Applied Cryptography and Network
Security

William Garrison
bill@cs.pitt.edu
6311 Sennott Square

Secure Design Principles

(&) University of Pittsburgh



Security is not an
absolute property!




Security is a process!

Steps:
1. Identify threats for the

Threats } domain of interest
l T 2. Define policies to protect
)[ Policy } against these threats
o High-level organizational
l T policies
e Low-level logical policies
Mechanism } e Everything in between!
l 3. Develop mechanisms to
Operatlon and } enforce these policies
Maintenance

4. Wash, rinse, repeat



Today, we will explore a little more context
that will be useful this semester

> Threats

> Threat models and precision

Specification }

b1

Design

b1

Implementation }

S

!

Operatlon and
Maintenance

)

)

|

_{ Mechanism }
| |

-

Design principles



Security is based on assumptions and trust

\
N
\

Some universities have open exam policies that allow students to
work on their exams at home (or anywhere else) within a certain
exam window, as long as the student signs a statement indicating
that the work in question is their own. Is this exam “system”
secure?

This depends upon the assumptions made!
e Trusted students — secure “system”
e Malicious students — insecure “system”

Note: Violating this trust assumption
Invalidates the security of the system!
o s this OK?




Violating assumptions is a very easy way to discover
Vi vulnerabilities in computer systems

Many sources of assumptions
Explicit threat models

Software engineering documents
Process descriptions or standards
Insider information

Assumptions can also be implicit!
e Example: Buffer overflows

Memory:

|

char myString[6] Overflow!




Systematically define a good threat model
before developing a system

¥ Threat modeling can be a complicated software engineering process,
a simple statement of assumptions, or anything in between

Software companies benefit from a process-based threat model
e See “Threat Modeling” by Swiderski and Snyder (Microsoft Press, 2004)

In research papers, look for “Threat model”, “System model”, or
“Environment” subsections that describe the assumptions made

e Example: We assume that a pub-sub system consists of a set of routing
nodes as well as a trusted security manager node, while publishers and
subscribers exist as applications outside of the pub-sub system. We assume
that every publisher, subscriber, and routing node is managed by some
principal in the set P of all principals. The security manager is a central
authority that is trusted by publishers and subscribers to coordinate the
system. Many existing pub-sub systems that protect publishers’ private data
require such a central authority for key management. Each principal p; € P
maintains a public key pair (K;, K'';), and can obtain the public keys of other
principals using a PKI or some other key distribution service. We assume that
publishers publish data items from some value set V...



Fully specify ambiguous concepts!

In order for a threat model (or any specification) to be useful, it
must be free of ambiguity

Example: Confusion over the term “risk”

One entirely overloaded word in computer security is “trust”
e Based on satisfying a concrete logical policy?

e Based upon subjective evaluation of past performance?
e QoS based?
e Attack based?
e Selfishness/tragedy of the commons?

e Transitive trust? How does transitivity degrade trust?



Given an unambiguous threat model, policies
g=xcan be defined and mechanisms designed

B pae——
|
I
|
|

_{ Mechanism

!

Operatlon and
Maintenance

-

Specification

)1
[ Design
)1

Implementation




Ty

Secunty mechanisms are a means through which

we develop assurance in a system

Assurance is an (often) approximate measure of how much a
system can be trusted.

Assurance in a system can change over time
e Increased belief in correctness over time (e.g., cryptography)
e Decreased confidence after successful compromises (e.g., software)

Example: Drug Safety

People typically believe that drugs manufactured in the US are safe
because (i) the FDA enforces safety standards and (ii) the process control

mechanisms used by companies ensure that drugs
are not contaminated during manufacture.

What about contamination after manufacture?
o Safety seals introduced after scares in the 80s.




Mechamsm development should proceed in three steps

What do we need this thing to do?

Threats

b1

Policy Specification }

|
|
| 1 I
o |
|

Mechanism

!

Operatlon and
Maintenance

Design

b1

Implementation }

-

How will we accomplish this?



Specification

Definition: A specification is a collection of statements describing
the desired functionality of a system. Specifications can be
expressed in English, a formal logical language, or anything in
between.

