Lecture #12: Primes, GCDs, and Representations

Based on materials developed by Dr. Adam Lee
Today’s Topics

Primes & Greatest Common Divisors

- Prime representations
- Important theorems about primality
- Greatest Common Divisors
- Least Common Multiples
- Euclid’s algorithm
Once and for all, what are prime numbers?

Definition: A prime number is a positive integer p that is divisible by only 1 and itself. If a number is not prime, it is called a composite number.

Mathematically: p is prime $\iff \forall x \in \mathbb{Z}^+ \ [(x \neq 1 \land x \neq p) \rightarrow x \mid p]$

Examples: Are the following numbers prime or composite?
- 23
- 42
- 17
- 3
- 9
Any positive integer can be represented as a unique product of prime numbers!

Theorem (The Fundamental Theorem of Arithmetic): Every positive integer greater than 1 can be written uniquely as a prime or the product of two or more primes where the prime factors are written in order of non-decreasing size.

Examples:

- $100 = 2 \times 2 \times 5 \times 5 = 2^2 \times 5^2$
- $641 = 641$
- $999 = 3 \times 3 \times 3 \times 37 = 3^3 \times 37$
- $1024 = 2 \times 2 = 2^{10}$

Note: Proving the fundamental theorem of arithmetic requires some mathematical tools that we have not yet learned.
This leads to a related theorem...

Theorem: If n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n}.

Proof:

- If n is composite, then it has a positive integer factor a with $1 < a < n$ by definition. This means that $n = ab$, where b is an integer greater than 1.
- Assume $a > \sqrt{n}$ and $b > \sqrt{n}$. Then $ab > \sqrt{n}\cdot\sqrt{n} = n$, which is a contradiction. So either $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$.
- Thus, n has a divisor less than or equal to \sqrt{n}.
- By the fundamental theorem of arithmetic, this divisor is either prime, or is a product of primes. In either case, n has a prime divisor less than or equal to \sqrt{n}.
Applying contraposition leads to a naive primality test

Corollary: If n is a positive integer that does not have a prime divisor less than equal to \sqrt{n}, then n is prime.

Example: Is 101 prime?
- The primes less than or equal to $\sqrt{101}$ are 2, 3, 5, and 7
- Since 101 is not divisible by 2, 3, 5, or 7, it must be prime

Example: Is 1147 prime?
- The primes less than or equal to $\sqrt{1147}$ are 2, 3, 5, 7, 11, 13, 17, 23, 29, and 31
- $1147 = 31 \times 37$, so 1147 must be composite
This approach can be generalized

The Sieve of Eratosthenes is a brute-force algorithm for finding all prime numbers less than some value n

