Consider the change making problem

- What is the minimum number of coins needed to make up a given value k?
- If you were working as a cashier, what would your algorithm be to solve this problem?
This is a *greedy algorithm*

- At each step, the algorithm makes the choice that seems to be best at the moment

- Have we seen greedy algorithms already this term?
 - Yes!
 - Building Huffman trees
 - Nearest neighbor approach to travelling salesman
... But wait ...

- Nearest neighbor doesn’t solve travelling salesman
 - (does not produce an optimal result)

- Does our change making algorithm solve the change making problem?
 - For US currency...
 - But what about a currency composed of pennies (1 cent), thrickels (3 cents), and fourters (4 cents)?
 - What denominations would it pick for k=6?
So what changed about the problem?

- For greedy algorithms to produce optimal results, problems must have two properties:
 - Optimal substructure
 - Optimal solution to a subproblem leads to an optimal solution to the overall problem
 - The greedy choice property
 - Globally optimal solutions can be assembled from locally optimal choices
- Why is optimal substructure not enough?
Finding all subproblems solutions can be inefficient

- Consider computing the Fibonacci sequence:

```c
int fib(n) {
    if (n == 0) { return 0; }
    else if (n == 1) { return 1; }
    else {
        return fib(n - 1) + fib(n - 2);
    }
}
```

- What does the call tree for n = 5 look like?
The diagram illustrates the computation of the Fibonacci sequence for $fib(5)$. Each node in the tree represents a call to the fib function, with the children representing the recursive calls to find the Fibonacci numbers for the adjacent indices. The computation follows the recursive definition of the Fibonacci sequence: $fib(n) = fib(n-1) + fib(n-2)$, with base cases $fib(0) = 0$ and $fib(1) = 1$. The tree structure shows the breakdown of the computation, with $fib(5)$ being computed by recursively calculating $fib(4)$ and $fib(3)$, and so on, until reaching the base cases.
How do we improve?
Memoization

```java
int[] F = new int[n+1];
F[0] = 0;
F[1] = 1;
for(int i = 2; i <= n; i++) { F[i] = -1; }

int dp_fib(x) {
    if (F[x] == -1) {
        F[x] = dp_fib(x-1) + dp_fib(x-2);
    }
    return F[x];
}
```
Note that we can also do this bottom-up

```java
int bottomup_fib(n) {
    if (n == 0)
        return 0;
    int[] F = new int[n+1];
    F[0] = 0;
    F[1] = 1;
    for(int i = 2; i <= n; i++) {
        F[i] = F[i-1] + F[i-2];
    }
    return F[n];
}
```
Can we improve this bottom-up approach?

```c
int improve_bottomup_fib(n) {
    int prev = 0;
    int cur = 1;
    int new;
    for (int i = 0; i < n; i++) {
        new = prev + cur;
        prev = cur;
        cur = new;
    }
    return cur;
}
```
Where can we apply dynamic programming?

- To problems with two properties:
 - Optimal substructure
 - Optimal solution to a subproblem leads to an optimal solution to the overall problem
 - Overlapping subproblems
 - Naively, we would need to recompute the same subproblem multiple times
Given a knapsack that can hold a weight limit L, and a set of n types items that each has a weight (w_i) and value (v_i), what is the maximum value we can fit in the knapsack if we assume we have unbounded copies of each item?
Recursive example

weight: 6 3 4 2
value: 30 14 16 9

How much value in 10 lbs?

4 lbs?
4 lbs?
7 lbs?
6 lbs?
8 lbs?

1? 0? 2?
1? 4? 3? 5? 0?
3? 2? 4?
2? 5? 4? 6?
Recursive example

weight: 6 3 4 2
value: 30 14 16 9

10 lb. capacity

How much value in 10 lbs?

4 lbs?

7 lbs?

6 lbs?

8 lbs?

