
Applied Cryptography and Network
Security

William Garrison
bill@cs.pitt.edu

6311 Sennott Square

Hash Functions and Applications

What is a hash function?

Definition: A hash function is a function that maps a variable-
length input to a fixed-length code

Hash functions are sometimes called message digest functions
• SHA (e.g., SHA-1, SHA-256, SHA-3) stands for the secure hash algorithm
• MD5 stands for message digest algorithm (version 5)

Four score and
seven years ago

our fathers
brought forth on
this continent…

0x2bf40a8b690415b69f6f6cc7326597d4

1476 bytes 128 bits

In order to be useful cryptographically, a hash function
needs to have a “randomized” output

For example:
• Given a large number of inputs, any given bit in the corresponding

outputs should bet set about half of the time
• Any given output should have half of its bits set on average
• Given two messages m and m’ that are very closely related, H(m)

and H(m’) should appear completely uncorrelated

Informally: The output of an m-bit hash function should appear
as if it was created by flipping m unbiased coins (“looks random”)

Theoretical cryptographers sometimes use a more formalized
notion of random oracles to model hash functions when analyzing
security protocols

More formally, cryptographic hash functions should
have the following three properties

Assume that we have a hash function H	:	{0,1}*	→	{0,1}m

1. Preimage resistance: Given a hash output value z, it should be
infeasible to calculate a message x such that H(x)	=	z
• i.e., H is a one-way function
• Ideally, computing x from z should take O(2m) time

2. Second preimage resistance: Given a message x, it is infeasible to
calculate a second message y such that H(x)	=	H(y)
• Note that this attack is always possible given infinite time (Why?)
• Ideally, this attack should take O(2m) time

3. Collision resistance: It is infeasible to find two messages x and y such
that H(x)	=	H(y)
• Ideally, this attack should take O(2m/2) time

What does infeasible mean?

Why only O(2m/2)?

The Birthday Paradox!

The gist: If there are more than 23 people in a room, there is a
better than 50% chance that two people have the same birthday

Wait, what?
• 366 possible birthdays
• To solve: Find probability pn that n people all have different

birthdays, then compute 1-pn	

• If n	=	22,	1	-	pn	≈	0.475
• If n	=	23,	1	-	pn	≈	0.506

Note: The value of n can be
approximated as 1.1774	×
	√𝑁	 = 	1.1774	𝑥	√366	 ≈
	22.525

What does this have to do with hash
functions?

Note that “birthday” is just a mapping 𝑏: 	person → date

Goal: How many inputs to the function 𝑏 are needed to find
𝑥(, 𝑥) such that 𝑏 𝑥(= 𝑏 𝑥) ?

A hash function is 𝐻: 0, 1 ∗ → 0, 1 +

• Note: 𝐻 has 2! possible outputs

Generating 𝑛 outputs produces , ,-.
/

 pairs, each of which

has .
/$

 chance of colliding

• " "#$
%

∗ $
%$

= $
%
 means 𝑛 ≈ 2! = 2

$
%

We’re looking for collisions in
the birthday function!

What are some things that we can do with a
hash function?

Document Fingerprinting
• Use H(D) to see if D has been modified
• Example: Your homework

rA
H(KAB	||	rA)

rB
H(KAB	||	rB)

Mutual Authentication

MAC Functions
l Assume a shared key K
l Sender:

Ø Compute c	=	EK(H(m))
Ø Transmit m and c

l Receiver:
Ø Compute d	=	EK(H(m))
Ø Compare c and d

Hash functions can even be used to generate
cipher keystreams

Question: What block cipher mode does this remind you of?
• Output feedback mode (OFB)

Why is this safe to do?
• Remember that hash functions need to have behave “randomly” in order

to be used in cryptographic applications
• Even if the adversary knows the IV, he cannot figure out the keystream

without also knowing the key, k

H H

IV

k k Hk …

P1 P2 P3

C1 C2 C3

⊕ ⊕ ⊕

H(k	||	IV)

Hash functions also provide a means of safely
storing user passwords

Consider the problem of safely logging into a computer system

Option 1: Store 〈username, password〉 pairs on disk
• Correctness: This approach will certainly work
• Safety: What if an adversary compromises the machine?

• All passwords are leaked!
• This probably means the adversary can log into your email, bank, etc…

Option 2: Store 〈username, H(password)〉 pairs on disk
• Correctness:

• Host computes H(password)

• Checks to see if it is a match for the copy stored on disk

• Safety: Stealing the password file is less* of an issue

In practice, storing passwords is a
bit more complex (more later)

The previous applications provide us with an intuitive way to understand the
importance of a hash function’s cryptographic properties

1.Preimage resistance: Given a hash output value z, it should be
infeasible to calculate a message x such that H(x)	=	z

2.Second preimage resistance: Given a message x, it is infeasible to
calculate a second message y such that H(x)	=	H(y)

• Example: File integrity checking
• Say the ls program has a fingerprint f
• We could create a malicious version of ls that actually executes rm –rf *, but has

the same document fingerprint

3.Collision resistance: It is infeasible to find two messages x and y such
that H(x)	=	H(y)

Without this, we could recover
hashed passwords!

