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05: Hashing and public-key cryptography



Today’s topics: Continuing crypto basics

Encryption does not automatically provide integrity
• But, block ciphers can be used as MACs

Hash functions are important across cryptography
• Including integrity via HMAC

Symmetric crypto has a key distribution problem
• Public-key crypto can help
• Hybrid crypto combines both



Encryption does not provide 
integrity/authenticy!

Just because a message decrypts does not mean it’s what was sent!

You may have experience with checksums to detect errors
• e.g., MD5 checksum on file

However, if an attacker can change the file, they can change the 
checksum too
• Need a keyed primitive!

Message authentication codes (MACs) can solve this problem
• MAC(k, m) represents the MAC of message m using key k



The CBC residue of an encrypted message can 
be used as a cryptographic MAC

How does this work?
• Use a block cipher in CBC mode to encrypt m using the shared key k
• Save the CBC residue r, transmit m and r to the remote party
• The remote party recomputes and verifies the CBC residue of m

Why does this work?
• Malicious parties can still manipulate m in transit
• However, without k, they cannot compute the corresponding CBC residue!

The bad news: Encrypts the whole message, need 2 keys for confidentiality and integrity
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The last block of a CBC 
encryption is called the 

CBC residue



What is a hash function?
A hash function is a function that maps variable-length input to 
fixed-length output

Intuitively, a cryptographically strong hash function needs to 
appear random in output

Four score and 
seven years ago 

our fathers 
brought forth on 
this continent…

0x2bf40a8b690415b69f6f6cc7326597d4

1476 bytes 128 bits



More formally, cryptographic hash functions 
should satisfy three properties

Assume that we have a hash function H : {0,1}* → {0,1}m

Preimage resistance: Given a hash output value z, it should be infeasible to 
calculate a message x such that H(x) = z

• i.e., H is a one way function
• Ideally, computing x from z should take O(2m) time

Second preimage resistance: Given a message x, it is infeasible to calculate a 
second message y such that H(x) = H(y)

• Note that this attack is always possible given infinite time (Why?)
• Ideally, this attack should take O(2m) time

Collision resistance: It is infeasible to find two messages x and y such that H(x) = 
H(y)

• Ideally, this attack should take O(2m/2) time



What can we do with strong hash functions?

Document Fingerprinting
• Use H(D) to see if D has been modified

rA
H(KAB	||	rA)

rB
H(KAB	||	rB)

Mutual Authentication MAC Functions
• Assume a shared key K
• Sender:

• Compute c = EK(H(m))
• Transmit m and c

• Receiver:
• Compute d = EK(H(m))
• Compare c and d



Hash functions can even be used to generate 
cipher keystreams!

This is similar to the block mode OFB (output feedback)
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H(k	||	IV)



SHA-1 is built using the Merkle-Damgård 
construction

The Merkle-Damgård construction is a “template” for constructing cryptographic hash 
functions

• Proposed in the late ‘70s
• Named after Ralph Merkle and Ivan Damgård

Essentially, a Merkle-Damgård hash function does the following:
• Pad the input message if necessary
• Initialize the function with a (static) IV
• Iterate over the message blocks, applying a compression function f
• Finalize the hash block and output

Merke and Damgård independently showed that the resulting hash function is secure if the 
compression function is collision resistant

m1 m2 mn… p

f f f…fIV Finalize Hash

Why is a static IV needed?



A thousand-mile view…

Input: A message of bit length ≤	264	–	1
Output: A 160-bit digest

Steps:
– Pad message to a multiple of 512 bits
– Process one 512 bit chunk at a time
– Expand the sixteen 32-bit words into eighty 

32-bit words
– Initialize five 32-bit words of state
– For each block of five 32-bit words

• Apply function at right
• Add result to output

– Concatenate five 32-bit words of output 
state

Image from Wikipedia



Initialization and Padding

Initialize variables:
h0 = 0x67452301
h1 = 0xEFCDAB89
h2 = 0x98BADCFE
h3 = 0x10325476
h4 = 0xC3D2E1F0

Pre-processing:
append the bit ‘1’ to the message
append 0 ≤ k < 512 bits ‘0’, so that the resulting message length (in bits)
 is congruent to 448 ≡ −64 (mod 512)
append length of message (before pre-processing), in bits, as 64-bit big-endian integer 

Note: These variables comprise the 
internal state of SHA-1. They are 
continuously updated by the 
compression function, and are used to 
construct the final 160-bit hash value.