Bottom-up example

<table>
<thead>
<tr>
<th>weight</th>
<th>6</th>
<th>3</th>
<th>4</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>30</td>
<td>14</td>
<td>16</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max val</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>14</td>
<td>18</td>
<td>23</td>
<td>30</td>
<td>32</td>
<td>39</td>
<td>44</td>
<td>48</td>
</tr>
</tbody>
</table>
Bottom-up solution

\[K[0] = 0 \]

\[
\text{for } (l = 1; l <= L; l++) \{ \\
\hspace{1em} \text{int max } = 0; \\
\hspace{1em} \text{for } (i = 0; i < n; i++) \{ \\
\hspace{2em} \text{if } (w_i <= l \&\& v_i + K[l - w_i]) > max \} \{
\hspace{3em} \max = v_i + K[l - w_i]; \\
\hspace{2em}\} \\
\} \}

K[l] = \max;
Try adding as many copies of highest value per pound item as possible:

- Water: $30/6 = 5$
- Rope: $14/3 = 4.66$
- Flashlight: $16/4 = 4$
- Moonpie: $9/2 = 4.5$

Highest value per pound item? Water
 - Can fit 1 with 4 space left over

Next highest value per pound item? Rope
 - Can fit 1 with 1 space left over

No room for anything else

Total value in the 10 lb knapsack?
 - 44
 - Bogus!
What if we have a finite set of items that each has a weight and value?

- Two choices for each item:
 - Goes in the knapsack
 - Is left out

The 0/1 knapsack problem
0/1 Recursive example

How much value in 10 lbs?

weight: 6 3 4 2
value: 30 14 16 9

10 lbs?

10 lbs?

6 lbs?

3 lbs?

0 lbs?

7 lbs?

4 lbs?

1 lbs?
Recursive solution

```c
int knapSack(int[] wt, int[] val, int L, int n) {
    if (n == 0 || L == 0) { return 0; }
    if (wt[n-1] > L) {
        return knapSack(wt, val, L, n-1)
    }
    else {
        return max( val[n-1] + knapSack(wt, val, L-wt[n-1], n-1),
                    knapSack(wt, val, L, n-1) );
    }
}
```
The 0/1 knapsack dynamic programming example

\[\text{wt} = [2, 3, 4, 5] \]
\[\text{val} = [3, 4, 5, 6] \]

<table>
<thead>
<tr>
<th>i |</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

22
The 0/1 Knapsack Dynamic Programming Example

Weights: \(wt = [2, 3, 4, 5]\)

Values: \(val = [3, 4, 5, 6]\)

<table>
<thead>
<tr>
<th>i|</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The 0/1 knapsack dynamic programming example

\[
\begin{aligned}
\text{wt} &= [2, 3, 4, 5] \\
\text{val} &= [3, 4, 5, 6]
\end{aligned}
\]

<table>
<thead>
<tr>
<th>i\n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The 0/1 knapsack dynamic programming example

\[wt = [2, 3, 4, 5] \]
\[val = [3, 4, 5, 6] \]

<table>
<thead>
<tr>
<th>(i) (\backslash)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The 0/1 knapsack dynamic programming example

wt = [2, 3, 4, 5]
val = [3, 4, 5, 6]

<table>
<thead>
<tr>
<th>i\l</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The 0/1 knapsack dynamic programming solution

```c
int knapSack(int wt[], int val[], int L, int n) {
    int[][][] K = new int[n+1][L+1];
    for (int i = 0; i <= n; i++) {
        for (int l = 0; l <= L; l++) {
            if (i==0 || l==0){ K[i][l] = 0 };  
            else if (wt[i-1] > l){ K[i][l] = K[i-1][l] };  
            else {
                K[i][l] = max(val[i-1] + K[i-1][l-wt[i-1]], K[i-1][l]);
            }
        }
    }
    return K[n][L];
}
```
Questions to ask in finding dynamic programming solutions:

- Does the problem have optimal substructure?
 - Can solve the problem by splitting it into smaller problems?
 - Can you identify subproblems that build up to a solution?

- Does the problem have overlapping subproblems?
 - Where would you find yourself recomputing values?
 - How can you save and reuse these values?
Consider a currency with n different denominations of coins d_1, d_2, \ldots, d_n. What is the minimum number of coins needed to make up a given value k?