
Applied Cryptography and Network
Security

William Garrison
bill@cs.pitt.edu

6311 Sennott Square

Block modes of operation and MACs

Block Cipher Modes of Operation

Block Cipher

Permutation on block-length
strings, determined by key

Fixed-length plaintext block: Four score and seven

Fixed-length ciphertext block: ad239dglkjs92lsfhb9f0d

Fixed-length key

Question: What happens if we need to encrypt more
than one block of plaintext?

Block ciphers have many modes of operation

The most obvious way of using a block cipher is called electronic
codebook mode (ECB)

Benefit: Errors in ciphertext do not propagate past a single block

What is wrong with ECB?
• KPA: Known plaintext/ciphertext pairings
• CPA: Ability to encrypt guesses, and semantic security
• Block replay attacks

In general, using ECB mode is not a great idea…

Pi-1 Pi Pi+1

Ek

Ci-1 Ci Ci+1

Ek Ek Dk Dk Dk

Pi-1 Pi Pi+1

Ci-1 Ci Ci+1

Encryption Decryption

This is called a
code book

The use of ECB mode can lead to block replay or
substitution attacks

Example: Salary data transmitted using ECB

sci.dean$$$lecturer$

sci.dean$lecturer$$$

sci.dean$$$lecturer$$$

Why is the ability to build a codebook dangerous?

Observation: When using ECB, the same block will always be
encrypted the same way

Wait

Wait

I can’t read these
messages, but they

are the same…

Attack

This message is
different! Something

has changed...

To protect against this type of guessing attack, we need our
cryptosystem to provide us with semantic security.

Semantic Security / Ciphertext Indistinguishability

The semantic (in)security of a cipher can be established as follows:

The adversary “wins” if they have a non-negligible advantage in
guessing b. More concretely, they win if P[b’	=	b]	>	½	+	ε.

If the adversary does not have an advantage, the cipher is said to
provide indistinguishability under chosen-plaintext attack (IND-CPA).

Challenger Adversary

m0	,	m1

1. Choose two equal-length
messages m0	,	m1

2. Send messages to challenger

E(mb)

1. Choose b	∈	{0,1}
uniformly at random

2. Encrypt mb
3. Send E(mb) to adversary 3. Guess b

The “covert channel” attack shows up because block ciphers
running in ECB mode are not semantically secure!

Question: Can you demonstrate this?

Challenger Adversary

m0	,	m1

1. 	m0 = “HelloHello”
 m1 = “HelloWorld”

2. Send messages to challenger

E(mb)

1. Choose b	∈	{0,	1}	
uniformly at random

2. Encrypt mb using ECB
3. Send E(mb) to adversary

3. If first block = second block,
then b	=	0.
Otherwise, b	=	1.

P[b’	=	b]	=	1

Problems with ECB, depicted graphically
This is what

we want

This is what
ECB does

Cipher Block Chaining (CBC) mode addresses the
problems with ECB

In CBC mode, each plaintext block is XORed with the previous ciphertext
block prior to encryption

• Ci	=	Ek(Pi	⊕	Ci-1)
• Pi	=	Ci-1		⊕	Dk(Ci)

Need to encrypt a random block to get things started
• This initialization vector needs to be random, but not secret (Why?)

CBC eliminates block replay attacks
• Each ciphertext block depends on previous block

P1 P2 P3

Ek

C1 C2 C3

Ek Ek

⊕ ⊕ ⊕

…

Encryption

IV
Dk Dk Dk

…P1 P2 P3

C1 C2 C3

⊕ ⊕ ⊕

Decryption

IV

Semantic security, redux

Note that the adversary’s “trick” does not work anymore (Why?)
• c01	=	E(IV	⊕	m01)
• c02	=	E(c01	⊕	m02)

Essentially, the IV randomizes the output of the game, even if it is
played over multiple rounds

Challenger Adversary

m0, m1

1. m0 = “HelloHello”
 m1 = “HelloWorld”

2. Send messages to challenger

E(mb)

1. Choose b	∈	{0,1}	uniformly
at random

2. Generate a random IV
3. Encrypt mb using CBC
4. Send E(mb) to adversary 3. If first block = second block,

then b	=	0.
Otherwise, b	=	1.

Cipher Feedback Mode (CFB) can be used to construct a self-
synchronizing stream cipher from a block cipher

To generate an n-bit CFB based upon an n-bit block cipher algorithm, as
above, we have that:

• Ci	=	Pi	⊕	Ek(Ci-1)
• Pi	=	Ci	⊕	Ek(Ci-1)

What is really interesting is that this technique can be used to develop an
m-bit cipher based upon an n-bit block cipher, where m	≤	n by using a shift-
register approach

This is great, since we don’t need to wait for n bits of plaintext to encrypt!
• Example: Typing at a terminal

P1

C1

⊕

…

Encryption

Ek

P2

C2

⊕ Ek

P3

C3

⊕IV Ek

Using an n-bit cipher to get an m-bit cipher (m	<	n)

Shift register

Ek

⊕Pi Ci

ki

Initially fill with IV

Last 8 bits

Shift register

Ek

⊕

ki
Last 8 bits

Ci Pi

Encryption Decryption

Output Feedback Mode (OFB) can be used to construct a
synchronous stream cipher from a block cipher

How does this work?
• Ci	=	Pi	⊕	Si	,		Si	=	Ek(Si-1)
• Pi	=	Ci	⊕	Si	,		Si	=	Ek(Si-1)

Benefit: Key stream generation can occur offline

Pitfall: Loss of synchronization is a killer…

Encryption

P1

C1

⊕ …Ek

P2

C2

⊕
Ek

P3

C3

⊕
IV Ek

Counter mode (CTR) generates a key stream
independently of the data

Pros:
• We can do the expensive cryptographic operations offline
• Encryption/decryption is just an XOR
• It is possible to encrypt/decrypt starting anywhere in the message

Cons:
• Don’t use the same (key, IV) for different files (Why?)

