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A Motivating Scenario

How can Alice and Bob communicate over an untrustworthy channel?

Need to ensure that:
1. Their conversations remain secret (confidentiality)
2. Modifications to any data sent can be detected (integrity)



Recall our cryptographic model...

Formally, a cryptosystem can be represented as the 5-tuple (E, D, M, C, K)

e Mis a message space

e Kis a key space

e E:M X K— Cisan encryption function
e (s a ciphertext space

e D:C X K— Mis a decryption function

Hello,

Today’s focus is on symmetric key encryption
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=, Why study symmetric key cryptography?

Rather obvious good uses of symmetric key cryptography include:

® Transmitting data over insecure channels
> SSL, SSH, etc.

® Securely storing sensitive data in untrusted places
> Malicious administrators

> Cloud computing
> ...

We'll go over these types of
protocols in much detail soon...

® Integrity verification and tamper resistance

Authentication is (perhaps) a less obvious use of symmetric key crypto
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The classical algorithms that we studied last time are
; examples of symmetric key ciphers

Unfortunately, most of these ciphers offer essentially no
protection in modern times

The exception is the one-time pad which offers perfect security
from an information theory perspective
e Namely, a single ciphertext of length n can decrypt to any
message of length up to n.
e More formally, P(m) = P(m|c)

However, the large amount of key material required by the one-
time pad is a hindrance to its use for many practical purposes
e To transmit a message of length n, you need a key of length n

e If you have a secure channel to transmit n bits of key, why not use it to
transmit n bits of message instead?



In modern cryptography, algorithms use a fixed-length key to
i encipher variable length data

In an ideal world, we would like to have the perfect security
guarantees of the one-time pad, without the hassle of requiring
our key length to equal our message length

This is very difficult!

However, modern cryptographers have developed many
algorithms that give good security using very small keys

We’ll study two classes of symmetric key algorithms
o First: Block ciphers
e DES, 3DES, AES, Blowfish, etc.
e Later: Stream ciphers
e RC4, ChaCha, SEAL, etc.



BLOCK CIPHERS



Block ciphers are the most common symmetric

Block ciphers operate on fixed-length blocks of plaintext

Often, block ciphers apply several rounds of a simpler function™

Many block ciphers can be categorized as Feistel networks
e Bit shuffling, non-linear substitution, and linear mixing (XOR)

Fixed-length plaintext block: Four score and se

Permutation on block-length
strings, determined by key

Fixed-length ciphertext block: ad239dglkjs92(sfhb9f0d

Typical block lengths: 40, 56, 64, 80, 128, 192 and 256
Typical key lengths: 128, 192, or 256 bits

e Confusion and diffusion a la Claude Shannon
Example: DES is a Feistel network that uses 16 rounds
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Designing good block
ciphers is as much of
an art as it is a
science...
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Block ciphers compared with substitution
ciphers

|deal Cipher Model: Each input is mapped to a random
output
e Monoalphabetic substitution cipher: letter by letter

e 26 options for each of 26 input letters
e Full mapping can be written down in dozens of bits

e Block cipher with (say) 64-bit blocks
o 2% options for each of 2%% input blocks
e Full mapping would require ~27Y bits (a zettabyte) to store

The ideal cipher model is infeasible

e Provably incompatible with being efficiently computable
e Can be approximated: (PRP)
e QOutputs should look random to someone without the key



= Structure of a practical block cipher

Similar components to classical ciphers with more repetition and
complexity

e Usually in multiple rounds: mini-ciphers that are not necessarily
secure individually

Each round transformation uses a per-round key
o : Deriving per-round keys from main key

e This key schedule is often cached if multiple blocks are to be
encrypted

Each round is composed of replacements and shufflings

e More complex versions of what we saw in historical substitution and
transposition ciphers (respectively)

e S(ubstitution)-boxes: Replace each possible input value with an
output value

e P(ermutation)-boxes: Rearrange the positions of various bits

e The per-round key alters the specific details of these substitutions
and permutations



Feistel networks: Making block ciphers
reversible

Horst Feistel developed the Feistel cipher structure

e ~1971 at IBM, along with other key ideas for block ciphers
e Key idea: Split the block in half, “mangle” and swap

e (This is the structure of )
| 64-bit input | | 64-bit butput |
| 32-bitL, | | 32-bitR, | | 32-bitL, | | 32-bitR, |
angler Mangler
Yy
| 32-bit L, | | 32-bit R4 | | 32-bitL,,, | | 32-bit R, |
| 64-bit output | | 64-bit input |

