
CS 1657
Privacy in the Electronic

Society
William Garrison
bill@cs.pitt.edu

6311 Sennott Square
https://bill-computer.science/1657

05: Hashing and public-key cryptography

Today’s topics: Continuing crypto basics

Encryption does not automatically provide integrity
• But, block ciphers can be used as MACs

Hash functions are important across cryptography
• Including integrity via HMAC

Symmetric crypto has a key distribution problem
• Public-key crypto can help
• Hybrid crypto combines both

Encryption does not provide
integrity/authenticy!

Just because a message decrypts does not mean it’s what was sent!

You may have experience with checksums to detect errors
• e.g., MD5 checksum on file

However, if an attacker can change the file, they can change the
checksum too
• Need a keyed primitive!

Message authentication codes (MACs) can solve this problem
• MAC(k, m) represents the MAC of message m using key k

The CBC residue of an encrypted message can
be used as a cryptographic MAC

How does this work?
• Use a block cipher in CBC mode to encrypt m using the shared key k
• Save the CBC residue r, transmit m and r to the remote party
• The remote party recomputes and verifies the CBC residue of m

Why does this work?
• Malicious parties can still manipulate m in transit
• However, without k, they cannot compute the corresponding CBC residue!

The bad news: Encrypts the whole message, need 2 keys for confidentiality and integrity

Pn-2 Pn-1 Pn

Ek

Ci-1 Ci Ci+1

Ek Ek

⊕ ⊕ ⊕…
The last block of a CBC
encryption is called the

CBC residue

What is a hash function?
A hash function is a function that maps variable-length input to
fixed-length output

Intuitively, a cryptographically strong hash function needs to
appear random in output

Four score and
seven years ago

our fathers
brought forth on
this continent…

0x2bf40a8b690415b69f6f6cc7326597d4

1476 bytes 128 bits

More formally, cryptographic hash functions
should satisfy three properties

Assume that we have a hash function H : {0,1}* → {0,1}m

Preimage resistance: Given a hash output value z, it should be infeasible to
calculate a message x such that H(x) = z

• i.e., H is a one way function
• Ideally, computing x from z should take O(2m) time

Second preimage resistance: Given a message x, it is infeasible to calculate a
second message y such that H(x) = H(y)

• Note that this attack is always possible given infinite time (Why?)
• Ideally, this attack should take O(2m) time

Collision resistance: It is infeasible to find two messages x and y such that H(x) =
H(y)

• Ideally, this attack should take O(2m/2) time

What can we do with strong hash functions?

Document Fingerprinting
• Use H(D) to see if D has been modified

rA
H(KAB	||	rA)

rB
H(KAB	||	rB)

Mutual Authentication MAC Functions
• Assume a shared key K
• Sender:

• Compute c = EK(H(m))
• Transmit m and c

• Receiver:
• Compute d = EK(H(m))
• Compare c and d

Hash functions can even be used to generate
cipher keystreams!

This is similar to the block mode OFB (output feedback)

H H

IV

k k Hk …

P1 P2 P3

C1 C2 C3

⊕ ⊕ ⊕

H(k	||	IV)

SHA-1 is built using the Merkle-Damgård
construction

The Merkle-Damgård construction is a “template” for constructing cryptographic hash
functions

• Proposed in the late ‘70s
• Named after Ralph Merkle and Ivan Damgård

Essentially, a Merkle-Damgård hash function does the following:
• Pad the input message if necessary
• Initialize the function with a (static) IV
• Iterate over the message blocks, applying a compression function f
• Finalize the hash block and output

Merke and Damgård independently showed that the resulting hash function is secure if the
compression function is collision resistant

m1 m2 mn… p

f f f…fIV Finalize Hash

Why is a static IV needed?

A thousand-mile view…

Input: A message of bit length ≤	264	–	1
Output: A 160-bit digest

Steps:
– Pad message to a multiple of 512 bits
– Process one 512 bit chunk at a time
– Expand the sixteen 32-bit words into eighty

32-bit words
– Initialize five 32-bit words of state
– For each block of five 32-bit words

• Apply function at right
• Add result to output

– Concatenate five 32-bit words of output
state

Image from Wikipedia

Initialization and Padding

Initialize variables:
h0 = 0x67452301
h1 = 0xEFCDAB89
h2 = 0x98BADCFE
h3 = 0x10325476
h4 = 0xC3D2E1F0

Pre-processing:
append the bit ‘1’ to the message
append 0 ≤ k < 512 bits ‘0’, so that the resulting message length (in bits)
 is congruent to 448 ≡ −64 (mod 512)
append length of message (before pre-processing), in bits, as 64-bit big-endian integer

Note: These variables comprise the
internal state of SHA-1. They are
continuously updated by the
compression function, and are used to
construct the final 160-bit hash value.

