Applied Cryptography and Network
Security

William Garrison
bill@cs.pitt.edu
6311 Sennott Square

Block modes of operation and MACs

(&) University of Pittsburgh

Block Cipher Modes of Operation

Fixed-length plaintext block: Four score and seven

Permutation on block-length
strings, determined by key

Fixed-length ciphertext block: ad239dglkjs92(sfhb9f0d

Question: What happens if we need to encrypt more
than one block of plaintext?

The most obvious way of using a block cipher is called electronic
codebook mode (ECB)

Encryption Decryption
Piq P; Pirq Ci.1 C; Cit1
| | | | | |
E; E; Ex Dy Dy Dy,
| | | | | |
Ci—] CI C;'+1 Pl 1 P1 P1 +1

Benefit: Errors in ciphertext do not propagate past a single block

What is wrong with ECB? - This is called a
e KPA: Known plaintext/ciphertext pairings €— code book
o CPA: Ability to encrypt guesses, and semantic security

e Block replay attacks

In general, using ECB mode is not a great idea...

The use of ECB mode can lead to block replay or

substitution attacks

lecturer

$$$

sci.dean

$$$

lecturer

$$$

sci.dean

$$$

lecturer

sci.dean

Observation: When using ECB, the same block will always be
encrypted the same way

| can’t read these
messages, but they
_ the same...

This message is
different! Something
has changed...

/

To protect against this type of guessing attack, we need our
cryptosystem to provide us with semantic security.

emantic Security / Ciphertext Indistinguishability

N
\

= The semantic (in)security of a cipher can be established as follows:

Challenger Adversary
1. Choose two equal-length
mm messages m,, m,
€ r 2. Send messages to challenger
1. Choose b€ {0,1}
uniformly at random
2. Encrypt m, Amy)
m
3. Send E(m,) to adversary b >| 3 Guess »

The adversary “wins” if they have a non-negligible advantage in
guessing b. More concretely, they win if P[b'= b] > 1% + .

If the adversary does not have an advantage, the cipher is said to
provide indistinguishability under chosen-plaintext attack (IND-CPA).

The “covert channel” attack shows up because block ciphers
i running in ECB mode are not semantically secure!

Question: Can you demonstrate this?

Challenger Adversary
1. m,= “HelloHello”
e m m, = “HelloWorld”
€ r 2. Send messages to challenger
1. Choose b€ {0, 1}
uniformly at random
2. Encrypt m, using ECB E(my)
my,
3. send £(m,) to adversary > 3. If first block = second block,
then b= 0.

Otherwise, b=1.

P/b’=b] =1

=, Problems with ECB, depicted graphically

This is what
we want

\

This is what
ECB does

Cipher Block Chaining (CBC) mode addresses the
problems with ECB

Encryption Decryption
P, P, P, C, C, Cs

SENENY aE
L

Dy,
E, E, E,
v _%9
3
In CBC mode, each plaintext block is XORed with the previous ciphertext
block prior to encryption
e (;=Ex(FD Cp)
e Pi= (1 D DKC()

Need to encrypt a random block to get things started
e This initialization vector needs to be random, but not secret (Why?)

CBC eliminates block replay attacks
e Each ciphertext block depends on previous block

Semantic security, redux

Challenger Adversary
1. m,= “HelloHello”
m, = “HelloWorld”
mO) m1
< 2. Send messages to challenger
1. Choose b€ {0,1} uniformly
at random

2. Generate a random IV E(m,)
3. Encrypt m,using CBC m 5 . ~
4. Send £(m,) to adversary 3. LLZ;SZ El%Ck = second block,

Otherwise, b=1.

Note that the adversary’s “trick” does not work anymore (Why?)
° ¢y =EV D my,)
* Cp2=E(cp; D myy)

Essentially, the IV randomizes the output of the game, even if it is
played over multiple rounds

Cipher Feedback Mode (CFB) can be used to construct a self-
i synchronizing stream cipher from a block cipher

Encryption

Py P, s

AQ%J%[%F

Z;

To generate an n-bit CFB based upon an n-bit block cipher algorithm, as
above, we have that:

o (;=P D ELC))
o Pi= (D ELC)

What is really interesting is that this technique can be used to develop an
m-bit cipher based upon an n-bit block cipher, where m < n by using a shift-
register approach

This is great, since we don’t need to wait for n bits of plaintext to encrypt!
o Example: Typing at a terminal

Encryption
Initially fill with IV j
Shift register
<
\ J \
\
! |
E, //
—
Last 8 bits —] Z //

Using an n-bit cipher to get an m-bit cipher (m < n)

Decryption

Shift register

Output Feedback Mode (OFB) can be used to construct a
synchronous stream cipher from a block cipher

Encryption
P, P, P,
v v
—® —@ —
IV —> E, > £ > £
v v v
C, C, C,

How does this work?
e (i=P®S;, Si=ES1)
o P=CDS;, Si=E(S1)

Benefit: Key stream generation can occur offline

Pitfall: Loss of synchronization is a killer...

