CS 3750 Machine Learning Lecture 10

Principal Component Analysis (PCA) Singular Value Decomposition (SVD)

Based on slides from Iyad Batal, Eric Strobl & Milos Hauskrecht

CS 3750 Advanced Machine Learning

Outline

- Principal Component Analysis (PCA)
- Singular Value Decomposition (SVD)
- Multi-Dimensional Scaling (MDS)
- Non-linear PCA extension:
 - Kernel PCA

Outline

- Principal Component Analysis (PCA)
- Singular Value Decomposition (SVD)
- Multi-Dimensional Scaling (MDS)
- Non-linear extensions:
 - Kernel PCA

Real-World Data

Real world data and information therein may be:

- Redundant
 - One variables may carry the same information as the other variable
 - Information covered by a set of variable may overlap
- Noisy
 - Some dimensions may not carry any useful information and the variation in that dimension is purely due to noise in the observations

Important questions:

- how to reduce the dimensionality of the data
- what is the intrinsic dimensionality of the data?

Example

Three cameras tracking the movement of a ball on a string in 3D space.

- The ball moves in 2 D space (one dimension is redundant)
- Information collected by 3 cameras overlap.

PCA

PCA finds a linear projection of data into orthogonal basis system that has the minimum redundancy and preserves the variance in data.

Applications:

- o Identify the intrinsic dimensionality of the data
- o Lower dimensional representation of data with the smallest reconstruction error.

PCA/SVD applications

- > Dimensionality reduction
- ➤ LSI: Latent Semantic Indexing.
- ➤ Kleinberg/Hits algorithm
- ➤ Google/PageRank algorithm (random walk with restart).
- ➤ Image-compression (eigen faces)
- ➤ Data visualization (by projecting the data on 2D).

Background: eigenvectors

If A is a square matrix, a non-zero vector v is an eigenvector of
A if there is a scalar λ (eigenvalue) such that

$$Av = \lambda v$$

- Example: $\begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 12 \\ 8 \end{pmatrix} = 4 \begin{pmatrix} 3 \\ 2 \end{pmatrix}$
- If we think of the squared matrix as a transformation matrix, then multiply it with the eigenvector do not change its direction.

What are the eigenvectors of the identity matrix?

Iyad Batal

The Covariance Matrix of X

$$C_X = \frac{1}{n-1} X^T X$$

Diagonal terms: variance

Large values = signal

Off-diagonal: covariance

Large values = high redundancy

Covariance matrix is always symmetric

$$C_X^T = \frac{1}{n-1} (X^T X)^T = \frac{1}{n-1} (X^T X) = C_X$$

Matrix decomposition

Theorem 1: if square $d \times d$ matrix **S** is a real and symmetric matrix ($\mathbf{S} = \mathbf{S}^T$) then

$$s = v \Lambda v^T$$

where $\mathbf{V} = [v_1 \quad \cdots \quad v_d]$ are the eigenvectors of **S** and $\mathbf{\Lambda} = diag(\lambda_1, \dots, \lambda_d)$ are the corresponding eigenvalues.

Proof:

$$\mathbf{SV} = \mathbf{V}\mathbf{\Lambda}$$
$$[\mathbf{S}v_1, \mathbf{S}v_2, \dots \mathbf{S}v_d] = [\lambda_1 v_1, \lambda_2 v_2, \dots \lambda_d v_d]$$

$$SVV^{-1} = V\Lambda V^{-1}$$
$$S = V\Lambda V^{T}$$

Covariance matrix decomposition

$$X^TX = V \Lambda V^T$$

where:

- V is a matrix of eigenvectors of X^TX (arranged in columns);
- Λ is a diagonal matrix of corresponding eigenvalues

Proof:

$$(X^TX)V = V \Lambda D$$

 $(X^TX)VV^T = V \Lambda V^T$
 $X^TX = V \Lambda V^T$ since eigenvectors are orthonormal

Change of Basis

Assume:

- **X** is an *n* x *d* data matrix
- Linear (affine) transformation: A

$$Y = XA$$

where

- A is a matrix that transforms X into Y
- Columns of A are formed by basis vectors that re-express the rows of X in the new coordinate system

Change of Basis

- But, what is the best "basis" vector?
 - **PCA assumption:** the direction with the largest variance

The basis is just the best fit line

Goal and Assumptions of PCA

Y = XA

Goal: Find the best transformation A, so that Y has the minimal noise and redundancy

Assumptions

- 1) A contains orthonormal basis vectors (makes computations easier)
- 2) Covariance matrix captures all the information about X (only true for exponential family distributions)

