CS 1501
bill-computer.science/1501
Graphs
A graph $G = (V, E)$

- Where V is a set of vertices
- E is a set of edges connecting vertex pairs

Example:
- $V = \{0, 1, 2, 3, 4, 5\}$
- $E = \{(0, 1), (0, 4), (1, 2), (1, 4), (2, 3), (3, 4), (3, 5)\}$
Why?

- Can be used to model many different scenarios
Some definitions

- Undirected graph
 - Edges are unordered pairs: \((A, B) = (B, A)\)

- Directed graph
 - Edges are ordered pairs: \((A, B) \neq (B, A)\)

- Adjacent vertices, or neighbors
 - Vertices connected by an edge
Let $v = |V|$, and $e = |E|$

Given v, what are the minimum/maximum sizes of e?

○ Minimum value of e?
 - Definition doesn’t necessitate that there are any edges...
 - So, 0

○ Maximum of e?
 - Depends...
 - Are self edges allowed?
 - Directed graph or undirected graph?
 - In this class, we’ll assume directed graphs have self edges while undirected graphs do not
A graph is considered **sparse** if:

- \(e \leq v \log_2 v \)

A graph is considered **dense** as it approaches the maximum number of edges

- i.e., \(e = \text{MAX} - \varepsilon \)

A **complete** graph has the maximum number of edges
Question:
Even more definitions

- **Path**
 - A sequence of adjacent vertices
- **Simple Path**
 - A path in which no vertices are repeated
- **Simple Cycle**
 - A simple path with the same first and last vertex
- **Connected Graph**
 - A graph in which a path exists between all vertex pairs
- **Connected Component**
 - Connected subgraph of a graph
- **Acyclic Graph**
 - A graph with no cycles
- **Tree**
 - A connected, acyclic graph
 - Has exactly $v-1$ edges
Graph traversal

- What is the best order to traverse a graph?
- Two primary approaches:
 - Depth-first search (DFS)
 - “Dive” as deep as possible into the graph first
 - Branch when necessary
 - Breadth-first search (BFS)
 - Search all directions evenly
 - i.e., from i, visit all of i’s neighbors, then all of their neighbors, etc.
DFS

- Already seen and used this throughout the term
 - For tries...
 - For Huffman encoding...
- Can be easily implemented recursively
 - For each vertex, visit first unseen neighbor
 - Backtrack at dead ends (i.e., vertices with no unseen neighbors)
 - Try next unseen neighbor after backtracking
DFS example
DFS example 2
BFS

- Can be easily implemented using a queue
 - For each vertex visited, add all of its neighbors to the queue
 - Vertices that have been seen but not yet visited are said to be the \textit{fringe}
 - Pop head of the queue to be the next visited vertex

- See example
BFS example
The Shortest Path Problem

Given a graph G, and two vertices u and w, determine the minimum number of edges in a path from u to w. (In some formulations, also give a path of this edge-length.)
What’s the runtime?

- At a high level, DFS and BFS have the same runtime
 - Each vertex must be seen and then visited, but the order will differ between these two approaches

- How do we represent the graph in our code?
 - How will the representation of the graph affect the runtimes of these traversal algorithms?
Representing graphs

- Trivially, graphs can be represented as:
 - List of vertices
 - List of edges

- Performance?
 - Assume we’re going to be analyzing static graphs
 - (i.e., no insert and remove)
 - So what operations should we consider?
Using an adjacency matrix

- Rows/columns are vertex labels
 - $M[i][j] = 1$ if $(i, j) \in E$
 - $M[i][j] = 0$ if $(i, j) \notin E$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Adjacency lists

- Array of neighbor lists
 - $A[i]$ contains a list of the neighbors of vertex i
Analysis of graph traversals revisited

- Runtime of BFS using an adjacency matrix?
- Runtime of BFS using an adjacency list?
- Runtime of DFS using an adjacency matrix?
- Runtime of DFS using an adjacency list?
Comparison of graph representations

- Where would we want to use adjacency lists vs adjacency matrices?
 - What about the list of vertices/list of edges approach?
If the graph is connected:
 ○ dfs() / bfs() is called only once and returns a spanning tree

Else:
 ○ A loop in the wrapper function will have to continually call dfs() / bfs() while there are still unseen vertices
 ○ Each call will yield a spanning tree for a connected component of the graph
Traversal orders
A biconnected graph has at least 2 distinct paths (no common edges or vertices) between all vertex pairs.

Any graph that is not biconnected has one or more articulation points:
- Vertices, that, if removed, will separate the graph.

Any graph that has no articulation points is biconnected:
- Thus we can determine that a graph is biconnected if we look for, but do not find any articulation points.
Given a graph G, determine the full set of vertices that are considered *articulation points*.
Finding articulation points

- Variation on DFS
- Consider building up the spanning tree
 - Have it be directed
 - Create “back edges” when considering a vertex that has already been visited in constructing the spanning tree
 - Label each vertex v with two numbers:
 - $\text{num}(v) = \text{pre-order traversal order}$
 - $\text{low}(v) = \text{lowest-numbered vertex reachable from } v \text{ using 0 or more spanning tree edges and then at most one back edge (assigned in post-order)}$
- Min of:
 - $\text{num}(v)$
 - Lowest $\text{num}(w)$ of all back edges (v, w)
 - Lowest $\text{low}(w)$ of all spanning tree edges (v, w)
Finding articulation points example
So where are the articulation points?

- If any (non-root) vertex \(v \) has some child \(w \) such that
 \[
 \text{low}(w) \geq \text{num}(v), \quad v \text{ is an articulation point}
 \]

- What about if we start at an articulation point?
 - If the root of the spanning tree has more than one child, it is an articulation point