Step 1: List the numbers less than n

```
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>17</td>
<td>19</td>
<td>23</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>29</td>
<td>31</td>
<td>37</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>47</td>
<td>47</td>
<td>53</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>61</td>
<td>61</td>
<td>67</td>
<td>71</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Step 2: If the next available number is less than \sqrt{n}, cross out all of its multiples

Step 3: Repeat until the next available number is $> \sqrt{n}$

Step 4: All remaining numbers are prime
How many primes are there?

Theorem: There are infinitely many prime numbers.

Proof: By contradiction

- Assume that there are only a finite number of primes $p_1, ..., p_n$
- Let $Q = p_1 \times p_2 \times ... \times p_n + 1$
- By the fundamental theorem of arithmetic, Q can be written as the product of two or more primes.
- Note that no p_j divides Q, for if $p_j \mid Q$, then p_j also divides $Q - p_1 \times p_2 \times ... \times p_n = 1$.
- Therefore, there must be some prime number not in our list. This prime number is either Q (if Q is prime) or a prime factor of Q (if Q is composite).
- This is a contradiction since we assumed that all primes were listed. Therefore, there are infinitely many primes.

This is a non-constructive existence proof!
In-class exercises

Problem 1: What is the prime factorization of 984?

Problem 2: Is 157 prime? Is 97 prime?

Problem 3: Is the set of all prime numbers countable or uncountable? If it is countable, show a 1-to-1 correspondence between the prime numbers and the natural numbers.
Greatest common divisors

Definition: Let a and b be integers, not both zero. The largest integer d such that $d \mid a$ and $d \mid b$ is called the *greatest common divisor* of a and b, denoted by $\text{gcd}(a, b)$.

Note: We can (naively) find GCDs by comparing the common divisors of two numbers.

Example: What is the GCD of 24 and 36?

- Factors of 24: 1, 2, 3, 4, 6, 8, 12, 24
- Factors of 36: 1, 2, 3, 4, 6, 9, 12, 18, 36
- $\therefore \text{gcd}(24, 36) = 12$
Sometimes, the GCD of two numbers is 1

Example: What is \(\text{gcd}(17, 22) \)?
- Factors of 17: 1, 17
- Factors of 22: 1, 2, 11, 22
- \(\therefore \text{gcd}(17, 22) = 1 \)

Definition: If \(\text{gcd}(a, b) = 1 \), we say that \(a \) and \(b \) are relatively prime, or coprime. We say that \(a_1, a_2, \ldots, a_n \) are pairwise relatively prime if \(\text{gcd}(a_i, a_j) = 1 \) \(\forall i, j \).

Example: Are 10, 17, and 21 pairwise coprime?
- Factors of 10: 1, 2, 5, 10
- Factors of 17: 1, 17
- Factors of 21: 1, 3, 7, 21
We can leverage the fundamental theorem of arithmetic to develop a better algorithm.

Let: \(a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n} \) and \(b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n} \)

Then:

\[
gcd(a, b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \cdots p_n^{\min(a_n,b_n)}
\]

Example: Compute \(\gcd(120, 500) \)

- \(120 = 2^3 \times 3 \times 5 \)
- \(500 = 2^2 \times 5^3 \)
- So \(\gcd(120, 500) = 2^2 \times 3^0 \times 5 = 20 \)
Better still is Euclid’s algorithm

Observation: If \(a = bq + r \), then \(\gcd(a, b) = \gcd(b, r) \)

Proved in section 4.3 of the book

So, let \(r_0 = a \) and \(r_1 = b \). Then:

- \(r_0 = r_1q_1 + r_2 \) \hspace{1cm} 0 \leq r_2 < r_1
- \(r_1 = r_2q_2 + r_3 \) \hspace{1cm} 0 \leq r_3 < r_2
- ...
- \(r_{n-2} = r_{n-1}q_{n-1} + r_n \) \hspace{1cm} 0 \leq r_n < r_{n-1}
- \(r_{n-1} = r_nq_n \)

\(\gcd(a, b) = r_n \)
Examples of Euclid’s algorithm

Example: Compute $\text{gcd}(414, 662)$

- $662 = 414 \times 1 + 248$
- $414 = 248 \times 1 + 166$
- $248 = 166 \times 1 + 82$
- $166 = 82 \times 2 + 2$
- $82 = 2 \times 41$

$\text{gcd}(414, 662) = 2$

Example: Compute $\text{gcd}(9888, 6060)$

- $9888 = 6060 \times 1 + 3828$
- $6060 = 3828 \times 1 + 2232$
- $3828 = 2232 \times 1 + 1596$
- $2232 = 1596 \times 1 + 636$
- $1596 = 636 \times 2 + 324$
- $636 = 324 \times 1 + 312$
- $324 = 312 \times 1 + 12$
- $312 = 12 \times 26$

$\text{gcd}(9888, 6060) = 12$
Definition: The least common multiple of the integers a and b is the smallest positive integer that is divisible by both a and b. The least common multiple of a and b is denoted $\text{lcm}(a, b)$.

Example: What is $\text{lcm}(3,12)$?

- Multiples of 3: 3, 6, 9, 12, 15, ...
- Multiples of 12: 12, 24, 36, ...
- So $\text{lcm}(3,12) = 12$

Note: $\text{lcm}(a, b)$ is guaranteed to exist, since a common multiple exists (i.e., ab).
We can leverage the fundamental theorem of arithmetic to develop a better algorithm.

Let: \(a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n} \) and \(b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n} \)

Then:

\[
lcm(a, b) = p_1^{\max(a_1, b_1)} p_2^{\max(a_2, b_2)} \cdots p_n^{\max(a_n, b_n)}
\]

Example: Compute lcm(120, 500)

- 120 = \(2^3 \times 3 \times 5 \)
- 500 = \(2^2 \times 5^3 \)
- So \(\text{lcm}(120, 500) = 2^3 \times 3 \times 5^3 = 3000 \times 120 \times 500 = 60,000 \)
LCMs are closely tied to GCDs

Note: \(ab = \text{lcm}(a, b) \times \gcd(a, b) \)

Example: \(a = 120 = 2^3 \times 3 \times 5, \ b = 500 = 2^2 \times 5^3 \)

- \(120 = 2^3 \times 3 \times 5 \)
- \(500 = 2^2 \times 5^3 \)
- \(\text{lcm}(120, 500) = 2^3 \times 3 \times 5^3 = 3000 \)
- \(\gcd(120, 500) = 2^2 \times 3^0 \times 5 = 20 \)
- \(\text{lcm}(120, 500) \times \gcd(120, 500) = 60,000 = 120 \times 500 \)

\(\checkmark \)
Problem 4: Use Euclid’s algorithm to compute \(\text{gcd}(92928, 123552) \).

Problem 5: Compute \(\text{gcd}(24, 36) \) and \(\text{lcm}(24, 36) \). Verify that \(\text{gcd}(24, 36) \times \text{lcm}(24, 36) = 24 \times 36 \).
Final Thoughts

- Prime numbers play an important role in number theory

- There are an infinite number of prime numbers

- Any number can be represented as a product of prime numbers; this has implications when computing GCDs and LCMs

- Next time: Proof by Induction