Towards a Dynamic and Composite Model of Trust
Adam J. Lee, and Ting Yu, SACMAT 2009

Yue Zhang
yzhang@sis.pitt.edu
September 21, 2009
Background

• Computer Science often mimics the human’s behavior
 - how do people establish trust?

• **Vertical Trust** (entities <-> institutions)
 - People: A restaurant has been awarded as “Pittsburgh’s best seafood restaurant”
 - Digital Trust: An entity has been certified as the IEEE member

• **Horizontal Trust** (entities <-> other entities)
 - People: A restaurant has been recommended by many of my friends
 - Digital Trust: A seller on eBay has been rated 99.3% positive by other buyers
Motivation

• Few work has been done to support both vertical and horizontal trust
 - some focuses on vertical trust: e.g. credential-based trust
 - some focuses on horizontal trust: e.g. rating system used by eBay

• Some work does support both, but
 - very limited, simple conjunction or disjunction
 - e.g. I will install an application only if its author is a member of BBB and has a reputation of at least 0.85

• Arbitrary Composition is needed
 - especially sequential composition
 - e.g. I will install an application only if its author is a member of BBB and has a reputation of at least 0.85, as reported by members of the ACM
Desiderata

- Platform Neutrality
 - e.g. centralized vs. decentralized
- Algorithmic Flexibility
 - any functions to aggregate data
- Unified Representation
- Flexible Composition
- Declarative Semantics
 - precise semantics, separate with policy enforcement
Key Idea

• **Everything** is an attribute

 - the horizontal rating is a special attribute of the entity, similar with the vertical credential

 - e.g. A seller is an BBB member is an attribute of the seller. A seller’s positive percentage is also an attribute of the seller,
Horizontal Trust

- **Tracing feedbacks of transactions**
- **Definition of Feedback:**
 - `<issuer, subject, signer, a single rating, other transaction properties>`
 - e.g. `<Charley, Bob, eBay, positive, trans_id = xxx>`
- **Horizontal Trust Assessment Function:**
 - $f : 2^F \times P \times P \rightarrow R$
 - $f($feedbacks, source, target$)$
 - eBayRating (feedbacksOfBob, Alice, Bob)
Horizontal Trust

• Tracing feedbacks of transactions

• Definition of Feedback:
 - <issuer, subject, signer, a single rating, other transaction properties>
 - e.g. <Charley, Bob, eBay, positive, trans_time = xxx>

• Horizontal Trust Assessment Function:
 - \(f : 2^F \times P \times P \rightarrow R \)
 - \(f (feedbacks, source, target) \)
 - eBayRating (feedbacksOfBob, Alice, Bob)

Discussion: in definition of \(f \), target==feedbacks.subject?
Aggregate Containment

Syntax
- $K_a.R \leftarrow K_b.F (issuer=K_i.R_i, target=K_t.R_t, signer=K_s.R_s, rating \bowtie c_r, a_1 \bowtie c_1, \ldots, a_n \bowtie c_n, output c_o)$

Semantics
- $\{ p \in P \mid F(R, K_b, p) \bowtie c_o \land r \in R \rightarrow (r.issuer \in K_i.R_i \land r.target \in K_t.R_t \land r.signer \in K_s.R_s \land r.rating \bowtie c_r \land r.a_1 \bowtie c_1 \land \ldots \land r.a_n \bowtie c_n) \} \subseteq K_a.R$

Example
- $K_a.R \leftarrow K_a.f (issuer=ACM.member, output > 0.9)$
Aggregate Containment

• Syntax
 - $K_a.R \leftarrow K_b.F (issuer=K_i.R_i, target=K_t.R_t, signer=K_s.R_s, rating \triangleq c_r, a_1 \triangleq c_1, \ldots, a_n \triangleq c_n, output c_o)$

• Semantics
 - $\{ p \in P \mid F(R, K_b, p) \triangleq c_o \land r \in R \rightarrow (r.issuer \in K_i.R_i \land r.target \in K_t.R_t \land r.signer \in K_s.R_s \land r.rating \triangleq c_r \land r.a_1 \triangleq c_1 \land \ldots \land r.a_n \triangleq c_n \} \subseteq K_a.R$

• Example
 - $K_a.R \leftarrow K_a.f (issuer=ACM.member, output >0.9)$

Discussion: is there any more-readable way to define aggregate containment?
Aggregate Containment

