
Applied Cryptography and Network
Security

William Garrison
bill@cs.pitt.edu

6311 Sennott Square

Symmetric Key Cryptography

A Motivating Scenario

How can Alice and Bob communicate over an untrustworthy channel?

Need to ensure that:
1. Their conversations remain secret (confidentiality)
2. Modifications to any data sent can be detected (integrity)

Recall our cryptographic model…

Formally, a cryptosystem can be represented as the 5-tuple (E, D, M, C, K)
• M is a message space
• K is a key space
• E : M × K → C is an encryption function
• C is a ciphertext space
• D : C × K → M is a decryption function

Hello,
world!

m ∈ M

Hello,
world!

m ∈ M

?????

c ∈ C

E D

Today’s focus is on symmetric key encryption

Why study symmetric key cryptography?

Rather obvious good uses of symmetric key cryptography include:
l Transmitting data over insecure channels

 SSL, SSH, etc.

l Securely storing sensitive data in untrusted places
 Malicious administrators
 Cloud computing
 …

l Integrity verification and tamper resistance

Authentication is (perhaps) a less obvious use of symmetric key crypto

rA
{	rA	}KAB
rB

{	rB	}KAB

KAB KAB

We’ll go over these types of
protocols in much detail soon…

The classical algorithms that we studied last time are
examples of symmetric key ciphers

Unfortunately, most of these ciphers offer essentially no
protection in modern times

The exception is the one-time pad which offers perfect security
from an information theory perspective

• Namely, a single ciphertext of length n can decrypt to any
message of length up to n.

• More formally, 𝑃 𝑚 = 𝑃 𝑚 𝑐

However, the large amount of key material required by the one-
time pad is a hindrance to its use for many practical purposes

• To transmit a message of length n, you need a key of length n
• If you have a secure channel to transmit n bits of key, why not use it to

transmit n bits of message instead?

In modern cryptography, algorithms use a fixed-length key to
encipher variable length data

In an ideal world, we would like to have the perfect security
guarantees of the one-time pad, without the hassle of requiring
our key length to equal our message length

This is very difficult!

However, modern cryptographers have developed many
algorithms that give good security using very small keys

We’ll study two classes of symmetric key algorithms
• First: Block ciphers

• DES, 3DES, AES, Blowfish, etc.

• Later: Stream ciphers
• RC4, ChaCha, SEAL, etc.

BLOCK CIPHERS

Block ciphers are the most common symmetric
cryptographic cipher

Block ciphers operate on fixed-length blocks of plaintext
• Typical block lengths: 40, 56, 64, 80, 128, 192 and 256 bits
• Typical key lengths: 128, 192, or 256 bits

Often, block ciphers apply several rounds of a simpler function
• Many block ciphers can be categorized as Feistel networks

• Bit shuffling, non-linear substitution, and linear mixing (XOR)
• Confusion and diffusion a la Claude Shannon

• Example: DES is a Feistel network that uses 16 rounds

Block Cipher

Permutation on block-length
strings, determined by key

Fixed-length plaintext block: Four score and seven

Fixed-length ciphertext block: ad239dglkjs92lsfhb9f0d

Fixed-length key

Designing good block
ciphers is as much of

an art as it is a
science…

Block ciphers compared with substitution
ciphers

Ideal Cipher Model: Each input is mapped to a random
output

• Monoalphabetic substitution cipher: letter by letter
• 26 options for each of 26 input letters
• Full mapping can be written down in dozens of bits

• Block cipher with (say) 64-bit blocks
• 2!" options for each of 2!" input blocks
• Full mapping would require ~2#$ bits (a zettabyte) to store

The ideal cipher model is infeasible
• Provably incompatible with being efficiently computable
• Can be approximated: Pseudorandom permutation (PRP)

• Outputs should look random to someone without the key

Structure of a practical block cipher

Similar components to classical ciphers with more repetition and
complexity

• Usually in multiple rounds: mini-ciphers that are not necessarily
secure individually

Each round transformation uses a per-round key
• Key expansion: Deriving per-round keys from main key
• This key schedule is often cached if multiple blocks are to be

encrypted

Each round is composed of replacements and shufflings
• More complex versions of what we saw in historical substitution and

transposition ciphers (respectively)
• S(ubstitution)-boxes: Replace each possible input value with an

output value
• P(ermutation)-boxes: Rearrange the positions of various bits
• The per-round key alters the specific details of these substitutions

and permutations

Feistel networks: Making block ciphers
reversible

Horst Feistel developed the Feistel cipher structure
• ~1971 at IBM, along with other key ideas for block ciphers
• Key idea: Split the block in half, “mangle” and swap