P1

Ek

C1

…

Encryption
IV

⊕ P2

Ek

C2

IV+1

⊕

Decryption

Ek

C1 …

IV

⊕
Ek

IV+1

⊕

P1 P2

C2

CTR mode has some interesting applications

Example: Accessing a large file or database

Operation: Read block number n of the file
• CTR: One encryption operation is needed

• pn	=	cn	⊕	E(IV	+	n)
• CBC: One decryption operation is needed

• pn	=	cn-1	⊕	D(cn)

Operation: Update block k of n
• CTR: One encryption operation is needed

• ck	=	pk	⊕	E(IV	+	k)
• What about CBC?

• First, we need to decrypt all blocks after k (n	–	k decryptions)

• Then, we need to encrypt blocks k through n (n	–	k	+	1 encryptions)

Operation: Encrypt all n blocks of a file on a machine with c cores
• CTR: O(n	/	c) time required, as cores can operate in parallel
• CBC: O(n) time required on one core…

In most symmetric key
ciphers encryption and
decryption have the
same complexity

If n is large, this is
problematic…

A couple other block modes worth
mentioning…

XEX (XOR, Encrypt, XOR)
• Designed for full disk encryption, where we need to

read/write any block quickly
• Keystream depends on the location on the disk
• Prevents targeted modifications when plaintext is known

• (See §4 HW #6 regarding how this can be done in CTR)

XTS (XEX with Ciphertext Stealing)
• XEX is inefficient if the cipher block size doesn’t go in

evenly into the disk block size
• Wasted partial disk block

• Ciphertext stealing is a trick for altering the final two
cipher blocks to fit a smaller space

So… Which mode of operation should I use?

Unless you are encrypting short, random data (e.g., a
cryptographic key) do not use ECB!

• And even then, be very cautious. It’s best to switch.

Use CBC if either:
• You are encrypting files, since there are rarely errors on

storage devices
• You are dealing with a software implementation

CFB (usually 8-bit CFB) is the best choice for encrypting
streams of characters entered at, e.g., a text terminal

XTS is standard for full-disk encryption

Stay up to date with modern best practices!

Encryption does not guarantee integrity/authenticity

CRCs can be used to detect random errors in a message

Unfortunately, bad guys can recompute CRCs…

Solution: Cryptographic message authentication codes (MACs)

Send: m,	c

CRC(m)	=	c

Receive: m’,	c

bit flip in m

CRC(m’)	≠	c,
so I should
reject m’

Send: m, c

CRC(m)	=	c

Receive: m’,	c’
CRC(m’)	=	c’,
so I should
accept m’

Alter m, compute c’	=	CRC(m’)

The CBC residue of an encrypted message can be used
as a cryptographic MAC

How does this work?
• Use a block cipher in CBC mode to encrypt m using the shared key k
• Save the CBC residue r
• Transmit m and r to the remote party
• The remote party recomputes and verifies the CBC residue of m

Why does this work?
• Malicious parties can still manipulate m in transit
• However, without k, they cannot compute the corresponding CBC residue!

The bad news: Encrypting the whole message is expensive!

Pn-2 Pn-1 Pn

Ek

Ci-1 Ci Ci+1

Ek Ek

⊕ ⊕ ⊕…

The last block of a CBC
encryption is called the

CBC residue

How can we guarantee the confidentiality and
integrity of a message?

Does this mean using CBC encryption gives us confidentiality and
integrity at the same time?

Unfortunately, it does not 😞

To use CBC for confidentiality and integrity, we need two keys
• Encrypt the message M using k1 to get ciphertext C1 = {c11, …, c1n}
• Encrypt M using k2 to get C2 = {c21, …, c2n}
• Transmit 〈C1, c2n〉

But wait, isn’t that twice the runtime?
• Some block modes combine confidentiality and integrity

• e.g., CCM, GCM, but are similarly slow; see §4.4

• Fix #1: Exploit parallelism if there is access to multiple cores
• Fix #2: Faster hash-based MACs (next up!)

Putting it all together…

Let’s use the key ke
for encryption, and ki

for integrity.
Sure. Keep

them secret!

I want to send
Alice the

message m…

Eke(m),	CBCRki(m)

All is well?

Today we learned how symmetric-key cryptography can protect the
confidentiality and integrity of our communications

So, the security problem is solved, right?

Unfortunately, symmetric key cryptography doesn’t solve
everything…

1. How do we get secret keys for everyone that we want to talk to?
2. How can we update these keys over time?

Coming up soon: Public key cryptography will help us solve problem 1

Later in the semester: We’ll look at key exchange protocols that help
with problem 2

Next: Hashing and more efficient MACs

