Graphs

- A graph $G = (V, E)$
 - Where V is a set of vertices
 - E is a set of edges connecting vertex pairs
- Example:
 - $V = \{0, 1, 2, 3, 4, 5\}$
 - $E = \{(0, 1), (0, 4), (1, 2), (1, 4), (2, 3), (3, 4), (3, 5)\}$
Why?

- Can be used to model many different scenarios
Some definitions

● Undirected graph
 ○ Edges are unordered pairs: \((A, B) == (B, A)\)

● Directed graph
 ○ Edges are ordered pairs: \((A, B) != (B, A)\)

● Adjacent vertices, or neighbors
 ○ Vertices connected by an edge
Graph sizes

- Let $v = |V|$, and $e = |E|$.
- Given v, what are the minimum/maximum sizes of e?
 - Minimum value of e?
 - Definition doesn’t necessitate that there are any edges…
 - So, 0
 - Maximum of e?
 - Depends…
 - Are self edges allowed?
 - Directed graph or undirected graph?
 - In this class, we’ll assume directed graphs have self edges while undirected graphs do not.
A graph is considered **sparse** if:

- \(e \leq v \log v \)

A graph is considered **dense** as it approaches the maximum number of edges

- i.e., \(e = \text{MAX} - \varepsilon \)

A **complete** graph has the maximum number of edges
Question:

\[\text{or } \neq ? \]
Related:

\[\begin{align*}
\text{Related:} & \quad \begin{array}{c}
\begin{array}{ccc}
1 & & 2 \\
5 & & 6 \\
8 & & 7 \\
4 & & 3 \\
\end{array}
\end{array}
\end{align*}\]

\[\begin{align*}
\text{or} & \quad \begin{array}{c}
\begin{array}{ccc}
a & & g \\
b & & h \\
c & & i \\
d & & j \\
\end{array}
\end{array}
\end{align*}\]

\[\begin{align*}
\text{or} & \quad \begin{array}{c}
\begin{array}{ccc}
= & \neq & ?
\end{array}
\end{array}
\end{align*}\]
Trivially, graphs can be represented as:

- List of vertices
- List of edges

Performance?

- Assume we’re going to be analyzing static graphs
 - i.e., no insert and remove
- So what operations should we consider?
Using an adjacency matrix

- Rows/columns are vertex labels
 - $M[i][j] = 1$ if $(i, j) \in E$
 - $M[i][j] = 0$ if $(i, j) \notin E$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Adjacency matrix analysis

- Runtime?
- Space?
Adjacency lists

- Array of neighbor lists
 - $A[i]$ contains a list of the neighbors of vertex i
Adjacency list analysis

- Runtime?
- Space?
Where would we want to use adjacency lists vs adjacency matrices?

- What about the list of nodes/list of edges approach?
Even more definitions

- **Path**
 - A sequence of adjacent vertices
- **Simple Path**
 - A path in which no vertices are repeated
- **Simple Cycle**
 - A simple path with the same first and last vertex
- **Connected Graph**
 - A graph in which a path exists between all vertex pairs
- **Connected Component**
 - Connected subgraph of a graph
- **Acyclic Graph**
 - A graph with no cycles
- **Tree**
 - A connected, acyclic graph (often “rooted”)
 - Has exactly \(v-1\) edges
What is the best order to traverse a graph?

Two primary approaches:

- **Depth-first search (DFS)**
 - “Dive” as deep as possible into the graph first
 - Branch when necessary

- **Breadth-first search (BFS)**
 - Search all directions evenly
 - i.e., from i, visit all of i’s neighbors, then all of their neighbors, etc.
• Already seen and used this throughout the term
 ○ For tries…
 ○ For Huffman encoding…

• Can be easily implemented recursively
 ○ For each node, visit first unseen neighbor
 ○ Backtrack at dead ends (i.e., nodes with no unseen neighbors)
 ■ Try next unseen neighbor after backtracking
DFS example
DFS example 2
BFS

- Can be easily implemented using a queue
 - For each node visited, add all of its neighbors to the queue
 - Vertices that have been seen but not yet visited are said to be the *fringe*
 - Pop head of the queue to be the next visited vertex
- See example
BFS example
Shortest paths

- BFS traversals can further be used to determine the *shortest path* between two vertices.
Analysis of graph traversals

- At a high level, DFS and BFS have the same runtime
 - Each node must be seen and then visited, but the order will differ between these two approaches
- How will the representation of the graph affect the runtimes of these traversal algorithms?
If the graph is connected:
 - \texttt{dfs()/bfs()} is called only once and returns a \textit{spanning tree}

Else:
 - A loop in the wrapper function will have to continually call \texttt{dfs()/bfs()} while there are still unseen vertices
 - Each call will yield a spanning tree for a connected component of the graph
DFS pre-order traversal
DFS in-order traversal
DFS post-order traversal
Biconnected graphs

- A *biconnected graph* has at least 2 distinct paths (no common edges or vertices) between all vertex pairs.
- Any graph that is not biconnected has one or more *articulation points*:
 - Vertices, that, if removed, will separate the graph.
- Any graph that has no articulation points is biconnected:
 - Thus we can determine that a graph is biconnected if we look for, but do not find any articulation points.
Finding articulation points

- Variation on DFS
- Consider building up the spanning tree
 - Have it be directed
 - Create “back edges” when considering a node that has already been visited in constructing the spanning tree
 - Label each vertex v with two numbers:
 - $\text{num}(v) =$ pre-order traversal order
 - $\text{low}(v) =$ lowest-numbered vertex reachable from v using 0 or more spanning tree edges and then at most one back edge
 - Min of:
 - $\text{num}(v)$
 - Lowest $\text{num}(w)$ of all back edges (v, w)
 - Lowest $\text{low}(w)$ of all spanning tree edges (v, w)
Finding articulation points example
So where are the articulation points?

- If any (non-root) vertex \(v \) has some child \(w \) such that \(\text{low}(w) \geq \text{num}(v) \), \(v \) is an articulation point.

- What about if we start at an articulation point?
 - If the root of the spanning tree has more than one child, it is an articulation point.