CS/COE 1501

cs.pitt.edu/~bill/1501/

More Math
Exponentiation

- x^y
- Can easily compute with a simple algorithm:

```
ans = 1
i = y
while i > 0:
    ans = ans * x
    i--
```

- Runtime?
Just like with multiplication, let’s consider large integers...

- Runtime = # of iterations * cost to multiply
- Cost to multiply was covered in the last lecture
- So how many iterations?
 - Single loop from 1 to y, so linear, right?
 - What is the size of our input?
 - n
 - The bitlength of y...
 - So, linear in the value of y...
 - But, increasing n by 1 doubles the number of iterations
 - $\Theta(2^n)$
 - Exponential in the bitlength of y
Assuming 512 bit operands, 2^{512}:
- $134078079299425970995740249982058461274793658205923$
- $933777235614437217640300735469768018742981669034276$
- $900318581864860508537538828119465699464336490060840$
- 96

Assume we can do multiplications in 1 cycle…
- Which we can’t as we discussed last lecture
And further that these operations are completely parallelizable
- 16 cores at 4 GHz = 64,000,000,000 cycles/second
 - $(2^{512} / 640000000000) / (60 \times 60 \times 24 \times 365) =$
 - 6.64×10^{135} years to compute
So how do we do better?

Let’s try divide and conquer!

\[x^y = (x^{(y/2)})^2 \]

- ...when \(y \) is even; \((x^{(y/2)})^2 \times x \) when \(y \) is odd

Analyzing a recursive approach:

- Base case?
 - When \(y = 1 \), \(x^y \) is \(x \); when \(y = 0 \), \(x^y \) is 1

- Runtime?
Building another recurrence relation

- \(x^y = (x^{(y/2)})^2 = x^{(y/2)} \times x^{(y/2)} \)
 - Similarly, \((x^{(y/2)})^2 \times x = x^{(y/2)} \times x^{(y/2)} \times x\)

- So, our recurrence relation is:
 - \(T(n) = T(n-1) + \) ?
 - How much work is done per call?
 - 1 (or 2) multiplication(s)
 - Examined runtime of multiplication last lecture
 - But how big are the operands in this case?
Determining work done per call

- Base case returns x
 - n bits
- Base case results are multiplied: $x \times x$
 - n bit operands
 - Result size?
 - $2n$
- These results are then multiplied: $x^2 \times x^2$
 - $2n$ bit operands
 - Result size?
 - $4n$ bits
- ...
- $x^{(y/2)} \times x^{(y/2)}$?
 - $(y / 2) \times n$ bit operands = $2^{(n-1)} \times n$ bit operands
 - Result size? $y \times n$ bits = $2^n \times n$ bits
Our recurrence relation looks like:

\[T(n) = T(n-1) + \Theta((2^{(n-1)} \times n)^2) \]
Can we use the master theorem?
 ○ Nope, we don’t have a \(b > 1 \)

OK, then…
 ○ How many times can \(y \) be divided by 2 until a base case?
 ■ \(\log(y) \)
 ○ Further, we know the max value of \(y \)
 ■ Relative to \(n \), that is:
 ● \(2^n \)
 ○ So, we have, at most \(\log(y) = \log(2^n) = n \) recursions
But we need to do expensive mult in each call

- We need to do $\Theta((2^{(n-1)} \times n)^2)$ work in just the root call!
 - Our runtime is dominated by multiplication time
 - Exponentiation quickly generates HUGE numbers
 - Time to multiply them quickly becomes impractical
Can we do better?

