CS 1501
bill-computer.science/1501

Priority Queues
The Priority Searching Problem

Given a collection of items, and the ability to determine the relative priority of any two items, return an item with the highest priority
We will look at priority queues in Compression

- Primary operations they need:
 - Insert
 - Find item with highest priority
 - e.g., `findMin()` or `findMax()`
 - Remove an item with highest priority
 - e.g., `removeMin()` or `removeMax()`

- How do we implement these operations?
 - Simplest approach: arrays
Unsorted array PQ

- **Insert:**
 - Add new item to the end of the array
 - $O(1)$

- **Find:**
 - Search for the highest priority item (e.g., min or max)
 - $O(n)$

- **Remove:**
 - Search for the highest priority item and delete
 - $O(n)$

- Runtime to add and remove n elements?
Sorted array PQ

- **Insert:**
 - Add new item in appropriate sorted order
 - $O(n)$
- **Find:**
 - Return the item at the end of the array
 - $O(1)$
- **Remove:**
 - Return and delete the item at the end of the array
 - $O(1)$

- Runtime to add and remove n elements?
• What about a binary search tree?
 ○ Insert
 ■ Average case of $O(\log n)$, but worst case of $O(n)$
 ○ Find
 ■ Average case of $O(\log n)$, but worst case of $O(n)$
 ○ Remove
 ■ Average case of $O(\log n)$, but worst case of $O(n)$

• In the average case, all operations are $O(\log n)$
 ○ No constant time operations
 ○ Worst case is $O(n)$ for all operations
What about a red-black BST?

- Seems like overkill...
- Our find and remove operations only need the highest priority item, not to find/remove any item
 - Can we take advantage of this to get efficient performance with a simpler implementation?
 - Yes!
A heap is complete binary tree such that:

- For each node T in the tree:
 - T.item is of a higher priority than T.right_child.item
 - T.item is of a higher priority than T.left_child.item

- It does not matter how T.left_child.item relates to T.right_child.item

The heap property
Heap PQ runtimes

- Find is easy
 - Simply the root of the tree
 - $O(1)$
- Remove and insert are not quite so trivial
 - The tree is modified and the heap property must be maintained
Heap insert

- Add a new node at the next available leaf
- Push the new node up the tree until it is supporting the heap property
Min heap insert

Insert:
7, 42, 37, 5, 8, 15, 12, 9, 3
Heap remove

- Tricky to delete root...
 - So let’s simply overwrite the root with the item from the last leaf and delete the last leaf
 - But then the root is violating the heap property...
 - So we push the root down the tree until it is supporting the heap property
Min heap removal

NO!
Heap runtimes

- Find
 - $O(1)$

- Insert and remove
 - Height of a complete binary tree is $\lg(n)$
 - At most, upheap and downheap operations traverse the height of the tree
 - Hence, insert and remove are $O(\lg n)$
Heap implementation

● Simply implement tree nodes like for BST
 ○ This requires overhead for dynamic node allocation
 ○ Also must follow chains of parent/child relations to traverse the tree

● Note that a heap will be a complete binary tree...
 ○ We can easily represent a complete binary tree using an array
Storing a heap in an array

- Number nodes row-wise starting at 0
- Use these numbers as indices in the array
- Now, for node at index i
 - $\text{parent}(i) = \lfloor (i - 1) / 2 \rfloor$
 - $\text{left}_\text{child}(i) = 2i + 1$
 - $\text{right}_\text{child}(i) = 2i + 2$

For arrays indexed from 0
The Sorting Problem

Given a collection of items, produce a collection with items arranged in a sorted order
Heap Sort

- Heapify the numbers
 - MAX heap to sort ascending
 - MIN heap to sort descending
- "Remove" the root
 - Don’t actually delete the leaf node
- Consider the heap to be from 0 .. length - 1
- Repeat
Heap sort analysis

- Runtime:
 - Worst case:
 - $O(n \log n)$
- In-place?
 - Yes
- Stable?
 - No
Let’s say I’m shopping for a new video card and want to build a heap to help me keep track of the lowest price available from different stores.

Keep objects of the following type in the heap:

```python
class CardPrice:
    def __init__(self, store, price):
        self.store = store
        self.price = price
    def compareTo(self, other):
        if self.price < other.price:
            return -1
        elif self.price > other.price:
            return 1
        else:
            return 0
```
The Priority Searching Problem

Given a collection of items, and the ability to determine the relative priority of any two items, return an item with the highest priority
What if we want to update an Object?

- What is the runtime to find an arbitrary item in a heap?
 - $O(n)$
 - Hence, updating an item in the heap is $O(n)$

- Can we improve on this?
 - Back the PQ with something other than a heap?
 - Develop a clever workaround?
Indirection

- Maintain a second data structure that maps item IDs to each item’s current position in the heap
- This creates an *indexable* PQ
Indirection example

- $n = \text{CardPrice}(\text{"NE"}, 333.98);$
- $a = \text{CardPrice}(\text{"AMZN"}, 339.99);$
- $g = \text{CardPrice}(\text{"GME"}, 338.00);$
- $b = \text{CardPrice}(\text{"BB"}, 349.99);$

- Update price for NE: 340.00
- Update price for GME: 345.00
- Update price for BB: 200.00