Encryption Decryption



Plaintext (64 bits)

MNe
y

for 16 rounds

Me

M
e

FP

Ciphertext (64 bits)

5

Outer bits

~

B Half Block (32 bits) Subkey (48 bits)
E
>‘v/.-\v‘<
N7
T T L T T
Yy AAAARLAARAALARARS" au AT ARARAARAY R AR
31H S2 SBI_.S S5 ‘ 6 || s7 U S8
[ THTJTIT TS0 T T

Middle 4 bits of input

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
00 0010 1100 0100 0001 0111 1010 1011 0110 1000 0101 /0011 1111 1101 0000 1110 1001
01 1110 1011 0010 1100 0100 0111 1101 0001 0101 0000 1111 1010 0011 1001 1000 0110
10 0100 0010 0001 1011 1010 1101 0111 1000 1111 1001 1100 0101 0110 0011 0000 1110

11,1011 1000 1100 0111 0001|1110 0010 1101 0110 1111 0000 1001 /1010 0100 0101 0011
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Key (64 bits)
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Some of the history behind DES

NIST (then NBS) standardized DES in 1976

e Based on Lucifer cipher developed at IBM in early 1970s
o changed from IBM’s design
o (Effective) key length reduced from 64 bits to 56 bits

Suspicion was immediately raised about the changes
e Changing S-boxes without explanation caused concern about

e Might there be attacks against specific combinations?
e 1990 differential cryptanalysis discovered, DES was strengthened

e Decreased key length weakens the cipher against brute-force
attacks

e 1991 Quisquater and Desmendt discussed the possibility of a
“Chinese lottery”

e 1993 Weiner proposed $1M machine, 7 hours
e 1997 RSA Security held contest, distributed DESCHALL broke DES
e 1998 EFF built Deep Crack, $250,000, about 2 day



Bandages that kept DES in use longer
= despite brute-force weakness

Triple-DES (3DES) was proposed to overcome DES’s
weakness to brute-force

e To encrypt, use DES
e [nitially, 2 keys (K; then K, then K, again)
e Later, 3 keys (K; then K, then Kj3)

e EDE: Use encrypt mode, then decrypt mode, then encrypt
mode

e One reason: hardware implementations could be (wastefully)
backward compatible by setting K, = K; = K;

e Less security than expected from the long runtime and
combined key length

This was clearly not a long-term solution, and development
started on a replacement

e 1997 NIST designh competition, Rijndael — AES
e Goal: At least as strong as DES, but more efficient and flexible



Between DES and AES came Blowfish, by Schneier
R et al.

1993, no patents, 64-bit block size, huge subkeys,
to switch keys

Still no serious cryptographic breaks
e (Some weak keys)
e Twofish is a more modern version

Some interesting and unique properties
o Key-dependent S-boxes
o (computing subkeys)
e Pi(?])



What is the key schedule for Blowfish?

(Recall: Subkeys are data computed from the
key, used in encryption)

P-array S-boxes
* 18 subkeys * 4 lookup tables
« 32 bits each » 8 bits — 32 bits
« P, P, ..., Py * S10 S11 eew S1255;
52,00 92,15+ 92,255
/2 bytes 53,01 93,1 - 93,255

54,0: 54,1: ee S4,255i

4096 bytes



Plaintext
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— Split block in half

XOR left wifh;
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XOR with
right half

F block

Swap halves
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16 total iterations
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last two P values
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Decryption is the same,
using the P-arrays in $
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Big lookup tables
Add modulo 2%

8 bits i
. S-box 1 32 bits

i

Split input
info 4 pieces

8 bits 32 bits
|| S-box 2

32 bits |
—Q

8 bits
@
e 32 bits
8 bits [ } 32 bits *
—T S-box 4

g

XOR

i

i

Add modulo 232



=, YWhere do the P-array and S-boxes come from?

18 32-bit P values, four 8-bit to 32-bit S-boxes

= 4168 bytes from (max) 448-bit (56 byte) key!

1. Fill P-array and S-boxes with the (hex)digits of pi

2. XOR the key into the P-array
e P, =P, @ first 32 bits of key
e P,=P, @ second 32 bits of key
e .. repeat key as needed

3. Encrypt O string, replace P,, P, with output
4. Encrypt output, replace P, P, with new output

5. Repeat until entire P-array and all S-boxes are
replaced

521 full encryptions!!
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A few questions to think about...

