Network Flow
Consider a directed, weighted graph $G(V, E)$

- Weights are applied to edges to state their capacity
 - $c(u, w)$ is the capacity of edge (u, w)
 - if there is no edge from u to w, $c(u, w) = 0$

Consider two vertices, a *source* s and a *sink* t

- Let’s determine the maximum flow that can run from s to t in the graph G
Let the $f(u, w)$ be the amount of flow being carried along the edge (u, w)

Some rules on the flow running through an edge:

- $\forall (u, w) \in E \; f(u, w) \leq c(u, w)$
- $\forall u \in (V - \{s, t\}) \; (\sum_{w \in V} f(w, u) - \sum_{w \in V} f(u, w)) = 0$
Ford Fulkerson

- Let all edges in G have an allocated flow of 0
- Residual capacity of edge \((u, w)\) is \(c(u, w) - f(u, w)\)
- While there is path \(p\) from \(s\) to \(t\) in \(G\) s.t. all edges in \(p\) have some residual capacity (i.e., \(\forall (u, w) \in p \ f(u, w) < c(u, w)\)):
 - (Such a path is called an augmenting path)
 - Compute the residual capacity of each edge in \(p\)
 - Find the edge with the minimum residual capacity in \(p\)
 - We’ll call this residual capacity \(new_flow\)
 - Increment the flow on all edges in \(p\) by \(new_flow\)
Ford Fulkerson example
Another Ford Fulkerson example
Expanding on residual capacity

- To find the max flow we will have need to consider re-routing flow we had previously allocated
 - This means, when finding an augmenting path, we will need to look not only at the edges of G, but also at *backwards edges* that allow such re-routing
 - For each edge \((u, w) \in E\), a backwards edge \((w, u)\) must be considered during pathfinding if \(f(u, w) > 0\)
 - The capacity of a backwards edge \((w, u)\) is equal to \(f(u, w)\)
The residual graph

- We will perform searches for an augmenting path not on G, but on a residual graph built using the current state of flow allocation on G.
- The residual graph is made up of:
 - V
 - An edge for each $(u, w) \in E$ where $f(u, w) < c(u, w)$
 - (u, w)'s mirror in the residual graph will have 0 flow and a capacity of $c(u, w) - f(u, w)$
 - A backwards edge for each $(u, w) \in E$ where $f(u, w) > 0$
 - (u, w)'s backwards edge has a capacity of $f(u, w)$
 - All backwards edges have 0 flow
Residual graph example

Diagram showing a residual graph with nodes labeled s, A, B, and t, and edges labeled with capacities and residual capacities.
Another example
Edmonds Karp

- How the augmenting path is chosen affects the performance of the search for max flow
- Edmonds and Karp proposed a shortest path heuristic for Ford Fulkerson
 - Use BFS to find augmenting paths
Another example

A

1000 /1000

B

1000 /1000

s

1000 /1000

1000 /1000

t

/1

1000 /1000
Edmonds-Karp only uses BFS

- Used to find spanning trees and shortest paths for unweighted graphs
- Why do we not use some measure of priority to find augmenting paths?
Implementation concerns

- Representing the graph:
 - Similar to a directed graph
 - Can store an adjacency list of directed edges
 - Actually, more than simply directed edges
 - Flow edges
For each edge, we need to store:

- Start point, the “from” vertex
- End point, the “to” vertex
- Capacity
- Flow
- Residual capacities
 - For forwards and backwards edges
public class FlowEdge {
 private final int v; // from
 private final int w; // to
 private final double capacity; // capacity
 private double flow; // flow

 public double residualCapacityTo(int vertex) {
 if (vertex == v) return flow;
 else if (vertex == w) return capacity - flow;
 else throw new IllegalArgumentException("Illegal endpoint");
 }

 ...
}
BFS search for an augmenting path (pseudocode)

```python
edgeTo = [|V|]
marked = [|V|]
Queue q
q.enqueue(s)
marked[s] = true
while !q.isEmpty():
    v = q.dequeue()
    for each (v, w) in AdjList[v]:
        if residualCapacity(v, w) > 0:
            if !marked[w]:
                edgeTo[w] = e;
                marked[w] = true;
                q.enqueue(w);
```

Each FlowEdge object is stored in the adjacency list twice:

Once for its forward edge

Once for its backwards edge
An example to review
Let’s separate the graph

● An st-cut on G is a set of edges in G that, if removed, will partition the vertices of G into two disjoint sets
 ○ One contains s
 ○ One contains t

● May be many st-cuts for a given graph

● Let’s focus on finding the minimum st-cut
 ○ The st-cut with the smallest total capacity (sum of capacities)
 ○ May not be unique
How do we find the min st-cut?

- We could examine residual graphs
 - Specifically, try and allocate flow in the graph until we get to a residual graph with no existing augmenting paths
 - A set of saturated edges will make a minimum st-cut
Min cut example

A

s

3 /3

3 /7

3 /9

B

C

2 /7

2 /5

1 /1

t
Max flow == min cut

- A special case of duality
 - i.e., you can look at an optimization problem from two angles
 - In this case to find the maximum flow or minimum cut
 - In general, dual problems do not have to have equal solutions
 - The differences in solutions to the two ways of looking at the problem is referred to as the *duality gap*
 - If the duality gap = 0, strong duality holds
 - Max flow/min cut uphold strong duality
 - If the duality gap > 0, weak duality holds
Determining a minimum st-cut

● First, run Ford Fulkerson to produce a residual graph with no further augmenting paths

● The last attempt to find an augmenting path will visit every vertex reachable from s
 ○ Edges with only one endpoint in this set comprise a minimum st-cut
Determining the min cut

Min Cut

- s to A: 3
- A to C: 2
- C to t: 5
- s to B: 3
- B to A: 3
- A to t: 1
- C to t: 1
- s to B: 3
- B to C: 3
- C to t: 5

The min cut is $\{A, B\}$ with a capacity of 3.

Total capacity of the min cut: $3 + 3 + 2 + 3 = 11$.
Is it possible?

How would we measure the Max flow / min cut?

What would an algorithm to solve this problem look like?
Unweighted network flow