Discrete Structures for Computer Science

William Garrison

bill@cs.pitt.edu 6311 Sennott Square

Lecture #16: Infinite cardinalities

Today's Topics

Defining cardinality for infinite sets

- How can sequences help?
- Countability and proving sets countable
- Proving a set uncountable

We can use the notion of sequences to analyze the cardinality of infinite sets

Definition: Two sets A and B have the same cardinality if and only if there is a one-to-one correspondence (a bijection) from A to B.

Definition: A finite set or a set that has the same cardinality as the natural numbers (or the positive integers) is called countable. A set that is not countable is called uncountable.

Implication: Any sequence $\{a_n\}$ ranging over the natural numbers is countable.

Yes, the cardinalities of the natural numbers and positive integers are the same!

f:
$$N \to Z^+$$
, $f(x) = x + 1$

- This maps natural numbers to positive integers
- Every positive integer k is mapped by natural number k-1
- No two natural numbers have the same mapping
 ➤ That is, if x+1 = y+1, then x = y
- Thus, f is a bijection, and |N| = |Z+|
- Both have cardinality countably infinite
- Even though N contains 0 and Z⁺ does not, cardinality is equal

What about **Z**?

- Seemingly twice as many elements as Z⁺
- Exercise on the board

Show that the set of even positive integers is countable

Proof #1 (Graphical): We have the following 1-to-1 correspondence between the positive integers and the even positive integers:

So, the even positive integers are countable. \Box

Proof #2: We can define the even positive integers as the sequence $\{2k\}$ for all $k \in \mathbb{Z}^+$, so it has the same cardinality as \mathbb{Z}^+ , and is thus countable. \square

Surprisingly, the set of positive rationals is also countable

Consider a binary tree of rationals, with root node $\frac{1}{1}$

• For each node containing $\frac{a}{b}$, let its children be $\frac{a}{a+b}$ and $\frac{a+b}{b}$

Traverse this tree in levelorder fashion, assigning to the natural numbers in order

• i.e., go across the first level, then second level, etc.

 $\frac{1}{1}$, $\frac{1}{2}$, $\frac{2}{1}$, $\frac{1}{3}$, $\frac{3}{2}$, $\frac{2}{3}$, $\frac{3}{1}$, ...

 We just need to show that / all positive rational numbers appear exactly once

Proof sketch that Calkin-Wilf tree contains every positive rational

- First, note that every child has a larger sum of numerator + denominator than its parent
- Consider an arbitrary positive rational, $\frac{a}{b}$, where a and b are positive integers
 - If $\frac{a}{b} = 1$ and thus a = b:
 - ➤ This is the root, so it is in the tree
 - If $\frac{a}{b} < 1$ and thus a < b:
 - \gg This would be the left child of $\frac{a}{b-a}$, also a positive rational
 - If $\frac{a}{b} > 1$ and thus a > b:
 - This would be the right child of $\frac{a-b}{b}$, also a positive rational
 - Since all non-root cases have a parent that is closer to $\frac{1}{1}$, repeatedly applying this logic will eventually reach the root

Another way to show the rationals are countable

This yields the sequence 1/1, 1/2, 2/1, 3/1, 1/3, ..., so the set of rational numbers is countable. \Box

Is the set of real numbers countable?

No, it is not. We can prove this using a proof method called diagonalization, invented by Georg Cantor.

Proof: Assume that the set of real numbers is countable. Then the subset of real numbers between 0 and 1 is also countable, by definition. This implies that the real numbers can be listed in some order, say, r1, r2, r3

Let the decimal representation these numbers be:

r1 =
$$0.d_{11}d_{12}d_{13}d_{14}...$$

r2 = $0.d_{21}d_{22}d_{23}d_{24}...$
r3 = $0.d_{31}d_{32}d_{33}d_{34}...$

•••

Where $d_{ij} \in \{0,1,2,3,4,5,6,7,8,9\} \ \forall i,j$

Proof (continued)

Now, form a new decimal number $r=0.d_1d_2d_3...$ where $d_i=0$ if $d_{ii}=1$, and $d_i=1$ otherwise.

Example:

```
r_1 = 0.123456...
r_2 = 0.234524...
r_3 = 0.631234...
...
r = 0.010...
```

Note that the i^{th} decimal place of r differs from the i^{th} decimal place of each r_i , by construction. Thus r is not included in the list of all real numbers between 0 and 1. This is a contradiction of the assumption that all real numbers between 0 and 1 could be listed. Thus, not all real numbers can be listed, and \mathbf{R} is uncountable.

Final thoughts

- We can use sequences to help us compare the cardinality of infinite sets
 - Prove a set is countable by demonstrating a bijection to another countable set
 - Prove a set uncountable using diagonalization

Next time:

Algorithms (Section 3.1)