Example:
 0xDEADBEEF → 0xDEADBEEF8000 … 0020

32 bits 3210 = 0x20

Initializing the compression function
Process the message in successive 512-bit chunks:
break message into 512-bit chunks
for each chunk
 break chunk into sixteen 32-bit big-endian words w[i], 0 ≤ i ≤ 15

 Extend the sixteen 32-bit words into eighty 32-bit words:
 for i from 16 to 79
 w[i] = (w[i-3] xor w[i-8] xor w[i-14] xor w[i-16]) <<< 1

 Initialize hash value for this chunk:
 a = h0
 b = h1
 c = h2
 d = h3
 e = h4

Note: <<< denotes a left rotate.

Example: 00011000 <<< 4

 10000001

Main body of the compression function

Main loop:
for i from 0 to 79
 if 0 ≤ i ≤ 19 then
 f = (b and c) or ((not b) and d); k = 0x5A827999
 else if 20 ≤ i ≤ 39
 f = b xor c xor d; k = 0x6ED9EBA1
 else if 40 ≤ i ≤ 59
 f = (b and c) or (b and d) or (c and d); k = 0x8F1BBCDC
 else if 60 ≤ i ≤ 79
 f = b xor c xor d; k = 0xCA62C1D6

 temp = (a <<< 5) + f + e + k + w[i]
 e = d; d = c; c = b <<< 30; b = a; a = temp

Add this chunk’s hash to result so far:
h0 = h0 + a; h1 = h1 + b; h2 = h2 + c; h3 = h3 + d; h4 = h4 + e

Note: Sometimes, we treat state
as a bit vector…

… but other times, it is treated as
an unsigned integer

Finalizing the result

Produce the final hash value (big-endian):
output = h0 || h1 || h2 || h3 || h4

Interesting note:
– k1 = 0x5A827999 = 230 × √2
– k2 = 0x6ED9EBA1 = 230 × √3
– k3 = 0x8F1BBCDC = 230 × √5
– k4 = 0xCA62C1D6 = 230 × √10

Question: Why might it make sense to choose the k values for SHA-1 in
this manner?

“||” denotes concatenation

HMAC is a construction that generates a
strong MAC from a hash function

HMAC(k, m) = H((k ⊕ opad) || H((k ⊕ ipad) || m))
• opad = 01011010
• ipad = 00110110

The opad and ipad constants were carefully chosen
to ensure that the internal keys have a large
Hamming distance between them

Note that H can be any hash function. For example, HMAC-SHA-1 is the name of
the HMAC function built using the SHA-1 hash function.

Benefits of HMAC:
• Hash functions are faster than block ciphers
• Good security properties
• Since HMAC is based on an unkeyed primitive, it is not controlled by export restrictions!

Public-Key Cryptography

Motivation
Recall: In a symmetric key cryptosystem, the same key is used for both encryption and decryption

Note: The sender and recipient need a shared secret key

The good news is that symmetric key algorithms…
• Have been well-studied by the cryptography community
• Are extremely fast, and thus good for encrypting bulk data
• Provide good security guarantees based on very small secrets

Unfortunately…

Symmetric key cryptography is not a panacea
Question: What are some ways in which the need for a shared secret key might cause a problem?

Problem 1: Key management
• In a network with n participants,

C(n,2) = n(n-1)/2 keys are needed!
• This number grows very rapidly!

This class would
need 630 keys!

Problem 2: Key distribution
l How do Alice and Bob share keys in

the first place?

l What if Alice and Bob have never met
in person?

l What happens if they suspect that
their shared key KAB has been
compromised?

Wouldn’t it be great if we could
securely communicate without

needing pre-shared secrets?

???

Thought Experiment
Forget about bits, bytes, ciphers, keys, and math…

The Scenario: Assume that Alice and Bob have never met in person.
Alice has a top secret widget that she needs to send to Bob using
an untrusted courier service. Alice and Bob can talk over the phone
if needed, but are unable to meet in person. Due to the high-
security nature of their work, the phones used by Alice and Bob
may by wiretapped by other secret agents.