Example:
       0xDEADBEEF  →  0xDEADBEEF8000 … 0020

32 bits 3210 = 0x20



Initializing the compression function
Process the message in successive 512-bit chunks:
break message into 512-bit chunks 
for each chunk
 break chunk into sixteen 32-bit big-endian words w[i], 0 ≤ i ≤ 15 

 Extend the sixteen 32-bit words into eighty 32-bit words: 
 for i from 16 to 79
  w[i] = (w[i-3] xor w[i-8] xor w[i-14] xor w[i-16])  <<< 1 

 Initialize hash value for this chunk: 
 a = h0
 b = h1
 c = h2
 d = h3
 e = h4 

Note:  <<< denotes a left rotate.

Example:  00011000 <<< 4

                   10000001



Main body of the compression function

Main loop: 
for i from 0 to 79 
 if 0 ≤ i ≤ 19 then 
  f = (b and c) or ((not b) and d); k = 0x5A827999
 else if 20 ≤ i ≤ 39
  f = b xor c xor d; k = 0x6ED9EBA1
 else if 40 ≤ i ≤ 59
  f = (b and c) or (b and d) or (c and d); k = 0x8F1BBCDC
 else if 60 ≤ i ≤ 79
   f = b xor c xor d; k = 0xCA62C1D6

 temp = (a <<< 5) + f + e + k + w[i]
 e = d; d = c; c = b <<< 30; b = a; a = temp 

Add this chunk’s hash to result so far:
h0 = h0 + a; h1 = h1 + b; h2 = h2 + c; h3 = h3 + d; h4 = h4 + e 

Note: Sometimes, we treat state 
as a bit vector…

… but other times, it is treated as 
an unsigned integer



Finalizing the result

Produce the final hash value (big-endian): 
output = h0 || h1 || h2 || h3 || h4

Interesting note:
– k1 = 0x5A827999 = 230 × √2
– k2 = 0x6ED9EBA1 = 230 × √3
– k3 = 0x8F1BBCDC = 230 × √5
– k4 = 0xCA62C1D6 = 230 × √10

Question: Why might it make sense to choose the k values for SHA-1 in 
this manner?

“||” denotes concatenation



HMAC is a construction that generates a 
strong MAC from a hash function

HMAC(k, m) = H( (k ⊕ opad) || H( (k ⊕ ipad) || m) ) 
• opad = 01011010
• ipad = 00110110

The opad and ipad constants were carefully chosen
to ensure that the internal keys have a large
Hamming distance between them

Note that H can be any hash function. For example, HMAC-SHA-1 is the name of 
the HMAC function built using the SHA-1 hash function.

Benefits of HMAC:
• Hash functions are faster than block ciphers
• Good security properties
• Since HMAC is based on an unkeyed primitive, it is not controlled by export restrictions! 



Public-Key Cryptography



Motivation
Recall: In a symmetric key cryptosystem, the same key is used for both encryption and decryption

Note: The sender and recipient need a shared secret key

The good news is that symmetric key algorithms…
• Have been well-studied by the cryptography community
• Are extremely fast, and thus good for encrypting bulk data
• Provide good security guarantees based on very small secrets

Unfortunately…



Symmetric key cryptography is not a panacea
Question: What are some ways in which the need for a shared secret key might cause a problem?

Problem 1: Key management
• In a network with n participants,

C(n,2) = n(n-1)/2 keys are needed!
• This number grows very rapidly!

This class would 
need 630 keys!

Problem 2: Key distribution
l How do Alice and Bob share keys in 

the first place?

l What if Alice and Bob have never met 
in person?

l What happens if they suspect that 
their shared key KAB has been 
compromised?

Wouldn’t it be great if we could 
securely communicate without 

needing pre-shared secrets?

???



Thought Experiment
Forget about bits, bytes, ciphers, keys, and math…

The Scenario: Assume that Alice and Bob have never met in person. 
Alice has a top secret widget that she needs to send to Bob using 
an untrusted courier service. Alice and Bob can talk over the phone 
if needed, but are unable to meet in person. Due to the high-
security nature of their work, the phones used by Alice and Bob 
may by wiretapped by other secret agents.

