
Discrete Structures for Computer
Science

William Garrison
bill@cs.pitt.edu

6311 Sennott Square

Lecture #18: Growth rates

Today’s Topics

Growth rates of functions
l Big-O notation and its relation to CS
l Growth rates of combined functions
l Big-Omega and Big-Theta notations

Let’s define this “big-O notation” that you’ve
probably heard of (and maybe used)

Definition: Let 𝑓 and 𝑔 be functions from the set of
integers (or real numbers) to the set of real numbers.
We say that 𝑓 𝑥 is 𝑂 𝑔 𝑥 if there are constants 𝐶
and 𝑘 such that 𝑓 𝑥 ≤ 𝐶 𝑔 𝑥 whenever 𝑥 ≥ 𝑘.

l 𝐶 and 𝑘 are referred to as witnesses which prove the
relationship

Formally, 𝑂 𝑔 𝑥 is a set of functions:
𝑂 𝑔 𝑥 = 𝑓 | ∃𝑘, 𝐶 ∀𝑥 𝑥 ≥ 𝑘 → 𝑓 𝑥 ≤ 𝐶 𝑔 𝑥

Examples:
l 2𝑥! is 𝑂 𝑥! because of witnesses 𝐶 = 3 and 𝑘 = 1:

2𝑥! ≤ 3𝑥! whenever 𝑥 ≥ 1
l 3𝑥 + 5 is 𝑂 𝑥 because of witnesses 𝐶 = 4 and 𝑘 = 5:

3𝑥 + 5 ≤ 4𝑥 when 𝑥 ≥ 5

When considering positive values only,
we will often drop the absolute value

220 3 / Algorithms

f (x)

k

g(x)

Cg (x)

f (x) < Cg (x) for x > k

The part of the graph of f (x) that satisfies
f (x) < Cg (x) is shown in color.

FIGURE 2 The function f (x) is O(g(x)).

Example 2 illustrates how big-O notation is used to estimate the growth of functions.
EXAMPLE 2 Show that 7x2 is O(x3).

Solution: Note that when x > 7, we have 7x2 < x3. (We can obtain this inequality by multiplying
both sides of x > 7 by x2.) Consequently, we can take C = 1 and k = 7 as witnesses to establish
the relationship 7x2 is O(x3). Alternatively, when x > 1, we have 7x2 < 7x3, so that C = 7 and
k = 1 are also witnesses to the relationship 7x2 is O(x3). ◂

Courtesy of Stanford
University News Service

DONALD E. KNUTH (BORN 1938) Knuth grew up in Milwaukee, where his father taught bookkeeping at
a Lutheran high school and owned a small printing business. He was an excellent student, earning academic

Links

achievement awards. He applied his intelligence in unconventional ways, winning a contest when he was in the
eighth grade by finding over 4500 words that could be formed from the letters in “Ziegler’s Giant Bar.” This
won a television set for his school and a candy bar for everyone in his class.

Knuth had a difficult time choosing physics over music as his major at the Case Institute of Technology.
He then switched from physics to mathematics, and in 1960 he received his bachelor of science degree, si-
multaneously receiving a master of science degree by a special award of the faculty who considered his work
outstanding. At Case, he managed the basketball team and applied his talents by constructing a formula for
the value of each player. This novel approach was covered by Newsweek and by Walter Cronkite on the CBS
television network. Knuth began graduate work at the California Institute of Technology in 1960 and received

his Ph.D. there in 1963. During this time he worked as a consultant, writing compilers for different computers.
Knuth joined the staff of the California Institute of Technology in 1963, where he remained until 1968, when he took a job as a

full professor at Stanford University. He retired as Professor Emeritus in 1992 to concentrate on writing. He is especially interested
in updating and completing new volumes of his series The Art of Computer Programming, a work that has had a profound influence
on the development of computer science, which he began writing as a graduate student in 1962, focusing on compilers. In common
jargon, “Knuth,” referring to The Art of Computer Programming, has come to mean the reference that answers all questions about
such topics as data structures and algorithms.

Knuth is the founder of the modern study of computational complexity. He has made fundamental contributions to the subject of
compilers. His dissatisfaction with mathematics typography sparked him to invent the now widely used TeX and Metafont systems.
TeX has become a standard language for computer typography. Two of the many awards Knuth has received are the 1974 Turing
Award and the 1979 National Medal of Technology, awarded to him by President Carter.