Problem: How can Alice send her widget to Bob while having very
high assurance that Bob is the only person who will be able to
access the widget if it is properly delivered?

Public key cryptosystems are a digital
counterpart to the strongbox example

Formally, a cryptosystem can be represented as the 5-tuple (E, D, M, C, K)
• M is a message space
• K is a key space
• E : M × K → C is an encryption function
• C is a ciphertext space
• D : C × K → M is a decryption function

Hello,
world!

m ∈ M

Hello,
world!

m ∈ M

?????

c ∈ C

Note: Each “key” in K is
actually a pair of keys, (k, k-1)

Public key k Private key k-1

E D

What can we do with public key
cryptography?

First, we need some way of finding a user’s public key

Important: It is critical to verify the authenticity of any public key! (How?)

Public key cryptography allows us to send private messages without the use of pre-shared secret keys

Print it in
the newspaper

Post it on your
webpage

A trusted
keyserver (PKI)

Bob’s key?

kB

E(m, kB)

Without kB-1, I
can’t read this!

Diffie-Hellman key exchange: Public-key for
deriving a symmetric key

Step 1:
• Randomly choose

a ∈ {1, 2, …, q-1}
• Compute ga (mod q)
• Send ga (mod q)

Step 0: Alice and Bob agree on a finite cyclic group G of (large) prime order
q, and a generator g for this group. This information is all public.

Step 3:
l Compute

(gb (mod q))a (mod q)) =
gba (mod q) = Kab

Step 2:
l Randomly choose

b ∈ {1, 2, …, q-1}
l Compute gb (mod q)

l Send gb (mod q)

ga (mod q)

gb (mod q)

Step 3':
l Compute

(ga (mod q))b (mod q)) =
gab (mod q) = Kab

a is Alice’s private key ga (mod q) is Alice's public key

Why is the Diffie-Hellman key exchange
protocol safe?

Recall: We need to show that it is hard for an attacker to learn any of the secret information
generated by this protocol, assuming that they know all public information

Public information: G, g, q, ga (mod q), gb (mod q)
Private information: a, b, Kab = gab (mod q)

Tactic 1: Can we get gab (mod q) from ga (mod q) and gb (mod q)?
• We can get gam+bn (mod q) for arbitrary m and n, but this is no help…

Tactic 2: Can we get a from ga (mod q)?
• This called taking the discrete logarithm of ga (mod q)
• The discrete logarithm problem is widely believed to be very hard to solve in certain types of

cyclic groups

Conclusion: If solving the discrete logarithm problem is hard, then the Diffie-Hellman key
exchange is secure!

The RSA cryptosystem picks up where Diffie
and Hellman left off

RSA was proposed by Ron Rivest, Adi Shamir, and Leonard Adelman in 1978. It can
be used to encrypt/decrypt and digitally sign arbitrary data!

Key generation:
• Choose two large prime numbers p and q, compute n = pq
• Compute ϕ(n) = (p-1)(q-1)
• Choose an integer e such that gcd(e, ϕ(n)) = 1
• Calculate d such that ed ≡ 1 (mod ϕ(n))
• Public key: n, e
• Private key: p, q, d

Usage:
• Encryption: Me (mod n)
• Decryption: Cd (mod n) = Med (mod n) = Mkϕ(n) + 1 (mod n) = M1 (mod n) = M

Unfortunately, RSA is slow when compared to
symmetric key algorithms like AES or HMAC-X

Using RSA as part of a hybrid cryptosystem can speed up encryption
• Generate a symmetric key ks
• Encrypt m with ks
• Use RSA to encrypt ks using public key k
• Transmit E(ks, m), E(k, ks)

Using hash functions can help speed up signing operations
• Intuition: H(m) << m, so signing H(m) takes far less time than signing m
• Why is this safe? H's preimage resistance property!

k

ks

ks k

ks

ks

mm

k
k-1

Conclusions
Integrity can be provided by symmetric crypto via residues

Hash functions can provide faster MACs

Symmetric encryption is fast, but has key management issues

Public-key crypto improves key management, but is much slower

Hybrid cryptography combines public-key distribution with
symmetric (or hash) speed for bulk of the work