Later in the term, we’ll see that this can lead
to attacks that let us inject arbitrary content

into protected documents!

The search for cryptographic hash functions was
inspired by public-key cryptography

As we will see, public-key systems can produce digital
signatures

• (Can only be generated using a private key, but can be
verified by anyone with a corresponding public key)

• … but they are also very slow compared with block ciphers

Rather than signing a large message (very expensive), we
sign its hash

• Anyone can:
• hash the message to acquire the digest
• Use the public key to verify that the signature matches the digest

• Cryptographic properties ensure that no other message can be
found with the same digest (and thus the same signature)

Many hash functions are based on the Merkle-Damgård
construction

The Merkle-Damgård construction is a “template” for constructing
cryptographic hash functions

l Proposed in the late ‘70s
l Named after Ralph Merkle and Ivan Damgård

Essentially, a Merkle-Damgård hash function does the following:
1. Pad the input message if necessary
2. Initialize the function with a (static) IV
3. Iterate over the message blocks, applying a compression function f
4. Finalize the hash block and output

Merkle and Damgård (separately) showed that the resulting hash
function is secure if the compression function is collision resistant

m1 m2 mn… p

f f f…fIV Finalize Hash

Why is a static IV ok?

Although hashes are unkeyed functions, they can be
used to generate MACs

A keyed hash can be used to detect errors in a message

Unfortunately, this isn’t totally secure…
• It can be easy to append more data and update the MAC accordingly!

There are also attacks against H(m	||	k) and H(k	||	m	||	k)!

Send: m,	c

H(k	||	m)	=	c

Receive: m’,	c

bit flip/alteration of m

H(k	||	m’)	≠	c, so I
should reject m’

k m1 mn… M’

f f f f… Finalize HashIV

HMAC is a construction that uses a hash function to
generate a cryptographically strong MAC

HMAC(k,	m)	=	H((k	⊕	opad)	||	H((k	⊕	ipad)	||	m))	
• opad	=	01011010
• ipad	=	00110110

The opad	and ipad constants were carefully chosen
to ensure that the internal keys have a large
Hamming distance between them

Note that H can be any hash function. For example, HMAC-SHA-1 is the
name of the HMAC function built using the SHA-1 hash function.

Benefits of HMAC:
• Hash functions are faster than block ciphers
• Good security properties
• Since HMAC is based on an unkeyed primitive, it is not controlled by

export restrictions!

Hash functions can also help us check the
integrity of large files efficiently

Many peer-to-peer file sharing systems use Merkle trees for this purpose

Why is this good?
l One branch of the hash tree can be downloaded and verified at a time
l Interleave integrity check with acquisition of file data
l Errors can be corrected on the fly

BitTorrent uses hash lists for file integrity verification
l Must download full hash list prior to verification

Image from Wikipedia

Briefly, the history of hash functions

1989: MD2 published by Ron Rivest
• MD was never published
• Standardized in RFC 1319

1990: SNEFRU published by Ralph Merkle (Xerox)
• Much faster than MD2
• 1992: Broken* (Biham and Shamir)

1990: MD4 published in response (Rivest, RFC 1320)
• MD3 not published
• Even faster than SNEFRU
• 1992: Weaknesses found (den Boer and Bosselaers)

1991: MD5 (Rivest, RFC 1321)
• A bit slower than MD4, but fixed weaknesses

(MD4 and MD5 were also eventually broken)

Briefly, the history of hash functions

1993: NIST proposed SHA (NSA)
• Similar to MD5: a bit slower, improved strength

• Output increased from 128 to 160 bits

1995: SHA-1 (NSA)
• Revision of SHA to fix discovered weaknesses
• SHA replaced and retroactively renamed to SHA-0

2004: SHA-2 (NSA)
• Wanted longer hash length
• Variants with 224-, 256-, 384-, and 512-bit outputs
• Used alongside SHA-1

2005–2019: Various attacks published against SHA-1
• Initially, ways of finding collisions only with fewer rounds
• 2011: Collision in full SHA-1 in 234 (~$2.77 M)
• 2015: Collision with non-standard IV (~$75–120 K)
• 2017: Two PDF files published with the same SHA-1

2006–2015: SHA-3 design competition (NIST)

Putting it all together…

Why compute the HMAC over Eke(m)?
• Alice doesn’t need to waste time decrypting m if it was mangled

in transit, since its authenticity can be checked first!

Why use two separate keys?
• In general, it’s a bad idea to use cryptographic material for multiple

purposes

Let’s use the key ke
for encryption, and ka

for authentication.
Sure. Keep

them secret!

I want to send
Alice the

message m…

Eke(m),	HMAC(ka,	Eke(m))