Specifications can be made at any level of detail.

Example: High Level Example: Low Level

The computer should not be The computer should not accept any
vulnerable to attack from the incoming network connections.
Internet.

How do you enforce this?!? What about malicious content that is

downloaded by the user?

Note: Specifications are used in many fields other than security.



Design

’ Definition: A system design translates a specification into
components that will actually be implemented.

Example
Specification: The system shouldn’t accept incoming network connections

Design: The system will contain a software firewall and will be located behind
a network firewall. Both firewalls will prevent incoming connections.

Ultimately, it is important to show that a system design satisfies its
specification. That is, the system should under no circumstance
violate the conditions set forth in the specification.

How can we do this?

/\ 9”

Formal proof Informal
argumentation




Mechanism design should not be an ad-hoc
process!

Invaluable reference:

e Jerome H. Saltzer and Michael D. Schroeder, “The Protection of

Information in Computer Systems,” Proceedings of the IEEE 63(9): 1278-
1308, September 1975.

e https://ieeexplore-ieee-org.pitt.idm.oclc.org/document/ 1451869
e See especially Section I, Part A(3)

Saltzer and Schroeder describe and justify the use of eight design
principles for building secure and functional systems
e Adopted with varying degrees of success over the years

Sometimes called the most-often cited and least-often read paper
in computer security ©


https://ieeexplore-ieee-org.pitt.idm.oclc.org/document/1451869
https://ieeexplore-ieee-org.pitt.idm.oclc.org/document/1451869
https://ieeexplore-ieee-org.pitt.idm.oclc.org/document/1451869
https://ieeexplore-ieee-org.pitt.idm.oclc.org/document/1451869
https://ieeexplore-ieee-org.pitt.idm.oclc.org/document/1451869
https://ieeexplore-ieee-org.pitt.idm.oclc.org/document/1451869
https://ieeexplore-ieee-org.pitt.idm.oclc.org/document/1451869

Principle (a): Economy of Mechanism

Definition: Keep the design as simple and as small as possible.

Why is this important for security?

e Errors resulting in unwanted access probably won’t be found
during normal operation of a system

e To check for these errors, line-by-line verification is important
e This type of check is likely to fail with overly-complicated systems

This principle has many well-known incarnations
e Philosophy: Occam’s Razor
e Everyday life: K.I.S.S.

Security practitioners are all too familiar with this principle...



Definition: Base decisions on permissions rather than exclusions.

Example: Firewall protecting a small business

=
o)

Attack on port 1433 >
Firewall ﬁ

Incoming policy:
*Deny port 23
*Allow port *




Principle (b): Fail-Safe Defaults

Definition: Base decisions on permissions rather than exclusions.

32

Example: Firewall protecting a small business

Firewall ﬁ

Incoming policy:
*Allow port 80
*Deny port *

SQL

Attec m

0>




Definition: Every access to every object must be checked
for authority.

Informally: We don’t want any back doors into the system

|
Processes /£ R

Reference Monitor T

This is bad...
Implications:

e Need a foolproof method for origin authentication
e Caching should be viewed skeptically (cf. DNS poisoning)

Without this, a system can offer no concrete guarantees



Principle (d): Open Design

Definition: The design of a system should not be secret.

Security should not be dependent on the ignorance of attackers
e Attackers are often well motivated (recall last lecture)
e Open design assuages skeptics and permits open review
e In reality, it is impossible to keep widely-distributed software a secret

.
Instead, use public algorithms with secret parameters
e The community can verify properties of the system
e Every organization can create their own secret “instance” of the system
e In cryptography, this notion is called Kerckhoffs’s principle

Example: Optical media copy protection

Shannon’s Maxim: “The enemy knows the system”




Definition: Where feasible, a protection mechanism that requires
two keys to unlock it is more robust and flexible than one that
allows access to the presenter of only a single key.

—

I

Examples:
e Need two keys to launch a missile
e Compartmentalized hulls in large ships
e Witness on marriage licenses .
e Notarized documents ol
L

74, = &f
(] cee m \

In computer security, the most common example of this principle
is in separation of duty. For example, employees who create
payment authorizations cannot issue checks.

if A\
SRR |
1; I\ LB -
il W\
Q




Principle (f): Least Privilege

Definition: Every program and every user of the system should
operate using the least set of privileges necessary.

