CS/COE 1501

cs.pitt.edu/~bill/1501/

Graphs
A graph $G = (V, E)$
- Where V is a set of vertices
- E is a set of edges connecting vertex pairs

Example:
- $V = \{0, 1, 2, 3, 4, 5\}$
- $E = \{(0, 1), (0, 4), (1, 2), (1, 4), (2, 3), (3, 4), (3, 5)\}$
Why?

Can be used to model many different scenarios
Some definitions

- Undirected graph
 - Edges are unordered pairs: \((A, B) == (B, A)\)

- Directed graph
 - Edges are ordered pairs: \((A, B) != (B, A)\)

- Adjacent vertices, or neighbors
 - Vertices connected by an edge
• Let \(v = |V| \), and \(e = |E| \)

• Given \(v \), what are the minimum/maximum sizes of \(e \)?
 • Minimum value of \(e \)?
 • Definition doesn’t necessitate that there are any edges...
 • So, 0
 • Maximum of \(e \)?
 • Depends...
 • Are self edges allowed?
 • Directed graph or undirected graph?
 • In this class, we'll assume directed graphs have self edges while undirected graphs do not
More definitions

- A graph is considered *sparse* if:
 - \(e \leq v \lg v \)
- A graph is considered *dense* as it approaches the maximum number of edges
 - i.e., \(e = \text{MAX} - \varepsilon \)
- A *complete* graph has the maximum number of edges
Question:
• Trivially, graphs can be represented as:
 • List of vertices
 • List of edges

• Performance?
 • Assume we're going to be analyzing static graphs
 • I.e., no insert and remove
 • So what operations should we consider?
Using an adjacency matrix

- Rows/columns are vertex labels
 - $M[i][j] = 1$ if $(i, j) \in E$
 - $M[i][j] = 0$ if $(i, j) \notin E$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Adjacency matrix analysis

- Runtime?
- Space?
Adjacency lists

- Array of neighbor lists
 - $A[i]$ contains a list of the neighbors of vertex i
Adjacency list analysis

- Runtime?
- Space?
Comparison

- Where would we want to use adjacency lists vs adjacency matrices?
 - What about the list of nodes/list of edges approach?
Even more definitions

- **Path**
 - A sequence of adjacent vertices
- **Simple Path**
 - A path in which no vertices are repeated
- **Simple Cycle**
 - A simple path with the same first and last vertex
- **Connected Graph**
 - A graph in which a path exists between all vertex pairs
- **Connected Component**
 - Connected subgraph of a graph
- **Acyclic Graph**
 - A graph with no cycles
- **Tree**
 - A connected, acyclic graph
 - Has exactly $v-1$ edges
What is the best order to traverse a graph?

Two primary approaches:

- Depth-first search (DFS)
 - “Dive” as deep as possible into the graph first
 - Branch when necessary
- Breadth-first search (BFS)
 - Search all directions evenly
 - i.e., from i, visit all of i’s neighbors, then all of their neighbors, etc.
DFS

- Already seen and used this throughout the term
 - For tries...
 - For Huffman encoding...
- Can be easily implemented recursively
 - For each node, visit first unseen neighbor
 - Backtrack at dead ends (i.e., nodes with no unseen neighbors)
 - Try next unseen neighbor after backtracking
DFS example
DFS example 2
• Can be easily implemented using a queue
 • For each node visited, add all of its neighbors to the queue
 • Vertices that have been seen but not yet visited are said to be the *fringe*
 • Pop head of the queue to be the next visited vertex
• See example
BFS example
BFS traversals can further be used to determine the

shortest path between two vertices
Analysis of graph traversals

- At a high level, DFS and BFS have the same runtime
 - Each node must be seen and then visited, but the order will differ between these two approaches
- How will the representation of the graph affect the runtimes of these traversal algorithms?
DFS and BFS would be called from a wrapper function

- If the graph is connected:
 - dfs()/bfs() is called only once and returns a *spanning tree*
- Else:
 - A loop in the wrapper function will have to continually call dfs()/bfs() while there are still unseen vertices
 - Each call will yield a spanning tree for a connected component of the graph
DFS pre-order traversal
DFS in-order traversal
DFS post-order traversal
Biconnected graphs

- A *biconnected graph* has at least 2 distinct paths (no common edges or vertices) between all vertex pairs.

- Any graph that is not biconnected has one or more *articulation points*.
 - Vertices, that, if removed, will separate the graph.

- Any graph that has no articulation points is biconnected.
 - Thus we can determine that a graph is biconnected if we look for, but do not find any articulation points.
Finding articulation points

- Variation on DFS
- Consider building up the spanning tree
 - Have it be directed
 - Create “back edges” when considering a node that has already been visited in constructing the spanning tree
- Label each vertex v with two numbers:
 - $\text{num}(v) = \text{pre-order traversal order}$
 - $\text{low}(v) = \text{lowest-numbered vertex reachable from } v \text{ using 0 or more spanning tree edges and then at most one back edge}$
 - Min of:
 - $\text{num}(v)$
 - Lowest $\text{num}(w)$ of all back edges (v, w)
 - Lowest $\text{low}(w)$ of all spanning tree edges (v, w)
Finding articulation points example

The diagram illustrates a graph with nodes and edges. The red arrow indicates a critical node, which is an articulation point. The number on each node represents the node's order (num), and the number on the edge represents the low-point value.

- Node A is a root node with a low-point value of 0.
- Node B has a low-point value of 2.
- Node C has a low-point value of 3.
- Node D has a low-point value of 4.
- Node E has a low-point value of 1.
- Node F has a low-point value of 5.

The graph shows that Node E is an articulation point because removing it would disconnect Node F from the rest of the graph.
So where are the articulation points?

- If any (non-root) vertex v has some child w such that $\text{low}(w) \geq \text{num}(v)$, v is an articulation point.

- What about if we start at an articulation point?
 - If the root of the spanning tree has more than one child, it is an articulation point.