• (This is the structure of each round)

Images from Wikipedia

Example: DES

Some of the history behind DES

NIST (then NBS) standardized DES in 1976
• Based on Lucifer cipher developed at IBM in early 1970s
• Substitution boxes changed from IBM’s design
• (Effective) key length reduced from 64 bits to 56 bits

Suspicion was immediately raised about the changes
• Changing S-boxes without explanation caused concern about

backdoors
• Might there be attacks against specific combinations?
• 1990 differential cryptanalysis discovered, DES was strengthened

• Decreased key length weakens the cipher against brute-force
attacks
• 1991 Quisquater and Desmendt discussed the possibility of a

“Chinese lottery”
• 1993 Weiner proposed $1M machine, 7 hours
• 1997 RSA Security held contest, distributed DESCHALL broke DES
• 1998 EFF built Deep Crack, $250,000, about 2 day

Bandages that kept DES in use longer
despite brute-force weakness

Triple-DES (3DES) was proposed to overcome DES’s
weakness to brute-force

• To encrypt, use DES three times
• Initially, 2 keys (K1 then K2 then K1 again)

• Later, 3 keys (K1 then K2 then K3)
• EDE: Use encrypt mode, then decrypt mode, then encrypt

mode
• One reason: hardware implementations could be (wastefully)

backward compatible by setting K1 = K2 = K3

• Less security than expected from the long runtime and
combined key length

This was clearly not a long-term solution, and development
started on a replacement

• 1997 NIST design competition, Rijndael → AES
• Goal: At least as strong as DES, but more efficient and flexible

Between DES and AES came Blowfish, by Schneier
et al.

1993, no patents, 64-bit block size, huge subkeys, slow
to switch keys

Still no serious cryptographic breaks
• (Some weak keys)
• Twofish is a more modern version

Some interesting and unique properties
• Key-dependent S-boxes
• Long key schedule (computing subkeys)
• Pi (?!)

What is the key schedule for Blowfish?

(Recall: Subkeys are data computed from the
key, used in encryption)

P-array
• 18 subkeys
• 32 bits each
• P1,	P2,	…,	P18

S-boxes
• 4 lookup tables
• 8 bits → 32 bits
• S1,0,	S1,1,	…,	S1,255;
S2,0,	S2,1,	…,	S2,255;
S3,0,	S3,1,	…,	S3,255;
S4,0,	S4,1,	…,	S4,255;

72 bytes

4096 bytes

Split block in half

XOR left with
a P value

F block

XOR with
right half

Swap halves

16 total iterations
XOR halves with
last two P values

Decryption is the same,
using the P-arrays in

reverse!

Big lookup tables

Split input
into 4 pieces

Add modulo 232

XOR

Add modulo 232

Where do the P-array and S-boxes come from?

18 32-bit P values, four 8-bit to 32-bit S-boxes
 = 4168 bytes from (max) 448-bit (56 byte) key!

1. Fill P-array and S-boxes with the (hex)digits of pi
2. XOR the key into the P-array

• P1	=	P1	⊕ first 32 bits of key
• P2	=	P2	⊕ second 32 bits of key
• … repeat key as needed

3. Encrypt 0 string, replace P1,	P2 with output
4. Encrypt output, replace P3,	P4 with new output
5. Repeat until entire P-array and all S-boxes are

replaced
521 full encryptions!!

A few questions to think about…

Why initialize the constants with the digits of pi?

Which step in Blowfish is very inefficient?
• In what way is that a good thing?

Unique components of AES

We’ve seen that most block ciphers have linear and non-
linear steps in each round

• Linear: preserved by XOR, i.e., 𝐹 𝑎⨁𝑏 = 𝐹 𝑎 ⨁𝐹 𝑏
• In DES, the P-box permutations

• Non-linear: not preserved by XOR, often a series of S-boxes
• These steps prevent the use of linear equations to cryptanalyze

In AES, the non-linear 8-bit S-box is based on multiplicative
inverse over GF(28)

• Good non-linearity properties, compact description
• “Nothing up my sleeve”
• Otherwise, arbitrary; many other options would work well

Note that AES is not a Feistel network; all steps must be 1-
to-1, but all bits can be mangled in each round (vs. half)

A 128-bit block is
arranged as a square Key schedule

produces a 128-bit
subkey for each round

(plus one)