PCA Derivation

• C_Y : Covariance of Y expressed in terms of A

$$C_Y = \frac{1}{n-1} Y^T Y$$

$$= \frac{1}{n-1} (XA)^T (XA)$$

$$= \frac{1}{n-1} A^T X^T X A$$

$$= \frac{1}{n-1} A^T (X^T X) A$$

PCA

· Find the direction for which the variance is maximized:

$$v_1 = argmax_{v1} var(Xv_1)$$

Subject to: $v_1^T v_1 = 1$

· Rewrite in terms of the covariance matrix:

$$var(Xv_1) = \frac{1}{N-1}(Xv_1)^T(Xv_1) = v_1^T \frac{1}{N-1}X^TXv_1 = v_1^TCv_1$$

· Solve via constrained optimization:

$$L(v_1, \lambda_1) = v_1^T C v_1 + \lambda_1 (1 - v_1^T v_1)$$

PCA

Constrained optimization:

$$L(v_1, \lambda_1) = v_1^T C v_1 + \lambda_1 (1 - v_1^T v_1)$$

• Gradient with respect to v₁:

$$\frac{dL(v_1,\lambda_1)}{dv_1} = 2Cv_1 - 2\lambda_1v_1 \Rightarrow Cv_1 = \lambda_1v_1$$

This is the eigenvector problem!

Multiply by v₁^T:

$$\lambda_1 = v_1^T C v_1$$

The projection variance is the eigenvalue

PCA Derivation

• Assuming A = V, i.e. each column is an eigenvector of $X^T X$

$$C_{Y} = \frac{1}{n-1} V^{T} (X^{T} X) V$$

$$= \frac{1}{n-1} V^{T} (V D V^{T}) V$$

$$= \frac{1}{n-1} V^{T} V D V^{T} V$$

$$= \frac{1}{n-1} V^{-1} V D V^{-1} V$$

$$= \frac{1}{n-1} D$$

After the transformation of X with V, the covariance matrix becomes diagonal

PCA as dimensionality reduction

- (1) If the data lives in a lower dimensional space d', then some of the eigenvalues in **D** matrix are set to 0
- (2) If we want to reduce the dimensionality of the data from d to some fixed k, we choose the eigenvectors with the k highest eigenvalues – the dimensions that preserve most of the variance in the data
- (3) This selection also minimizes the data reconstruction error (so the best *k* dimensions lead to best error).

Original

PCA for dimensionality reduction

PCA steps: transform an $N \times d$ matrix X into an $N \times m$ matrix Y:

- Centralized the data (subtract the mean).
- Calculate the $d \times d$ covariance matrix: $C = \frac{1}{N-1}X^TX$ (different notation from tutorial!!!)

o
$$C_{i,j} = \frac{1}{N-1} \sum_{q=1}^{N} X_{q,i}.X_{q,j}$$

- o $C_{i,i}$ (diagonal) is the variance of variable i.
- o $C_{i,j}$ (off-diagonal) is the covariance between variables i and j.
- Calculate the eigenvectors of the covariance matrix (orthonormal).
- Select m eigenvectors that correspond to the largest m eigenvalues to be the new basis.

PCA: example

X: the data matrix with N=II objects and d=2 dimensions.

PCA: example

 \blacktriangleright Step 1: subtract the mean and calculate the covariance matrix C.

$$C = \begin{pmatrix} 0.716 & 0.615 \\ 0.615 & 0.616 \end{pmatrix}$$

PCA: eexample

➤ Step 2: Calculate the eigenvectors and eigenvalues of the covariance matrix:

$$\lambda_1 \approx 1.28, v_1 \approx [-0.677 \ -0.735]^T, \lambda_2 \approx 0.49, v_2 \approx [-0.735 \ 0.677]^T$$

Notice that v_1 and v_2 are orthonormal:

$$|v_1| = 1$$

$$|v_2| = 1$$

$$v_1 \cdot v_2 = 0$$

PCA: example

> Step 3: project the data

Let $V = [v_1, \dots v_m]$ is $d \times m$ matrix where the columns v_i are the eigenvectors corresponding to the largest m eigenvalues

The projected data: Y = XV is $N \times m$ matrix.

If m=d (more precisely rank(X)), then there is no loss of information!

PCA: example

> Step 3: project the data

$$\lambda_1{\approx}1.28,\,v_1\approx[\text{-0.677 -0.735}]^T$$
 , $\lambda_2\approx\!0.49,\,v_2\approx[\text{-0.735 0.677}]^T$

The eigenvector with the highest eigenvalue is the **principle component** of the data.

if we are allowed to pick only one dimension, the principle component is the best direction (retain the maximum variance).

Our PC is $v_1 \approx [-0.677 \ -0.735]^T$

PCA: example

> Step 3: project the data

If we select the first PC and reconstruct the data, this is what we get:

We lost variance along the other component (lossy compression!)

