CS/COE 1501

cs.pitt.edu/~bill/1501/

Hashing
Wouldn’t it be wonderful if...

- Search through a collection could be accomplished in $\Theta(1)$ with relatively small memory needs?
- Let’s try this:
 - Assume we have an array of length m (call it HT)
 - Assume we have a function $h(x)$ that maps from our key space to $\{0, 1, 2, \ldots, m-1\}$
 - e.g., $\mathbb{Z} \rightarrow \{0, 1, 2, \ldots, m-1\}$ for integer keys
 - Let’s also assume $h(x)$ is efficient to compute
- This is the basic premise of hash tables
How do we search/insert with a hash map?

- **Insert:**

 \[i = h(x) \]

 \[HT[i] = x \]

- **Search:**

 \[i = h(x) \]

 \[
 \text{if } (HT[i] == x) \text{ return true; }
 \text{else return false;}
 \]

- **This is a very general, simple approach to a hash table implementation**

 ○ Where will it run into problems?
What do we do if \(h(x) == h(y) \) where \(x != y \)?

- Called a *collision*
Consider an example

- Company has 500 employees
- Stores records using a hashmap with 1000 entries
- Employee SSNs are hashed to store records in the hashmap
 - Keys are SSNs, so $|\text{keyspace}| = 10^9$
- Specifically what keys are needed can’t be known in advance
 - Due to employee turnover
- What if one employee (with SSN x) is fired and replacement has an SSN of y?
 - Can we design a hash function that guarantees $h(y)$ does not collide with the 499 other employees' hashed SSNs?
Can we ever guarantee collisions will not occur?

- Yes, if the our keyspace is smaller than our hashmap
 - If $|\text{keyspace}| \leq m$, *perfect hashing* can be used
 - i.e., a hash function that maps every key to a distinct integer $< m$
 - Note it can also be used if $n < m$ and the keys to be inserted are known in advance
 - e.g., hashing the keywords of a programming language during compilation
 - If $|\text{keyspace}| > m$, collisions cannot be avoided
Can we reduce the number of collisions?

- Using a good hash function is a start

- What makes a good hash function?
 1. Utilize the entire key
 2. Exploit differences between keys
 3. Uniform distribution of hash values should be produced
Examples

- Hash list of classmates by phone number
 - Bad?
 - Use first 3 digits
 - Better?
 - Consider it a single int
 - Take that value modulo m

- Hash words
 - Bad?
 - Add up the ASCII values
 - Better?
 - Use Horner’s method to do modular hashing again
 - See Section 3.4 of the text
The madness behind Horner's method

- **Base 10**
 - 12345
 - $= 1 \times 10^4 + 2 \times 10^3 + 3 \times 10^2 + 4 \times 10^1 + 5 \times 10^0$

- **Base 2**
 - 10100
 - $= 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$

- **Base 16**
 - BEEF3
 - $= 11 \times 16^4 + 14 \times 16^3 + 14 \times 16^2 + 15 \times 16^1 + 3 \times 16^0$

- **ASCII Strings**
 - HELLO
 - $= 'H' \times 256^4 + 'E' \times 256^3 + 'L' \times 256^2 + 'L' \times 256^1 + 'O' \times 256^0$
 - $= 72 \times 256^4 + 69 \times 256^3 + 76 \times 256^2 + 77 \times 256^1 + 79 \times 256^0$
Overall a good simple, general approach to implement a hash map

Basic formula:
- \(h(x) = c(x) \mod m \)
 - Where \(c(x) \) converts \(x \) into a (possibly) large integer

Generally want \(m \) to be a prime number
- Consider \(m = 100 \)
- Only the least significant digits matter
 - \(h(1) = h(401) = h(4372901) \)
Back to collisions

- We’ve done what we can to cut down the number of collisions, but we still need to deal with them

- Collision resolution: two main approaches
 - Open Addressing
 - Closed Addressing
Open Addressing

- i.e., if a pigeon’s hole is taken, it has to find another
- If \(h(x) == h(y) == i \)
 - And \(x \) is stored at index \(i \) in an example hash table
 - If we want to insert \(y \), we must try alternative indices
 - This means \(y \) will not be stored at \(HT[h(y)] \)
 - We must select alternatives in a consistent and predictable way so that they can be located later
Linear probing

- **Insert:**
 - If we cannot store a key at index i due to collision
 - Attempt to insert the key at index i+1
 - Then i+2 ...
 - And so on ...
 - mod m
 - Until an open space is found

- **Search:**
 - If another key is stored at index i
 - Check i+1, i+2, i+3 ... until
 - Key is found
 - Empty location is found
 - We circle through the buffer back to i
Linear probing example

- \(h(x) = x \mod 11 \)
- Insert 14, 17, 25, 37, 34, 16, 26

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>34</td>
<td>14</td>
<td>25</td>
<td>37</td>
<td>17</td>
<td>16</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- How would deletes be handled?
 - What happens if key 17 is removed?
Alright! We solved collisions!

- Well, not quite…
- Consider the *load factor* $\alpha = n/m$
- As α increases, what happens to hash table performance?

- Consider an empty table using a good hash function
 - What is the probability that a key x will be inserted into any one of the indices in the hash table?

- Consider a table that has a cluster of c consecutive indices occupied
 - What is the probability that a key x will be inserted into the index directly after the cluster?
Avoiding clustering

- We must make sure that even after a collision, all of the indices of the hash table are possible for a key
 - Probability of filled locations need to be distributed throughout the table
Double hashing

- After a collision, instead of attempting to place the key x in $i+1 \mod m$, look at $i+h_2(x) \mod m$
 - $h_2()$ is a second, different hash function
 - Should still follow the same general rules as $h()$ to be considered good, but needs to be different from $h()$
 - $h(x) == h(y) \text{ AND } h_2(x) == h_2(y)$ should be very unlikely
 - Hence, it should be unlikely for two keys to use the same increment
Double hashing

- $h(x) = x \mod 11$
- $h_2(x) = (x \mod 7) + 1$
- Insert 14, 17, 25, 37, 34, 16, 26

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>34</td>
<td>14</td>
<td>37</td>
<td>16</td>
<td>17</td>
<td>25</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Why could we not use $h_2(x) = x \mod 7$?
 - Try to insert 2401
A few extra rules for h2()

- Second hash function cannot map a value to 0
- You should try all indices once before trying one twice

- Were either of these issues for linear probing?
Meaning n approaches m...

Both linear probing and double hashing degrade to $\Theta(n)$

- How?
 - Multiple collisions will occur in both schemes
 - Consider inserts and misses...
 - Both continue until an empty index is found
 - With few indices available, close to m probes will need to be performed
 - $\Theta(m)$
 - n is approaching m, so this turns out to be $\Theta(n)$
Open addressing issues

- Must keep a portion of the table empty to maintain respectable performance
 - For linear hashing $\frac{1}{2}$ is a good rule of thumb
 - Can go higher with double hashing
Closed addressing

- i.e., if a pigeon’s hole is taken, it lives with a roommate
- Most commonly done with separate chaining
 - Create a linked-list of keys at each index in the table
 - As with DLBs, performance depends on chain length
 - Which is determined by α and the quality of the hash function
In general...

- Closed-addressing hash tables are fast and efficient for a large number of applications.