Problem: How can Alice send her widget to Bob while having very 
high assurance that Bob is the only person who will be able to 
access the widget if it is properly delivered?



Public key cryptosystems are a digital 
counterpart to the strongbox example

Formally, a cryptosystem can be represented as the 5-tuple (E, D, M, C, K)
• M is a message space
• K is a key space
• E : M × K → C is an encryption function
• C is a ciphertext space
• D : C × K → M is a decryption function

Hello,
world!

m ∈ M

Hello,
world!

m ∈ M

?????

c ∈ C

Note: Each “key” in K is 
actually a pair of keys, (k, k-1)

Public key k Private key k-1

E D



What can we do with public key 
cryptography?

First, we need some way of finding a user’s public key

Important: It is critical to verify the authenticity of any public key! (How?)

Public key cryptography allows us to send private messages without the use of pre-shared secret keys

Print it in
the newspaper

Post it on your 
webpage

A trusted 
keyserver (PKI)

Bob’s key?

kB

E(m, kB)

Without kB-1, I 
can’t read this!



Diffie-Hellman key exchange: Public-key for 
deriving a symmetric key

Step 1:
• Randomly choose

a ∈ {1, 2, …, q-1}
• Compute ga (mod q)
• Send ga (mod q)

Step 0: Alice and Bob agree on a finite cyclic group G of (large) prime order 
q, and a generator g for this group. This information is all public.

Step 3:
l Compute 

(gb (mod q))a (mod q)) = 
gba (mod q) = Kab

Step 2:
l Randomly choose

b ∈ {1, 2, …, q-1}
l Compute gb (mod q)

l Send gb (mod q)

ga (mod q)

gb (mod q)

Step 3':
l Compute 

(ga (mod q))b (mod q)) = 
gab (mod q) = Kab

a is Alice’s private key ga (mod q) is Alice's public key



Why is the Diffie-Hellman key exchange 
protocol safe?

Recall: We need to show that it is hard for an attacker to learn any of the secret information 
generated by this protocol, assuming that they know all public information

Public information: G, g, q, ga (mod q), gb (mod q)
Private information: a, b, Kab = gab (mod q)

Tactic 1: Can we get gab (mod q) from ga (mod q) and gb (mod q)?
• We can get gam+bn (mod q) for arbitrary m and n, but this is no help…

Tactic 2: Can we get a from ga (mod q)?
• This called taking the discrete logarithm of ga (mod q)
• The discrete logarithm problem is widely believed to be very hard to solve in certain types of 

cyclic groups

Conclusion: If solving the discrete logarithm problem is hard, then the Diffie-Hellman key 
exchange is secure!



The RSA cryptosystem picks up where Diffie 
and Hellman left off

RSA was proposed by Ron Rivest, Adi Shamir, and Leonard Adelman in 1978. It can 
be used to encrypt/decrypt and digitally sign arbitrary data!

Key generation:
• Choose two large prime numbers p and q, compute n = pq
• Compute ϕ(n) = (p-1)(q-1)
• Choose an integer e such that gcd(e, ϕ(n)) = 1
• Calculate d such that ed ≡ 1 (mod ϕ(n))
• Public key: n, e
• Private key: p, q, d

Usage:
• Encryption: Me (mod n)
• Decryption: Cd (mod n) = Med (mod n) = Mkϕ(n) + 1 (mod n) = M1 (mod n) = M



Unfortunately, RSA is slow when compared to 
symmetric key algorithms like AES or HMAC-X

Using RSA as part of a hybrid cryptosystem can speed up encryption
• Generate a symmetric key ks
• Encrypt m with ks
• Use RSA to encrypt ks using public key k
• Transmit E(ks, m), E(k, ks)

Using hash functions can help speed up signing operations
• Intuition: H(m) << m, so signing H(m) takes far less time than signing m
• Why is this safe? H's preimage resistance property!

k

ks

ks k

ks

ks

mm

k
k-1



Conclusions
Integrity can be provided by symmetric crypto via residues

Hash functions can provide faster MACs

Symmetric encryption is fast, but has key management issues

Public-key crypto improves key management, but is much slower

Hybrid cryptography combines public-key distribution with 
symmetric (or hash) speed for bulk of the work