Knuth has written for a wide range of professional journals in computer science and in mathematics. However, his first publi-
cation, in 1957, when he was a college freshman, was a parody of the metric system called “The Potrzebie Systems of Weights and
Measures,” which appeared in MAD Magazine and has been in reprint several times. He is a church organist, as his father was. He
is also a composer of music for the organ. Knuth believes that writing computer programs can be an aesthetic experience, much like
writing poetry or composing music.

Knuth pays $2.56 for the first person to find each error in his books and $0.32 for significant suggestions. If you send him
a letter with an error (you will need to use regular mail, because he has given up reading e-mail), he will eventually inform you
whether you were the first person to tell him about this error. Be prepared for a long wait, because he receives an overwhelming
amount of mail. (The author received a letter years after sending an error report to Knuth, noting that this report arrived several
months after the first report of this error.)

Why does this matter to computing?

This notation predates its use in computer science by
~70 years!

Consider the intuition behind the math: “The growth
of 𝑓 𝑥 is bounded above by some multiple of 𝑔 𝑥 .”

l What does this tell us, if 𝑓 𝑥 describes an algorithm’s cost
to solve an instance of size 𝑥?

Big-O notation is used in algorithm analysis to group
algorithms together

l Simple growth rate is more important than exact runtime
l Algorithm analysis describes how algorithms scale to larger

and larger problem instances

How to find witnesses to prove a big-O
relationship

When 𝑓 𝑥 is 𝑂 𝑔 𝑥 , there are infinite witnesses
l e.g., if 𝑘 works, then any 𝑘" > 𝑘 also works
l but, we only need to identify one pair 𝑘, 𝐶 to prove the

relationship

Simple key idea: Round up
l To prove that 2𝑥! + 3𝑥 + 2 is 𝑂 𝑥! , “round up” each term

to a multiple of 𝑥!

l 2𝑥! + 3𝑥 + 2 ≤ 2𝑥! + 3𝑥! + 2𝑥! = 7𝑥!, whenever 𝑥 ≥ 1
l So, let 𝐶 = 7 and 𝑘 = 1

In general: Pick a threshold where it is easy to
calculate an upper bound for 𝑓 𝑥 in terms of 𝑔 𝑥

But wait, doesn’t this mean that any greater
𝑔 𝑥 would also work?

In fact, yes!
l 2𝑥! is 𝑂 𝑥! , but also 𝑂 2𝑥! , 𝑂 10𝑥! , 𝑂 𝑥# , and 𝑂 𝑥$ …

However, it is most useful to state the most specific or
descriptive relationship that you can prove

l Multiplicative constants can be anything and are generally
left out

l 𝑂 𝑥! is a proper subset of 𝑂 𝑥# , so stating 𝑓 𝑥 is in the
former also implies it is in the latter, but not vice-versa

l If we know it is 𝑂 𝑥! , then stating it is 𝑂 𝑥# leaves out
information unnecessarily

l Nobody cares that 𝑓 𝑥 is 𝑂 𝑥%!
!

 unless you really can’t
prove something more specific!

How do we know when we can’t use a smaller
bound?

Let’s see by example: Prove that 𝑥! is not 𝑂 𝑥
l We need to prove that there is no choice of 𝐶 and 𝑘 that

satisfy the constraints. Let’s use contradiction.
l Suppose there is a 𝐶 and 𝑘 where 𝑥! ≤ 𝐶𝑥 whenever 𝑥 ≥ 𝑘
l When 𝑥 > 0, we can divide both sides by 𝑥 to see 𝑥 ≤ 𝐶
l However, we cannot pick 𝐶 that satisfies this, since there is

no 𝐶 that is greater than any (arbitrarily large) integer
l This contradiction proves that 𝐶 and 𝑘 do not exist where

𝑥! ≤ 𝐶𝑥 whenever 𝑥 ≥ 𝑘

Therefore, 𝑥! is not 𝑂 𝑥 !
l That is, 𝑥 has a strictly smaller rate of growth than 𝑥!

A heuristic for growth rates of polynomials: Drop
multiplicative constants and lower-order terms

Theorem: Let 𝑓 𝑥 = 𝑎!𝑥! + 𝑎!"#𝑥!"# +⋯+ 𝑎#𝑥 + 𝑎$,
where each 𝑎% is a real number. Then, 𝑓 𝑥 is 𝑂 𝑥! .

l In other words, every 𝑛-degree polynomial is 𝑂 𝑥!

l See §3.2.3 for a proof

This means that we can calculate growth rates without
explicitly finding witnesses

l Drop lower-order terms: 3𝑥" + 6𝑥# − 3𝑥 + 9 becomes 3𝑥"

l Drop multiplicative constants: 3𝑥" becomes 𝑥"

l Thus, 3𝑥" + 6𝑥# − 3𝑥 + 9 is 𝑂 𝑥"

