Polynomial complexity

Θ 𝑏" Exponential complexity

Θ 𝑛! Factorial complexity

These are considered intractable

Consider increasing the instance size:
How will runtime change for each?



In-class exercises

Problem 1: Prove that log" 𝑛  is 𝑂 log 𝑛  for any constant 
𝑏.

Problem 2: What is the worst-case complexity of this 
algorithm? (Express in terms of 𝑛.)

procedure problem 2(n: integer)
x := 1
result := 0
while (x ≤ n)

for i := 1 to x
result := result + 1

x := x * 2
return result



Final thoughts
n We can use growth rates to study algorithms and 

their runtime

n Big-O and related notations are useful for 
complexity since they represent the runtime trends 
at scale

n Next time:
l Starting number theory: Divisibility and modular arithmetic 

(Section 4.1)


