Discrete Structures for Computer Science

William Garrison

bill@cs.pitt.edu 6311 Sennott Square

Lecture #12: Functions

Today's Topics

Set Functions

- Important definitions
- Relationships to sets, relations
- Specific functions of particular importance

Sets give us a way to formalize the concept of a function

Definition: Let A and B be nonempty sets. A function, f, from A to B is an assignment of exactly one element of set B to each element of set A.

Note: We write $f: A \rightarrow B$ to denote that f is a function from A to B

Note: We say that f(a) = b if the element $a \in A$ is mapped to the unique element $b \in B$ by the function f

Functions can be defined in a number of ways

1. Explicitly

- $f: \mathbf{Z} \to \mathbf{Z}$
- $f(x) = x^2 + 2x + 1$

2. Using a programming language

• int min(int x, int y) = $\{x < y ? \text{ return } x : \text{return } y; \}$

3. Using a relation

- Let $S = \{Anna, Brian, Christine\}$
- Let G = {A, B, C, D, F}

More terminology

The domain of a function is the set that the function maps from, while the codomain is the set that is mapped to

If f(a) = b, b is called the image of a, and a is called the preimage of b

The range of a function $f: A \to B$ is the set of all images of elements of A

What are the domain, codomain, and range of the following functions?

- 1. $f: \mathbf{Z} \to \mathbf{Z}, f(x) = x^3$
 - Domain:
 - Codomain:
 - Range:
- 2. $g: \mathbf{R} \to \mathbf{R}, \ g(x) = x 2$
 - Domain:
 - Codomain:
 - Range:
- 3. int foo(int x, int y) = { return (x*y)%2; }
 - Domain:
 - Codomain:
 - Range:

A one-to-one function never assigns the same image to two different elements

Definition: A function $f: A \to B$ is one-to-one, or injective, iff $\forall x, y \in A \left(\left(f(x) = f(y) \right) \to (x = y) \right)$

Are the following functions injections?

- $f: \mathbf{R} \to \mathbf{R}, \ f(x) = x + 1$
- $f: \mathbb{Z} \to \mathbb{Z}, f(x) = x^2$
- $f: \mathbf{R}^+ \to \mathbf{R}^+, f(x) = \sqrt{x}$
- $f: S \to G$

An onto function "uses" every element of its codomain

Definition: We call a function $f: A \to B$ onto, or surjective, iff $\forall b \in B (\exists a \in A(f(a) = b))$, i.e., every element of the codomain has a preimage

Think about an onto function as "covering" the entirety of its codomain.

The following function is a surjection:

Are the following functions one-to-one, onto, both, or neither?

Neither!

One-to-one and onto

(Aside: Functions that are both one-to-one and onto are called *bijections*)

One-to-one

Onto

SHAPE SHAPE

Bijections have inverses

Definition: If $f: A \to B$ is a bijection, the inverse of f is the function $f^{-1}: B \to A$ that assigns to each $b \in B$ the unique value $a \in A$ such that f(a) = b. That is, $f^{-1}(f(a)) = a$ and $f(f^{-1}(b)) = b$.

Graphically:

Note: Only a bijection can have an inverse. (Why?)

Do the following functions have inverses?

1.
$$f: \mathbf{R} \to \mathbf{R}, f(x) = x^2$$

2.
$$g: \mathbb{Z} \to \mathbb{Z}, g(x) = x + 1$$

3. $h: A \rightarrow B$

Functions can be composed with one another

Given functions $g: A \to B$ and $f: B \to C$, the composition of f and g, denoted $f \circ g$, is defined as $(f \circ g)(x) = f(g(x))$.

Note: For $f \circ g$ to exist, the codomain of g must be a subset of the domain of f.

Definition: If $g: A \to B$ and $f: D \to C$ and $B \subseteq D$, $f \circ g$ is a function $A \to C$ where $(f \circ g)(x) = f(g(x))$

Can the following functions be composed? If so, what is their composition?

Let
$$f: A \to A$$
 such that $f(a) = b$, $f(b) = c$, $f(c) = a$
 $g: B \to A$ such that $g(1) = b$, $g(4) = a$

- 1. $(f \circ g)(x)$?
- $2. \quad (g \circ f)(x)?$

Let
$$f: \mathbb{Z} \to \mathbb{Z}$$
, $f(x) = 2x + 1$
 $g: \mathbb{Z} \to \mathbb{Z}$, $g(x) = x^2$

- 1. $(f \circ g)(x)$?
- $2. \quad (g \circ f)(x)?$

Note: There is <u>not</u> a guarantee that $(f \circ g)(x) = (g \circ f)(x)$.

Important functions

Definition: The floor function maps a real number x to the largest integer that is not greater than x. The floor of x is denoted |x|.

Definition: The ceiling function maps a real number x to the smallest integer that is not less than x. The ceiling of x is denoted [x].

Examples:

$$[1.2] = 1$$

$$|7.0| = 7$$

$$[-42.24] = -43$$

$$[1.2] = 2$$

•
$$[7.0] = 7$$

$$[-42.24] = -42$$

We actually use floor and ceiling quite a bit in computer science...

Example: A byte, which holds 8 bits, is typically the smallest amount of memory that can be allocated on most systems. How many bytes are needed to store 123 bits of data?

Answer: We need [123/8] = [15.375] = 16 bytes

Example: How many 1400-byte packets can be transmitted over a 14.4 kbps modem in one minute?

Answer: A 14.4 kbps modem can transmit 14,400*60 = 864,000 bits per minute. Therefore, we can transmit $\lfloor 864000 / (1400 * 8) \rfloor = \lfloor 77.1428571 \rfloor = 77$ packets.

THI THE TABLE OF T

In-class exercises

Problem 1: Find the domain and range of each of the following functions.

- a. The function that determines the number of zeros in some bit string
- b. The function that maps an English word to its two rightmost letters
- c. The function that assigns to an integer the sum of its individual digits

Problem 2: Suppose g is a function from A to B and f is a function from B to C. Prove that if f and g are one-to-one, then $f \circ g$ is one-to-one

Final thoughts

- Sets are the basis of functions, which are used throughout computer science and mathematics
- Next time:
 - Sequences and Summations (Section 2.4)