This informal approach matches our goals with algorithm
analysis

l Highest-order term will dominate at scale
l Multiplicative constants are equivalent to hardware choice

Common rates of growth

3.2 The Growth of Functions 223

EXAMPLE 7 In Section 5.1 , we will show that n < 2n whenever n is a positive integer. Show that this in-
equality implies that n is O(2n), and use this inequality to show that log n is O(n).
Solution: Using the inequality n < 2n, we quickly can conclude that n is O(2n) by taking k =
C = 1 as witnesses. Note that because the logarithm function is increasing, taking logarithms
(base 2) of both sides of this inequality shows that

log n < n.

It follows that
log n is O(n).

(Again we take C = k = 1 as witnesses.)
If we have logarithms to a base b, where b is different from 2, we still have logb n is O(n)

because
logb n = log n

log b
< n

log b

whenever n is a positive integer. We take C = 1∕ log b and k = 1 as witnesses. (We have used
Theorem 3 in Appendix 2 to see that logb n = log n∕ log b.) ◂

As mentioned before, big-O notation is used to estimate the number of operations needed to
solve a problem using a specified procedure or algorithm. The functions used in these estimates
often include the following:

1, log n, n, n log n, n2, 2n, n!

Using calculus it can be shown that each function in the list is smaller than the succeeding
function, in the sense that the ratio of a function and the succeeding function tends to zero as n
grows without bound. Figure 3 displays the graphs of these functions, using a scale for the values
of the functions that doubles for each successive marking on the graph. That is, the vertical scale
in this graph is logarithmic.

3

n!

2n

n2

n log n

n

log n

l

4 5 6 7 82

4096
2048
1024

512
256
128

64
32
16

8
4
2
1

FIGURE 3 A display of the growth of functions commonly used in big-O estimates.

Growth rates of combined functions

Theorem: If 𝑓# 𝑥 is 𝑂 𝑔# 𝑥 and 𝑓& 𝑥 is 𝑂 𝑔& 𝑥 , then
𝑓# + 𝑓& 𝑥 is 𝑂 𝑔 𝑥 , where 𝑔 𝑥 = max 𝑔# 𝑥 , 𝑔& 𝑥 for

all 𝑥.

In other words, the sum of two functions has a growth rate
equal to the max of their individual growth rates

Examples:
l 𝑥" + 𝑥 log 𝑥 is 𝑂 𝑥"

l log 𝑥 + log 𝑥 # is 𝑂(log# 𝑥)

Note that this is a generalization of the previous theorem
regarding polynomials

Growth rates of combined functions

Theorem: If 𝑓# 𝑥 is 𝑂 𝑔# 𝑥 and 𝑓& 𝑥 is 𝑂 𝑔& 𝑥 , then
𝑓#𝑓& 𝑥 is 𝑂 𝑔# 𝑥 𝑔& 𝑥 .

In other words, the product of two functions has a growth
rate equal to the product of their individual growth rates

Examples:
l 𝑥# + 𝑥 𝑥 + 5 is 𝑂 𝑥"

l log 𝑥 + log log 𝑥 8 + log 𝑥 is 𝑂(log# 𝑥)

This is especially useful for analyzing nested loops in
algorithm analysis

l As we’ll see next time!

Related notations to big-O

Definition: Let 𝑓 and 𝑔 be functions from the set of
integers (or real numbers) to the set of real numbers. We
say that 𝑓 𝑥 is Ω 𝑔 𝑥 if there are constants 𝐶 and 𝑘 such
that 𝑓 𝑥 ≥ 𝐶 𝑔 𝑥 whenever 𝑥 ≥ 𝑘.

l If big-O represents an asymptotic upper bound, big-Omega
represents an asymptotic lower bound

l (Asymptotic = at scale, as 𝑥 increases toward infinity)

Examples:
l 2𝑥# is Ω 𝑥# , Ω 𝑥 , and Ω 1

 In addition to being 𝑂 𝑥" , 𝑂 𝑥# , 𝑂 𝑥$, …

When 𝑓 𝑥 is both 𝑂 𝑔 𝑥 and Ω 𝑔 𝑥 , we say it is
Θ 𝑔 𝑥 , so 2𝑥& is Θ 𝑥&

l “Big theta”

In-class exercises

On Top Hat

Final thoughts
n Growth rates are commonly expressed using big-O

and related notations

n These notations were not developed for computing,
but fit well for algorithm analysis

n Next time:
l Algorithm analysis (Section 3.3)