Why initialize the constants with the digits of pi?

Which step in Blowfish is very inefficient?
e In what way is that a good thing?



Unique components of AES

We’ve seen that most block ciphers have linear and non-
linear steps in each round
e Linear: preserved by XOR, i.e., F(a®b) = F(a)®F (b)
e In DES, the P-box permutations

e Non-linear: not preserved by XOR, often a series of S-boxes
e These steps prevent the use of linear equations to cryptanalyze

In AES, the non-linear 8-bit S-box is based on multiplicative
inverse over GF(28)

e Good non-linearity properties, compact description

e “Nothing up my sleeve”

e Otherwise, arbitrary; many other options would work well

Note that AES is a Feistel network; all steps must be
, but all bits can be mangled in each round (vs. half)



| 16 octet input | key (16, 24, or 32 octets)
/

dp| a4 |ag|ai2 \
as | a ( )

21151% 1415 Key Expansion

a [ 86 [210[a14

a3 871411815

A 128-bit (16 octet) key K,

A 128-bit block is
arranged as a square

(All data is /
manipulated in bytes) @,ED
J_ 128-bit (16 octet) key K;
(i AN
Subkey XOR'd with
the current stafe
at the start and
after each round

Key schedule
produces a 128-bit
tubkey for each round
(plus one)

n

128-bit (16 octet) key K.
r

|1 6 octet output



AES S-box
00 01 02 03 04 05 06 07 08 09 Oa | Ob Oc | 0d Oe oOf

implements the

S'bOX n AES 10 (ca |82 c9 | 7d fa 59|47 fO ad|d4 a2 | af |9c a4 72 cO
e Each of the 16 bytes 20 b7 fd 93|26 36 3f 7

in the square is
replaced with another

00 63|7c |77 | 7b|f2 |6b 6f [ c5 |30 01 67 |2b|fe d7 | ab 76

cc |34 |a5 e5 f1 |71 |d8 31|15
30|04 c7 23|c3 /18 96|05 /9a 07|12 80 e2 eb 27 b2 |75
40 09 83|2c 1a 1b|6e | 5a a0 |52 |3b d6 b3 29 e3 2f |84

e Substitution was 50 | 53 |d1 00| ed 20 fc |bl 5b|6a cb | be |39 4a 4c | 58| cf
derived from inverses [go(qo of |aa|fb |43 4d |33 85|45 f0 |02 |7f |50 | 3c |of | a8

in Galois Fields

e ... but can be
implemented as a
hard-coded lookup

table a0 | e0 32 3a|0a 49 06|24 5c c2|d3 ac 62 91 95 e4 |79

70 | 51 a3 |40 8f 92|9d |38 f5 bc | b6 da 21 10 ff |3 |d2
80 cd Oc |13 ec 5f |97 |44 17 |c4 |a7 | 7e 3d 64 5d 19|73
90 |60 81 4f |dc | 22 2a|90 88 46 |ee b8 14 de 5e Ob | db

b0 | e7|c8 37 6d|8d|d5 4 9 6c | 56 |f4 65 |7 0
e The same lookup il b °|29|% ca|>|rajae |08

table is used for all
bytes

cO0 ba |78 25 2e | 1c |a6 b4 c6 |e8 dd | 74 |1f |4b | bd |8b 8a
d0 70 3e|b5 66 48|03 f6 Oe | 61|35 57 b9 86|cl | 1d|9e
e0 el f8 |98 11 |69 |d9 8e 94 |9b|1e 87 | e9 ce |55|28  df

fO 8c a1 |89 0d bf |e6 42 68|41 /99 2d Of bO |54 bb |16



The linear layer in AES: ShiftRows and

MixColumns
l/(pplying Diffusion, Part I: Shif+ Rows

Nex+ I shifr the rows to the left

7

alfb |42 [45 _ Hiiiii yaahl
affdofoa|eb | Each row is shiffed by
d4 [eadd7|4z] - — a different number of
f2| be[5q}6a |z bytes
- ' - ..and then wrap
“) s them around
ca |fb |92 [fs rhe other side
/
da| aa [6b J[ af
¢
d7 43 d4 [ <9 o
({8

Denotes

TT 'permufafion'
e__———



The linear layer in AES: ShiftRows and
MixColumns

C |

Each column {‘-H ba leO 8b/
is multiplied 7
by a fixed [6e[83|95 /aﬂ7

polynomial

99 |00[65 4o

I +roke each

column and \O % %}
mix up the A | (Often implemented as a

bits in ir. hardcoded lookup table)

g N

Note: Each byte impacts each
other byte within 2 rounds!

