Applied Cryptography and Network
Security

William Garrison
bill@cs.pitt.edu
6311 Sennott Square

Hash Functions and Applications

(&) University of Pittsburgh

What is a hash function?

Definition: A hash function is a function that maps a variable-
length input to a fixed-length code

Four score and
seven years ago

our fathers j1> 0x2bf40a8b690415b69f6f6¢c7326597d4
brought forth on

this conﬁnem‘...\\ \
7 1476 bytes 128 bits

Hash functions are sometimes called message digest functions
e SHA (e.g., SHA-1, SHA-256, SHA-3) stands for the secure hash algorithm
e MD5 stands for message digest algorithm (version 5)

In order to be useful cryptographically, a hash function
; needs to have a “randomized” output

For example:

e Given a large number of inputs, any given bit in the corresponding
outputs should bet set about half of the time

e Any given output should have half of its bits set on average

e Given two messages m and i’ that are very closely related, H(m)
and H(m') should appear completely uncorrelated

Informally: The output of an m-bit hash function should appear
as if it was created by flipping m unbiased coins (“looks random”)

Theoretical cryptographers sometimes use a more formalized
notion of random oracles to model hash functions when analyzing
security protocols

More formally, cryptographic hash functions should
; have the following three properties

% Assume that we have a hash function H : {0,1}* - {0,1}™

What does infeasible mean?

1 Preimage resistance: Given a hash output value z, it should be
infeasible|to calculate a message xsuch that H(x) = z

e i.e., His a one-way function

e Ideally, computing x from zshould take 0(2™) time

2. Second preimage resistance: Given a message x, it is infeasible to
calculate a second message y such that H(x) = H(y)

e Note that this attack is always possible given infinite time (Why?)
o l|deally, this attack should take O(27) time

3. Collision resistance: It is infeasible to find two messages x and y such
that H(x) = H(y)
e lIdeally, this attack should take 0(2™/2) time

\ Why only 0(2™/%)2

The Birthday Paradox!

The gist: If there are more than 23 people in a room, there is a
better than 50% chance that two people have the same birthday

Wait, what?
e 366 possible birthdays

e To solve: Find probability p, that n people all have different
birthdays, then compute 1-p,

- 365364363 367 —n
366 366 366 366

Pn

Note: The value of n can be
o Ifn=221-p,~0475 - approximated as 1.1774 X

e Ifn=23,1-p,~0.506 VN = 11774 x V366 ~
22.525

What does this have to do with hash
functions?

Note that “birthday” is just a mapping b: person — date

Goal: How many inputs to the function b are needed to find

Xiy Xj such that b(xi) = b(xj)? \

We're looking for collisions in

A hash function is H:{0,1}* — {0,1}m e birthday function!

e Note: H has 2™ possible outputs

n-1) hairs, each of which

Generating n outputs produces —

has zim chance of colliding

n(n-1 1
° ()*
2 2m

m
2

1
=5meansnzv2m=2

What are some things that we can do with a
hash function?

£ v
v
>

Iy

H(Kyp || ra)

I'g

H(Kyp || rg)

g

Mutual Authentication

MAC Functions
® Assume a shared key K

® Sender:

) » Compute c = E (H
Document Fmgerprmtmg > Transpmit rCn anclj((c m)

e Use H(D) to see if D has been modified ® Receiver:
e Example: Your homework > Compute d = E (H(m))

-

» Compare c and d

Hash functions can even be used to generate
cipher keystreams

1\Y
y l l
H(k || IV) k= H k => H k => H
P4 P, P3
v
Cq C Cs

Question: What block cipher mode does this remind you of?
e OQOutput feedback mode (OFB)

Why is this safe to do?
e Remember that hash functions need to have behave “randomly” in order
to be used in cryptographic applications
e Even if the adversary knows the IV, he cannot figure out the keystream
without also knowing the key, k

Hash functions also provide a means of safely
storing user passwords

Consider the problem of safely logging into a computer system

Option 1: Store <{username, password) pairs on disk
e Correctness: This approach will certainly work

o Safety: What if an adversary compromises the machine?
e All passwords are leaked!
e This probably means the adversary can log into your email, bank, etc...

Option 2: Store <{username, H(password)) pairs on disk

o Correctness:

e Host computes H(password)

e Checks to see if it is a match for the copy stored on disk
o Safety: Stealing the password file is less* of an issue

In practice, storing passwords is a
bit more complex (more later)

The previous applications provide us with an intuitive way to understand the
importance of a hash function’s cryptographic properties

1.Preimage resistance: Given a hash output value z, it should be
infeasible to calculate a message xsuch that H(x) = z

\ Without this, we could recover

hashed passwords!