• Syntax
 - $K_a.R \leftarrow K_b.F$ (issuer=$K_i.R_i$, target=$K_t.R_t$, signer=$K_s.R_s$, rating$^\bowtie c_r$, $a_1 \bowtie c_1$, ..., $a_n \bowtie c_n$, output c_o)

• Semantics
 - $\{ p \in P \mid F(R, K_b, p) \bowtie c_o \land r \in R \rightarrow (r.issuer \in K_i.R_i \land r.target \in K_t.R_t \land r.signer \in K_s.R_s \land r.rating \bowtie c_r \land r.a_1 \bowtie c_1 \land \ldots \land r.a_n \bowtie c_n) \} \subseteq K_a.R$

• Example
 - $K_a.R \leftarrow K_a.f$ (issuer=ACM.member, output >0.9)

Discussion: is there any more-readable way to define aggregate containment?
e.g. $K_a.R \leftarrow \{ p \mid F(R(issuer=K_i.R_i, target=K_t.R_t, signer=K_s.R_s, rating^\bowtie c_r, a_1^\bowtie c_1, ..., a_n^\bowtie cn), K_b, p) \bowtie c_o \}$
Arbitrary Composition

• Vertical Trust
• Horizontal Trust
• Simple Conjunction and Disjunction
• Arbitrary Sequence
 - \{vertical, horizontal\} \leftarrow horizontal:
 aggregate function returns a set of principles, so it can appear anywhere a role can be specified:
 - horizontal \leftarrow \{vertical, horizontal\}:
 issuer, target, and signer in the aggregate function can be further restricted by any other role definitions:
 - vertical \leftarrow horizontal \leftarrow horizontal \leftarrow \ldots \leftarrow vertical \leftarrow vertical
Policy Example

• Scenario: Process Automation

Acme wants to define an application category “priority” for applicants who attended a “preferred” academic institution, are members of the ACM or IEEE, and whose average “Black Friday” score is at least 9.0. Further, only the scores by tenured faculty count.

• Policy

Scenario 2: Process Automation

\[
\begin{align*}
\text{Acme.Priority} &\leftarrow \text{Acme.PrefUniv.Student} \cap \text{Acme.ProfOrg.Member} \cap \text{Acme.PrefUniv.BlackFri(issuer = Acme.TF, output \geq 9.0)} \\
\text{Acme.ProfOrg} &\leftarrow \text{ACM} \\
\text{Acme.ProfOrg} &\leftarrow \text{IEEE} \\
\text{Acme.TF} &\leftarrow \text{Acme.PrefUniv.Faculty(tenure = True)} \\
\text{Acme.PrefUniv} &\leftarrow \text{StateU}
\end{align*}
\]
Revisit the Desiderata

• Platform Neutrality
• Algorithmic Flexibility
• Unified Representation
• Flexible Composition
• Declarative Semantics
Revisit the Desiderata

- Platform Neutrality
- Algorithmic Flexibility
- Unified Representation
- Flexible Composition
- Declarative Semantics
Revisit the Desiderata

- Platform Neutrality
- Algorithmic Flexibility
- Unified Representation
- Flexible Composition
- Declarative Semantics
Revisit the Desiderata

• Platform Neutrality ✓
• Algorithmic Flexibility ✓
• Unified Representation ✓
• Flexible Composition
• Declarative Semantics
Revisit the Desiderata

• Platform Neutrality
• Algorithmic Flexibility
• Unified Representation
• Flexible Composition
• Declarative Semantics
Revisit the Desiderata

- Platform Neutrality ✓
- Algorithmic Flexibility ✓
- Unified Representation ✓
- Flexible Composition ✓
- Declarative Semantics ✓
Strengths

- Recognize the importance of arbitrarily composting vertical and horizontal trust, and propose some desiderata for composting them.

- Propose a Language CTM that simply adds only one “aggregate containment” to RT_1 to arbitrarily compose trust.

- Trust decision made by CTM is no longer binary and supports “top-k query”

 - actually the advantage of horizontal trust
Weaknesses

• Discussion...
Weaknesses

• Relies heavily on RT, thus inherits most of the limitations of RT

• Language only, does not discuss privacy and trust negotiation

• Many Implementation Challenges
 - harder to collect data, etc.