- We go “top-down” in the recursive approach
 - Start with y
 - Halve y until we reach the base case
 - Square base case result
 - Continue combining until we arrive at the solution

- What about a “bottom-up” approach?
 - Start with our base case
 - Operate on it until we reach a solution
A bottom-up approach

- To calculate x^y

```python
ans = 1
foreach bit in y:
    ans = ans^2
    if bit == 1:
        ans = ans * x
```

From most to least significant
Consider x^y where y is 43 (computing x^{43})

- Iterate through the bits of y (43 in binary: 101011)
- $\text{ans} = 1$

\[
\begin{align*}
\text{ans} &= 1^2 = 1 \\
\text{ans} &= 1 \times x = x \\
\text{ans} &= x^2 = x^2 \\
\text{ans} &= (x^2)^2 = x^4 \\
\text{ans} &= x^4 \times x = x^5 \\
\text{ans} &= (x^5)^2 = x^{10} \\
\text{ans} &= (x^{10})^2 = x^{20} \\
\text{ans} &= x^{20} \times x = x^{21} \\
\text{ans} &= (x^{21})^2 = x^{42} \\
\text{ans} &= x^{42} \times x = x^{43}
\end{align*}
\]
Does this solve our problem with mult times?

- Nope, still squaring ans everytime
 - We’ll have to live with huge output sizes

- This does, however, save us recursive call overhead
 - Practical savings in runtime
Greatest Common Divisor

- **GCD(a, b)**
 - Largest int g that evenly divides both a and b ($g|a$ and $g|b$)
 - Recall that $g|a$ if $\exists i \in \mathbb{Z}$ such that $g \times i = a$

- **Easiest approach:**
 - **BRUTE FORCE**


    ```
    i = min(a, b)
    while(a % i != 0 || b % i != 0):
        i--
    ```

- **Runtime?**
 - $\Theta(\text{min}(a, b))$
 - Linear!
 - … in the value of min(a, b)…
 - Exponential in n
 - Assuming a, b are n-bit integers
Euclid’s algorithm

- \(\text{GCD}(a, b) = \text{GCD}(b, a \% b) \)
Euclidean example 1

- $\text{GCD}(30, 24)$
 - $= \text{GCD}(24, 30 \mod 24)$
 - $= \text{GCD}(24, 6)$
 - $= \text{GCD}(6, 24 \mod 6)$
 - $= \text{GCD}(6, 0)$...
 - Base case! Overall GCD is 6
Euclidean example 2

- $\text{GCD}(99, 78) = 99 = 78 \times 1 + 21$
- $\text{GCD}(78, 21) = 78 = 21 \times 3 + 15$
- $\text{GCD}(21, 15) = 21 = 15 \times 1 + 6$
- $\text{GCD}(15, 6) = 15 = 6 \times 2 + 3$
- $\text{GCD}(6, 3) = 6 = 3 \times 2 + 0$
- $= 3$
Analysis of Euclid’s algorithm

- Runtime?
 - Tricky to analyze, has been shown to be linear in n
 - Where, again, n is the number of bits in the input
In addition to the GCD, the Extended Euclidean algorithm (XGCD) produces values x and y such that:

- \(\text{GCD}(a, b) = i = ax + by \)

Examples:

- \(\text{GCD}(30, 24) = 6 = 30 \times 1 + 24 \times -1 \)
- \(\text{GCD}(99, 78) = 3 = 99 \times -11 + 78 \times 14 \)

Can be done in the same linear runtime!
Extended Euclidean example

= GCD(99, 78)
 - 99 = 78 * 1 + 21

= GCD(78, 21)
 - 78 = 21 * 3 + 15

= GCD(21, 15)
 - 21 = 15 * 1 + 6

= GCD(15, 6)
 - 15 = 6 * 2 + 3

= GCD(6, 3)
 - 6 = 3 * 2 + 0

= 3

= 3 = 15 - (2 * 6)

= 6 = 21 - 15
 - 3 = 15 - (2 * (21 - 15))
 - = 15 - (2 * 21) + (2 * 15)
 - = (3 * 15) - (2 * 21)

= 15 = 78 - (3 * 21)
 - 3 = (3 * (78 - (3 * 21)))
 - (2 * 21)
 - = (3 * 78) - (11 * 21)

= 21 = 99 - 78
 - 3 = (3 * 78) - (11 * (99 - 78))
 - = (14 * 78) - (11 * 99)
 - = 99 * -11 + 78 * 14
This and all of our large integer algorithms will be handy when we look at algorithms for implementing…

CRYPTOGRAPHY