HHiE




Back to the key schedule: How are subkeys
| calculated?

(We will focus on 128-bit keys, though others are related)

Initial key populates a square, column-wise
e Same as we did with a data block

Later subkeys are generated from earlier ones

e RotWord: In the last column, the top byte to the
bottom

e SubWord: Use the S-box to substitute each byte in this column
e Rcon: XOR this column with a round-specific constant
e This column becomes the first in the new round key

e Other columns are computed by XORing the old value with the
column to the left in the new value
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Implementation details in AES

1787)
TTTTT

As mentioned, AES is not a Feistel network!

o Feistel networks are easily reversible, but can only mangle
the data in each round

e Instead, each step was carefully designed to be
independently reversible

e Decryption executes the of each step, in reverse
order

Note that many steps use “hard” math conceptually
but can be implemented with much simpler operations

e e.g., XOR, table lookup
e Today, AES is (almost) always hardware-accelerated

e CPU vendors add special that combine
multiple steps and execute very efficiently
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STREAM CIPHERS



This is just the
XOR function!

3 5 ’
Q ! Pseudo-random :
—— > PRNG > sequence, used as (<

a one-time pad :

Arbitrary-length ciphertext: ad239dglkjs92lsfhb9f0dfdsggre...

The secrecy of a stream cipher rests entirely on PRNG “randomness”

Often, we see stream ciphers used in communications hardware
e Single bit transmission error effects only single bit of plaintext

e Low transmission delays
e Key stream can (sometimes) be pre-generated and buffered
e Encryption is just an XOR
e No buffering of data to be transmitted



RC4: Key schedule

Start with the
identity array

for i from 0 to 5

S[i] := i
endfor
j =0

for 1 from @ to 255
j = (j + S[i] + key[i mod keylength]) mod 256

swap values of S[i] and SI[j]
endfor \\\\\
Use the key to

scramble the mapping



RC4: Generating key stream and updating

state
Another step of

i=0 scrambling, like
=0 before but without
while GeneratingOutput: /“3’”9 the key again

i = (i1 + 1) mod 256

j = (j + S[i]) mod 256

swap values of S[i] and SI[j]

t := (S[i] + S[j]) mod 256

K := S[t]

output K
endwhile

K is a byte of keystream,
XOR'd with a byte of plaintext



Like in AES, internal state is a square
In this case, a 4 X 4 square of 32-bit words

A 256-bit key is broken into 8 words, arranged in the square
along with constants and stream position / nonce values

The function QR(a, b, ¢, d) can operate on a row or
column:

b *= (a + d) << 7;
c "= (b + a) <<« 9;
d *= (c + b) <<« 13;
a "= (d + c) <<< 18;
Generation requires 20 rounds of mixing
o rounds use QR on each , even rounds use QR on
each row

After all rounds, the new square is added to the previous
The resulting square is 512 bits of keystream!



Salsa20 diagrams

r \/ \/

One quarter-round



Two types of stream ciphers constructions

N
\

In a synchronous stream cipher, the key stream is generated
independently of the ciphertext
o Advantages
e Do not propagate transmission errors
e Prevent insertion attacks
e Key stream can be pre-generated
o Disadvantage: May need to change keys often if periodicity of PRNG is low

In a self-synchronizing stream cipher, the key stream is a function of some
number of ciphertext bits

o Advantages

e Decryption key stream automatically synchronized with encryption key stream
after receiving n ciphertext bits

e Less frequent key changes, since key stream is a function of key and ciphertext
o Disadvantage: Vulnerable to replay attack



All is well?

Today we learned how can protect the
confidentiality of our communications

So, the security problem is solved, right?
e What about integrity?

Unfortunately, symmetric key cryptography doesn’t solve
everything...
1. How do we get secret keys for everyone that we want to talk to?
2. How can we update these keys over time?

In about a week: Public key cryptography will help us with problem 1

Later in the semester: We’ll look at that help
with problem 2

Next: Block modes of operation, integrity mechanisms