This principle is often violated!

e Windows users with “Administrator” accounts
e Accidentally deleted system files
e Installing untested programs that corrupt other user accounts
e Etc.

e UNIX servers running as “root”
e Root needed to bind to port 80, but that’s it!

e Compromise of web server (public process) can lead to corruption of whole
system!

Where is this principle actually respected?
e SELinux / AppArmor
e Attenuation of privileges in RBAC
e Restricted delegation



Definition: Minimize the amount of mechanism common to more

than one user and depended on by all users.

Most common interpretation: Minimize shared channels

e Memory protection
e Base/bounds memory
e Virtual memory

e Virtual machines

e VPN

Processor

(2): Least Common Mechanism

Base Bound

Program A

Bound

Why?
o Confidentiality/integrity protection
e |nformation flow, side channels, etc...

Memory

Base



Definition: It is essential that the human interface be designed
for ease of use, so that users routinely and automatically apply
the protection mechanisms correctly.

Implications:
1. If security isn’t easy to use, people won’t use it!

2. If mandatory security features aren’t easy to use, people will use them
incorrectly!

Example: Digitally-signed email
1. Spoofed email that could be prevented
2. Why can’t Johnny encrypt?




S&S also mentioned two more

Both are familiar to physical security but were considered
“imperfect fits” when thinking about computer security

e Over time, one could argue this has changed

Work factor: Stronger security measures make attackers work
harder

e Applies to longer keys and passwords
e Especially important for denial-of-service attacks

Compromise Recording: Even attacks that cannot be prevented
should be recorded

e Thought to be less important since a successful attack could also
modify the recordings

e Today, audit logging is considered very important, but we must
take care to protect the logs from some classes of attack



Discussion

In systems that you have designed, did your team
consider these types of requirements ahead of time?
How can this type of security planning be incorporated
into the software engineering process?

o Q

o O

—h (@)
= ' e = e

-0 ua
~ ~—

Economy of Mechanism
Fail-Safe Defaults
Complete Mediation

Open Design

Separation of Privilege
Least Privilege

Least Common Mechanism
Psychological Acceptability



Implementation

An implementation creates a functional
system based on the design.

[ Specification } |deally, we want to verify two things

e The design satisfies the specification
M°t“’atesl, Tsat‘Sﬁes o The implementation satisfies the design and

_ (by transitivity) the specification
Design
Motivatesl (Eausﬁes This is harder than it sounds!
e Analyze correctness of each line of code
|mplementat10n e Preconditions

e Postcondtions
e Proof of correctness depends on whether
global preconditions to whole program hold
e How do we specify these?
e Are they correct?

o Example: Bad compiler




Taking a testing-based approach to assurance is a
’ popular alternative to formal verification

Intuition: If a bunch of smart people can’t break into my system,
| have at least some assurance that it is operating correctly

Many flavors of testing
e Regression testing/unit testing
e Red teams/penetration testing
e Fuzz testing

Testing does not provide you with a proven guarantee, but can
uncover weaknesses or errors in a system

In the end, successfully resisting a rigorous attempt at intrusion is
a good sign that things are on the right track



Systems are dynamic, so are threat models and
R security policies

Changing environment means changing assumptions
This can change everything else...

/\

Threat analysis

Testing, evaluation,
and formal proof Policy and mechanism



Conclusions

Computer security does not happen by accident!

A\ 4

Threats

Careful attention must be given to

A 4

security considerations at all stages

of the software development
lifecycle

v

| 1
Policy
Vo
Mechanism
U

Operation and
Maintenance

Best case scenario: Integrated process

e Organizational risk analysis and cost/benefit analysis

e Saltzer and Schroeder’s design principles
e Formal verification and/or systematic testing

-~

Specification

~N

~

J

VT
Design
U

(.

Implementation

J




= OUr introduction is now over

1787)
?????

Next time: Introduction to classical cryptography

o

3

Look at (and read) the chapters posted on the website!