Outline

- Principal Component Analysis (PCA)
- Singular Value Decomposition (SVD)
- Multi-Dimensional Scaling (MDS)
- Non-linear extensions:
 - Kernel PCA

SVD

Any $N \times d$ matrix X can be uniquely expressed as:

- r is the rank of the matrix X (# of linearly independent columns/rows).
- U is a column-orthonormal $N \times r$ matrix.
- Σ is a diagonal r × r matrix where the singular values σ_i are sorted in descending order.
- V is a column-orthonormal $d \times r$ matrix.

SVD example

The rank of this matrix r=2 because we have 2 types of documents (CS and Medical documents), i.e. 2 concepts.

SVD example

U: document-to-concept similarity matrix

V: term-to-concept similarity matrix.

Example: $U_{1,1}$ is the weight of CS concept in document d_1 , σ_1 is the strength of the CS concept, $V_{1,1}$ is the weight of 'data' in the CS concept.

V_{1,2}=0 means 'data' has zero similarity with the 2nd concept (Medical).

What does U_{41} means?

PCA and **SVD** relation

Theorem: Let $X = U \Sigma V^T$ be the SVD of an $N \times d$ matrix X and $C = \frac{1}{N-1} X^T X$ be the $d \times d$ covariance matrix. The eigenvectors of C are the same as the right singular vectors of X.

Proof:

$$X^T X = V \Sigma U^T U \Sigma V^T = V \Sigma \Sigma V^T = V \Sigma^2 V^T$$

$$C = V \frac{\Sigma^2}{N-1} V^T$$

But C is symmetric, hence $C = V \Lambda V^T$ (according to theorem 1).

Therefore, the eigenvectors of the covariance matrix are the same as matrix V (right singular vectors) and the eigenvalues of C can be computed from the singular values $\lambda_i = \frac{\sigma_i^2}{N-1}$

Summary for PCA and SVD

Objective: project an $N \times d$ data matrix X using the largest m principal components $V = [v_1, ... v_m]$.

- 1. zero mean the columns of X.
- 2. Apply PCA or SVD to find the principle components of X.

PCA:

- I. Calculate the covariance matrix $C = \frac{1}{N-1}X^TX$.
- II. V corresponds to the eigenvectors of C.

SVD:

- I. Calculate the SVD of $X=U \Sigma V^T$.
- II. V corresponds to the right singular vectors.
- 3. Project the data in an m dimensional space: Y = XV

Outline

- Principal Component Analysis (PCA)
- Singular Value Decomposition (SVD)
- Multi-Dimensional Scaling (MDS)
- Non-linear extensions:
 - Kernel PCA

MDS

- · Multi-Dimensional Scaling [Cox and Cox, 1994] .
- MDS give points in a low dimensional space such that the Euclidean distances between them best approximate the original distance matrix.

Given distance matrix

$$\Delta := \begin{pmatrix} \delta_{1,1} & \delta_{1,2} & \cdots & \delta_{1,I} \\ \delta_{2,1} & \delta_{2,2} & \cdots & \delta_{2,I} \\ \vdots & \vdots & & \vdots \\ \delta_{I,1} & \delta_{I,2} & \cdots & \delta_{I,I} \end{pmatrix}.$$

Map input points x_i to z_i such as $||z_i - z_i|| \approx \delta_{i,j}$

- Classical MDS: the norm || . || is the Euclidean distance.
- Distances → inner products (Gram matrix) → embedding
 There is a formula to obtain Gram matrix G from distance matrix Δ.

MDS example

Given pairwise distances between different cities (Δ matrix), plot the cities on a 2D plane (recover location)!!

PCA and MDS relation

- Preserve Euclidean distances = retaining the maximum variance.
- Classical MDS is equivalent to PCA when the distances in the input space are the Euclidean distance.
- PCA uses the $d \times d$ covariance matrix: $C = \frac{1}{N-1} X^T X^T$
- MDS uses the $N \times N$ Gram (inner product) matrix: $G = X X^T$
- If we have only a distance matrix (we don't know the points in the original space), we cannot perform PCA!
- Both PCA and MDS are invariant to space rotation!

Kernel PCA

- Kernel PCA [Scholkopf et al. 1998] performs nonlinear projection.
- Given input $(x_1, ... x_N)$, kernel PCA computes the principal components in the feature space $(\varphi(x_1), ... \varphi(x_N))$.
- Avoid explicitly constructing the covariance matrix in feature space.
- The kernel trick: formulate the problem in terms of the kernel function $k(x, x') = \varphi(x) \cdot \varphi(x')$ without explicitly doing the mapping.
- Kernel PCA is non-linear version of MDS use Gram matrix in the feature space (a.k.a Kernel matrix) instead of Gram matrix in the input space.

Kernel PCA

Original space

A non-linear feature space