CS/COE 1501

cs.pitt.edu/~bill/1501/

Union Find
Dynamic connectivity problem

- For a given graph G, can we determine whether or not two vertices are connected in G?
- Can also be viewed as checking subset membership
- Important for many practical applications
- We will solve this problem using a union/find data structure
A simple approach: Fast-find

- Have an \textit{id} array simply store the component id for each item in the union/find structure
 - How do we determine if two vertices are connected?
 - How do we establish the connected components?
 - Add graph edges one at a time to UF data structure using \textit{union} operations
Example

U(2, 0)
U(4, 7)
U(1, 2)
U(3, 2)
U(4, 5)
U(5, 7)
U(6, 3)

ID:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>
Analysis of our simple Fast-find approach

- Runtime?
 - To find if two vertices are connected?
 - For a union operation?
Union Find API

- **UF (int n)**: Initialize with n items numbered 0 to n-1.
- **void union(int p, int q)**: Connect p with q.
- **int find (int p)**: Return id of the connected component that p is in.
- **boolean connected (int p, int q)**: True if p and q are connected.
- **int count()**: Number of connected components.
public int count() {
 return count;
}

public boolean connected(int p, int q) {
 return find(p) == find(q);
}
public UF(int n) {
 count = n;
 id = new int[n];
 for (int i = 0; i < n; i++) { id[i] = i; }
}

public int find(int p) { return id[p]; }

public void union(int p, int q) {
 int pID = find(p), qID = find(q);
 if (pID == qID) return;
 for (int i = 0; i < id.length; i++)
 if (id[i] == pID) id[i] = qID;
 count--;
}
With this knowledge of union/find, how, exactly can it be used as a part of Kruskal’s algorithm?

- What is the runtime of Kruskal’s algorithm?
Can we improve on union()’s runtime?

- What if we store our connected components as a forest of trees?
 - Each tree representing a different connected component
 - Every time a new connection is made, we simply make one tree the child of another
Implementation using the same id array

```java
public int find(int p) {
    while (p != id[p]) p = id[p];
    return p;
}

public void union(int p, int q) {
    int i = find(p);
    int j = find(q);
    if (i == j) return;
    id[i] = j;
    count--;
}
```
Forest of trees implementation analysis

● Runtime?
 ○ find():
 ■ Bound by the height of the tree
 ○ union():
 ■ Bound by the height of the tree

● What is the max height of the tree?
 ○ Can we modify our approach to cap its max height?
Weighted tree example
Weighted trees

public UF(int n) {
 count = n;
 id = new int[n];
 sz = new int[n];
 for (int i = 0; i < n; i++) { id[i] = i; sz[i] = 1; }
}

public void union(int p, int q) {
 int i = find(p), j = find(q);
 if (i == j) return;
 if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
 else { id[j] = i; sz[i] += sz[j]; }
 count--;
}
Weighted tree approach analysis

- Runtime?
 - find()?
 - union()?

- Can we do any better?
What is the runtime of Kruskal’s algorithm?