2.Second preimage resistance: Given a message x, it is infeasible to
calculate a second message y such that H(x) = H(p)
o Example: File integrity checking
e Say the Is program has a fingerprint £

e We could create a malicious version of Is that actually executes rm —rf *, but has
the same document fingerprint

3.Collision resistance: It is infeasible to find two messages x and y such
that H(x) = H(y)

Later in the term, we'll see that this can lead
fo attacks that let us inject arbitrary content
into protected documents!

The search for cryptographic hash functions was
= inspired by public-key cryptography

As we will see, public-key systems can produce

e (Can only be generated using a private key, but can be
verified by anyone with a corresponding public key)

e ... but they are also very slow compared with block ciphers

Rather than signing a large message (very expensive), we
sign its hash
e Anyone can:

e hash the message to acquire the digest
e Use the public key to verify that the matches the digest

o Cryptographic properties ensure that no other message can be
found with the same digest (and thus the same signature)

Many hash functions are based on the Merkle-Damgard
construction

¥ The Merkle-Damgard construction is a “template” for constructing

cryptographic hash functions

® Proposed in the late ‘70s
® Named after Ralph Merkle and Ivan Damgard

Essentially, a Merkle-Damgard hash function does the following:

1. Pad the input message if necessary / Why is a static IV ok?
2. Initialize the function with a (static) IV
3. lterate over the message blocks, applying a compression function f

4. Finalize the hash block and output

3
g

L Ll

Merkle and Damgard (separately) showed that the resulting hash
function is secure if the compression function is collision resistant

Although hashes are unkeyed functions, they can be
; used to generate MACs

7 A keyed hash can be used to detect errors in a message

H(k || m) #c, so | ' R
.) R : , d: ,
[should reject m 9 . eceive: m', c Send: m, c

bit flip/alteration of m

H(k || m) = c

Unfortunately, this isn’t totally secure...
e It can be easy to append more data and update the MAC accordingly!

There are also attacks against H(m || k) and H(k || m || k)!

HMAC is a construction that uses a hash function to
; generate a cryptographically strong MAC

' HMAC(k,m) |

HMAC(k m) = H((k@ opad) || H((k®D ipad) || m))

e opad=01011010 Kl

e ipad=00110110 | p—ripad

-] D
The opad and ipad constants were carefully chosen A
to ensure that the internal keys have a large Y v opad
Hamming distance between them h —i
I

Note that H can be any hash function. For example, HMAC-SHA-1 is the
name of the HMAC function built using the SHA-1 hash function.

Benefits of HMAC:
e Hash functions are faster than block ciphers
e Good security properties

e Since HMAC is based on an unkeyed primitive, it is not controlled by
export restrictions!

Hash functions can also help us check the
integrity of large files efficiently

Many peer-to-peer file sharing systems use Merkle trees for this purpose

| Top hash |

Hash Hash Hash Hash
0-0 0-1 1-0 1-1
Data Data Data Data
block block block block
000 001 002 003

Why is this good?
® One branch of the hash tree can be downloaded and verified at a time
® Interleave integrity check with acquisition of file data
® Errors can be corrected on the fly

BitTorrent uses hash lists for file integrity verification
® Must download full hash list prior to verification

Image from Wikipedia

= Briefly, the history of hash functions

1989: MD2 published by Ron Rivest

e MD was never published
e Standardized in RFC 1319

1990: SNEFRU published by Ralph Merkle (Xerox)
e Much faster than MD2
e 1992: Broken* (Biham and Shamir)
1990: MD4 published in response (Rivest, RFC 1320)
e MD3 not published
e Even faster than SNEFRU
e 1992: Weaknesses found (den Boer and Bosselaers)
1991: MD5 (Rivest, RFC 1321)

e A bit slower than MD4, but fixed weaknesses
(MD4 and MD5 were also eventually broken)

Briefly, the history of hash functions

1993: NIST proposed SHA (NSA)

e Similar to MD5: a bit slower, improved strength
e Qutput increased from 128 to 160 bits

1995: SHA-1 (NSA)
e Revision of SHA to fix discovered weaknesses
e SHA replaced and retroactively renamed to SHA-0

2004: SHA-2 (NSA)
e Wanted longer hash length
e Variants with 224-, 256-, 384-, and 512-bit outputs
e Used alongside SHA-1
2005-2019: published against SHA-1
e [nitially, ways of finding collisions only with fewer rounds
e 2011: Collision in full SHA-1 in 26° (~$2.77 M)
e 2015: Collision with non-standard IV (~$75-120 K)
e 2017: Two PDF files published with the same SHA-1

2006-2015: SHA-3 design competition (NIST)

| want to send
Alice the
message ...

Let’s use the key &%,
for encryption, and %,
for authentication.

Sure. Keep
them secret!

Eke(m)' HMAC (ka' Eke(m))

Why compute the HMAC over E, (m)?

e Alice doesn’t need to waste time decrypting m if it was mangled
in transit, since its authenticity can be checked first!

Why use two separate keys?

e In general, it’s a bad idea to use cryptographic material for multiple
purposes