Counter mode (CTR) generates a key stream
X independently of the data

Encryption Decryption
v IV+1 I\Y IV+1
E, E, Ej Ej
é v
P, %% P, —)% ¢, > ¢, >
C, C, P, P,

Pros:

e We can do the expensive cryptographic operations offline
e Encryption/decryption is just an XOR

e |t is possible to encrypt/decrypt starting anywhere in the message

Cons:
e Don’t use the same (key, IV) for different files (Why?)

CTR mode has some interesting applications

RSITP

O

Example: Accessing a large file or database

Operation: Read block number n of the file In most symmetric key
e CTR: One encryption operation is needed ciphers encryption and

* =GO E(AV+n) < decryption have the
e CBC: One decryption operation i ed same complexity
° pn=Cr1®D D(c)

If n is large, this is
Operation: Update block kof n problematic...
e CTR: One encryption operation is needed
o =p,DE(V+ k)
e What about CBC?

e First, we need to decrypt all blocks after & (n- & decryptions)
e Then, we need to encrypt blocks & through n (n- £+ 1 encryptions)

Operation: Encrypt all n blocks of a file on a machine with ccores
e CTR: 0O(n/ c) time required, as cores can operate in parallel
e CBC: O(nm) time required on one core...

A couple other block modes worth
mentioning...

XEX (XOR, Encrypt, XOR)

e Designed for full disk encryption, where we need to
read/write any block quickly

o Keystream depends on the location on the disk

e Prevents targeted modifications when plaintext is known
e (See §4 HW #6 regarding how this can be done in CTR)

XTS (XEX with Ciphertext Stealing)

o XEX is inefficient if the cipher block size doesn’t go in
evenly into the disk block size

e Wasted partial disk block

o Ciphertext stealing is a trick for altering the final two
cipher blocks to fit a smaller space

0 Which mode of operation should | use?

Unless you are encrypting short, random data (e.g., a
cryptographic key) do not use ECB!

e And even then, be very cautious. It’s best to switch.

Use CBC if either:

e You are encrypting files, since there are rarely errors on
storage devices

e You are dealing with a software implementation

CFB (usually 8-bit CFB) is the best choice for encrypting
streams of characters entered at, e.g., a text terminal

XTS is standard for full-disk encryption

Stay up to date with modern best practices!

Encryption does not guarantee integrity/authenticity

eRSIp
&>

¥
O

” CRCs can be used to detect random errors in a message

CRC(m) # ¢,
so | should)
reject m’ : v

Unfortunately, bad guys can recompute CRCs... CRC(m) = ¢

CRC(m) = c,
so | should)
accept m’ : v

CRC(m) =c

Receive: m’ ¢ Send: m, ¢
< il &4

bit flip in m

Receive: m; ¢’ Send: m, c
<€

O)

Alter m, compute ¢’= CRC(m)

Solution: Cryptographic message authentication codes (MACs)

The CBC residue of an encrypted message can be used
as a cryptographic MAC

The last block of a CBC

: encryption is called the
. e% —)% _>$ CBC residue

How does this work?
e Use a block cipher in CBC mode to encrypt m using the shared key k&
e Save the CBC residue r
e Transmit m and r to the remote party
e The remote party recomputes and verifies the CBC residue of m

Why does this work?
e Malicious parties can still manipulate m in transit
e However, without %, they cannot compute the corresponding CBC residue!

The bad news: Encrypting the whole message is expensive!

How can we guarantee the confidentiality and
integrity of a message?

Does this mean using CBC encryption gives us confidentiality and
integrity at the same time?

Unfortunately, it does not &

To use CBC for confidentiality and integrity, we need two keys
e Encrypt the message M using k; to get ciphertext C; = {C4, ..., Cin}
e Encrypt M using k;, to get C; = {Cy1, ..., Con}
e Transmit <C,, Cy,)

But wait, isn’t that twice the runtime?

e Some block modes combine confidentiality and integrity
e e.g., CCM, GCM, but are similarly slow; see §4.4

° : Exploit parallelism if there is access to multiple cores
o : Faster hash-based MACs (next up!)

Putting it all together...

,
[
&

| want to send
Alice the
message ...

Let’s use the key &%,
for encryption, and %;
for integrity.

Sure. Keep
them secret!

E,.(m), CBCR,(m)

All is well?

Today we learned how symmetric-key cryptography can protect the
confidentiality and integrity of our communications

So, the security problem is solved, right?

Unfortunately, symmetric key cryptography doesn’t solve
everything...

1. How do we get secret keys for everyone that we want to talk to?
2. How can we update these keys over time?
Coming up soon: Public key cryptography will help us solve problem 1

Later in the semester: We’ll look at that help
with problem 2

Next: Hashing and more efficient MACs