Subkey XOR’d with
the current state
at the start and
after each round

(All data is
manipulated in bytes)

The non-linear layer in AES: SubBytes

SubBytes implements the
S-box in AES

• Each of the 16 bytes
in the square is
replaced with another

• Substitution was
derived from inverses
in Galois Fields
• … but can be

implemented as a
hard-coded lookup
table

• The same lookup
table is used for all
bytes

The linear layer in AES: ShiftRows and
MixColumns

Each row is shifted by
a different number of

bytes

The linear layer in AES: ShiftRows and
MixColumns

Each column
is multiplied
by a fixed
polynomial

(Often implemented as a
hardcoded lookup table)

Note: Each byte impacts each
other byte within 2 rounds!

Back to the key schedule: How are subkeys
calculated?

(We will focus on 128-bit keys, though others are related)

Initial key populates a square, column-wise
• Same as we did with a data block

Later subkeys are generated from earlier ones
• RotWord: In the last column, rotate the top byte to the

bottom
• SubWord: Use the S-box to substitute each byte in this column
• Rcon: XOR this column with a round-specific constant
• This column becomes the first in the new round key
• Other columns are computed by XORing the old value with the

column to the left in the new value

Recall: Each subkey is XOR’d
with the intermediate state

in between rounds

Implementation details in AES

As mentioned, AES is not a Feistel network!
• Feistel networks are easily reversible, but can only mangle

half the data in each round
• Instead, each step was carefully designed to be

independently reversible
• Decryption executes the inverse of each step, in reverse

order

Note that many steps use “hard” math conceptually
but can be implemented with much simpler operations

• e.g., XOR, table lookup
• Today, AES is (almost) always hardware-accelerated

• CPU vendors add special AES-specific instructions that combine
multiple steps and execute very efficiently

STREAM CIPHERS

Stream ciphers are inspired by one-time pad

The secrecy of a stream cipher rests entirely on PRNG “randomness”

Often, we see stream ciphers used in communications hardware
• Single bit transmission error effects only single bit of plaintext
• Low transmission delays

• Key stream can (sometimes) be pre-generated and buffered
• Encryption is just an XOR
• No buffering of data to be transmitted

Stream Cipher

PRNG
Pseudo-random

sequence, used as
a one-time pad

Arbitrary-length plaintext: Four score and seven years ago …

Arbitrary-length ciphertext: ad239dglkjs92lsfhb9f0dfdsggre…

Fixed-length key

This is just the
XOR function!

RC4: Key schedule

Start with the
identity array

Use the key to
scramble the mapping

RC4: Generating key stream and updating
state

Another step of
scrambling, like

before but without
using the key again

K is a byte of keystream,
XOR’d with a byte of plaintext

Salsa20, a more modern stream cipher

Like in AES, internal state is a square
• In this case, a 4×4 square of 32-bit words
• A 256-bit key is broken into 8 words, arranged in the square

along with constants and stream position / nonce values
• The function QR(a, b, c, d) can operate on a row or

column:
 b ^= (a + d) <<< 7;
 c ^= (b + a) <<< 9;
 d ^= (c + b) <<< 13;
 a ^= (d + c) <<< 18;

• Generation requires 20 rounds of mixing
• Odd rounds use QR on each column, even rounds use QR on

each row
• After all rounds, the new square is added to the previous
• The resulting square is 512 bits of keystream!

Salsa20 diagrams

One quarter-round

Two types of stream ciphers constructions

In a synchronous stream cipher, the key stream is generated
independently of the ciphertext

• Advantages
• Do not propagate transmission errors
• Prevent insertion attacks

• Key stream can be pre-generated

• Disadvantage: May need to change keys often if periodicity of PRNG is low

In a self-synchronizing stream cipher, the key stream is a function of some
number of ciphertext bits

• Advantages
• Decryption key stream automatically synchronized with encryption key stream

after receiving n ciphertext bits
• Less frequent key changes, since key stream is a function of key and ciphertext

• Disadvantage: Vulnerable to replay attack

All is well?

Today we learned how symmetric-key cryptography can protect the
confidentiality of our communications

So, the security problem is solved, right?
• What about integrity?

Unfortunately, symmetric key cryptography doesn’t solve
everything…

1. How do we get secret keys for everyone that we want to talk to?
2. How can we update these keys over time?

In about a week: Public key cryptography will help us with problem 1

Later in the semester: We’ll look at key exchange protocols that help
with problem 2

Next: Block modes of operation, integrity mechanisms

