Proving RSA’s correctness using Fermat’s Little Theorem

Fermat’s Little Theorem states that, if \(p \) is a prime, then in the group \(Z_n \), \(a^{p-1} \equiv 1 \pmod{p} \). Stated using modulo:

\[
a^{p-1} \equiv 1 \pmod{p}
\]

We aim to show that

\[
M^{ed} \equiv M \pmod{n}
\]

where \(n = pq \).

Note that since \(ed \equiv 1 \pmod{\phi(n)} \), \(M^{ed} = M^{k\phi(n)+1} \).

Since \(\phi(n) = (p-1)(q-1) \), we know that \(\phi(n) \) is a multiple of \(p-1 \). Thus, \(k\phi(n) \) is also a multiple of \(p-1 \). Since \(p \) is prime, and by Fermat’s Little Theorem, we have the following:

\[
M^{k\phi(n)+1} = M^1 \pmod{p}
\]

By an identical argument, we have the same for \(q \):

\[
M^{k\phi(n)+1} = M^1 \pmod{q}
\]

Thus, we know that \(p \mid (M^{k\phi(n)+1} - M) \) and \(q \mid (M^{k\phi(n)+1} - M) \).

Since \(p \) and \(q \) are both primes and are not equal, they are relatively prime. Note that, for \(a \) and \(b \) relatively prime, \(a \mid c \land b \mid c \implies ab \mid c \). Therefore,

\[
pq \mid (M^{k\phi(n)+1} - M)
\]

which leads to \(M^{k\phi(n)+1} - M^1 \equiv 0 \pmod{pq} \), and thus to our end goal:

\[
M^{ed} \equiv M^{k\phi(n)+1} \equiv M \pmod{n}
\]