Defining network flow

- Consider a directed, weighted graph $G(V, E)$
 - Weights are applied to edges to state their capacity
 - $c(u, w)$ is the capacity of edge (u, w)
 - if there is no edge from u to w, $c(u, w) = 0$
- Consider two vertices, a source s and a sink t
 - Let’s determine the maximum flow that can run from s to t in the graph G
Let the $f(u, w)$ be the amount of flow being carried along the edge (u, w)

Some rules on the flow running through an edge:

- $\forall (u, w) \in E \ f(u, w) \leq c(u, w)$
- $\forall u \in (V - \{s, t\}) \ (\sum_{w \in V} f(w, u) - \sum_{w \in V} f(u, w)) = 0$

An edge (u, w) is considered saturated if $f(u, w) = c(u, w)$
The Max Flow Problem

Given a graph G, a source vertex s, and a sink vertex t, find the maximum possible flow rate from s to t.
Ford Fulkerson

- Let all edges in G have an allocated flow of 0
- While there is path p from s to t in G s.t. all edges in p have some residual capacity (i.e., $\forall (u, w) \in p \ f(u, w) < c(u, w)$):
 - (Such a path is called an augmenting path)
 - Compute the residual capacity of each edge in p
 - Residual capacity of edge (u, w) is $c(u, w) - f(u, w)$
 - Find the edge with the minimum residual capacity in p
 - We’ll call this residual capacity new_flow
 - Increment the flow on all edges in p by new_flow
Ford Fulkerson example
Another Ford Fulkerson example
To find the max flow we will have need to consider re-routing flow we had previously allocated.

This means, when finding an augmenting path, we will need to look not only at the edges of G, but also at backwards edges that allow such re-routing.

For each edge $(u, w) \in E$, a backwards edge (w, u) must be considered during pathfinding if $f(u, w) > 0$.

- The capacity of a backwards edge (w, u) is equal to $f(u, w)$.
We will perform searches for an augmenting path not on G, but on a residual graph built using the current state of flow allocation on G.

The residual graph is made up of:

- V
- An edge for each $(u, w) \in E$ where $f(u, w) < c(u, w)$
 - (u, w)'s mirror in the residual graph will have 0 flow and a capacity of $c(u, w) - f(u, w)$
- A backwards edge for each $(u, w) \in E$ where $f(u, w) > 0$
 - (u, w)'s backwards edge has a capacity of $f(u, w)$
 - All backwards edges have 0 flow
Residual graph example
Another example

Graph:
- Source: s
- Intermediate: A
- Sink: t

Edges:
- s -> A: 1 /1000
- A -> t: 1 /1000
- s -> B: 1 /1000
- A -> B: 0 /1
- B -> t: 2 /1000
- B -> s: 2 /1000
Edmonds Karp

- How the augmenting path is chosen affects the performance of the search for max flow

- Edmonds and Karp proposed a shortest path heuristic for Ford Fulkerson
 - Use BFS to find augmenting paths
Another example

A

s

1000 /1000

1000 /1000

B

1000 /1000

t

1000 /1000

/1
Edmonds-Karp only uses BFS

- Used to find spanning trees and shortest paths for *unweighted* graphs
- Why do we not use some measure of priority to find augmenting paths?
Implementation concerns

- Representing the graph:
 - Similar to a directed graph
 - Can store an adjacency list of directed edges
 - Actually, more than simply directed edges
 - Flow edges
For each edge, we need to store:

- Start point, the “from” vertex
- End point, the “to” vertex
- Capacity
- Flow
- Residual capacities (for forwards and backwards edges)
FlowEdge class

class FlowEdge:
 def __init__(self, v, w, c):
 self.v = v # from
 self.w = w # to
 self.capacity = c # capacity
 self.flow = 0 # flow

 def residualCapacityTo(self, vertex):
 if vertex == self.v:
 return self.flow
 elif vertex == self.w:
 return self.capacity - self.flow

 ...
BFS search for an augmenting path

```python
degreeTo = [None for i in range(len(self.adj_list))]
marked = [False for i in range(len(self.adj_list))]
q = [s]
marked[s] = True
while len(q) > 0:
    vertex = q.pop(0)
    for edge in self.adj_list[vertex]:
        w = edge.other(vertex)
        if edge.residualCapacityTo(w) > 0:
            if not marked[w]:
                edgeTo[w] = edge;
                marked[w] = True;
                q.append(w);
```

Each FlowEdge object is stored in the adjacency list twice:

- Once for its forward edge
- Once for its backwards edge

18
An example to review
The Min Cut Problem

Given a graph G, a source vertex s, and a sink vertex t, find a set of edges that, if removed from the graph, would separate s from t, and which have the minimum possible sum of their edge weights.
How do we find the min st-cut?

- We could examine residual graphs
 - Specifically, try and allocate flow in the graph until we get to a residual graph with no existing augmenting paths
 - A set of saturated edges will make a minimum st-cut
 - Recall: \((u,w)\) is saturated if \(f(u,w) = c(u,w)\)
Min cut example
A special case of duality

- i.e., you can look at an optimization problem from two angles
 - In this case to find the maximum flow or minimum cut
 - In general, dual problems do not necessarily have equal solutions
 - The difference between the solutions to the two related problems is referred to as the *duality gap*
 - If the duality gap = 0, *strong duality* holds
 - Max flow/min cut uphold strong duality
 - If the duality gap > 0, *weak duality* holds

Max flow == min cut
Determining a minimum st-cut

- First, run Ford Fulkerson to produce a residual graph with no further augmenting paths
- The last attempt to find an augmenting path will visit every vertex reachable from s
 - Saturated edges with only one endpoint in this set comprise a minimum st-cut
Determining the min cut

\[A \]
\[B \]
\[C \]
\[s \]
\[t \]

\[\frac{3}{3} \]
\[\frac{2}{7} \]
\[\frac{5}{5} \]
\[\frac{1}{1} \]

\[\frac{3}{7} \]
\[\frac{3}{9} \]

Min Cut
Will max flow/min cut always be near s/t?
Max flow / min cut on unweighted graphs

- Is it possible?
- How would we measure the Max flow / min cut?
- What would an algorithm to solve this problem look like?
Unweighted network flow