
1

CS 3750 Advanced Machine Learning

CS 3750 Machine Learning
Lecture 10

Based on slides from Iyad Batal, Eric Strobl & Milos Hauskrecht

Principal Component Analysis (PCA)
Singular Value Decomposition (SVD)

• Principal Component Analysis (PCA)

• Singular Value Decomposition (SVD)

• Multi-Dimensional Scaling (MDS)

• Non-linear PCA extension:

• Kernel PCA

Outline
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Real-World Data

Real world data and information therein may be:  

• Redundant

– One variables may carry the same information as the 
other variable

– Information covered by a set of variable may overlap 

• Noisy

– Some dimensions may not carry any useful 
information and the variation in that dimension is 
purely due to noise in the observations

Important questions: 

• how to reduce the dimensionality of the data

• what is the intrinsic dimensionality of the data?
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Example
Three cameras tracking the movement of a ball on a string in 
3D space. 

• The ball moves in 2 D space (one dimension is redundant)

• Information collected by 3 cameras overlap.  

PCA
PCA finds a linear projection of data into orthogonal basis system 
that has the minimum redundancy and preserves the variance in data.

Applications: 

o Identify the intrinsic dimensionality of the data

o Lower dimensional representation of data with the smallest 
reconstruction error. 
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PCA/SVD applications

 Dimensionality reduction

 LSI: Latent Semantic Indexing. 

 Kleinberg/Hits algorithm 

 Google/PageRank algorithm (random walk with restart).

 Image-compression (eigen faces)

 Data visualization (by projecting the data on 2D).

Background: eigenvectors

Iyad Batal
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The Covariance Matrix of X

ࢄ࡯ ൌ
1
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ࢄࢀࢄ

Diagonal terms: variance

Large values = signal

Off-diagonal: covariance

Large values = high redundancy

Covariance matrix is always symmetric
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Matrix decomposition

Theorem 1: if square ݀ ൈ ݀ matrix ܁ is a real and symmetric 

matrix (܁ ൌ Tሻ܁ then

Proof: 

܁ ൌ T܄઩܄

where ܄ ൌ ଵݒ ⋯ ௗݒ are the eigenvectors of ܁	and
઩ ൌ ݀݅ܽ݃ሺߣଵ, … , ௗሻߣ are the corresponding eigenvalues.

܄܁ ൌ ઩ࢂ
,v1܁] ,v2܁ . . vd]ൌ܁ [λ1v1, λ2v2, . . λdvd]

૚ିࢂ܄܁ ൌ ૚ିࢂ઩ࢂ

܁ ൌ ࢀࢂ઩ࢂ
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ࢄࢀࢄ ൌ ࢀࢂΛࢂ
where:
• ࢂ is a matrix of eigenvectors of ࢄࢀࢄ	(arranged in columns);
• Λ is a diagonal matrix of corresponding eigenvalues

Proof:
ࢄࢀࢄ ࢂ ൌ ࡰΛࢂ

ࢄࢀࢄ ࢀࢂࢂ ൌ ࢀࢂΛࢂ

ࢄࢀࢄ ൌ ࢀࢂΛࢂ since eigenvectors are orthonormal

Covariance matrix decomposition

Change of Basis

Assume:

• X is an n x d data  matrix

• Linear (affine) transformation: A

ࢅ ൌ ࡭ࢄ
where

– ࡭ is a matrix that transforms ࢄ into ࢅ

– Columns of ࡭	 are formed by basis vectors that re-express 
the rows of ࢄ	in the new coordinate system
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Change of Basis

• But, what is the best “basis” vector?

– PCA assumption: the direction with the largest variance

Camera C

C
am

er
a 

B

The basis is just the best fit line

Goal and Assumptions of PCA

ࢅ ൌ ࡭ࢄ

Goal: Find the best transformation	࡭, so that ࢅ has the minimal 
noise and redundancy

Assumptions

1ሻ ࡭ contains orthonormal basis vectors (makes computations 
easier)

2) Covariance matrix captures all the information about ࢄ (only 
true for exponential family distributions)
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PCA Derivation

• ࢅ࡯ : Covariance of Y expressed in terms of  ࡭
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PCA
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PCA

PCA Derivation

• Assuming		࡭ ൌ ࢄࢀࢄ i.e. each column is an eigenvector of ,ࢂ
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1
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1
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ࢂࢀࢂࡰࢂࢀࢂ

ൌ
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ൌ
1
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ࡰ

After the transformation of X with V, the covariance matrix 
becomes diagonal
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PCA as dimensionality reduction

(1) If the data lives in a lower dimensional space ݀′, then some of 
the eigenvalues in ࡰ matrix are set to 0

(2) If we want to reduce the dimensionality of the data from ݀ to 
some fixed ݇, we choose the eigenvectors with the ݇ highest 
eigenvalues – the dimensions that preserve most of the variance 
in the data

(3) This selection also minimizes the data reconstruction error (so 
the best ݇ dimensions lead to best error).

PCA for dimensionality reduction
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PCA: example

PCA: example
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 Step 2: Calculate the eigenvectors and eigenvalues of the 

covariance matrix:

λ1≈1.28, v1 ≈ [-0.677  -0.735]T , λ2 ≈0.49, v2 ≈ [-0.735  0.677]T

Notice that v1 and v2

are orthonormal:

|v1|=1

|v2|=1 
v1 . v2 = 0

Iyad Batal

PCA: eexample

Iyad Batal

PCA: example
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 Step 3: project the data

λ1≈1.28, v1 ≈ [-0.677  -0.735]T , λ2 ≈0.49, v2 ≈ [-0.735  0.677]T

The eigenvector with the highest eigenvalue is the principle 

component of the data. 

if we are allowed to pick only one dimension, the principle 

component is the best direction (retain the maximum variance).

Our PC is v1 ≈ [-0.677  -0.735]T

PCA: example

 Step 3: project the data

If we select the first PC and reconstruct the data, this is what we get:

We lost variance along the other component (lossy compression!)

PCA: example
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• Singular Value Decomposition (SVD)

• Multi-Dimensional Scaling (MDS)

• Non-linear extensions:

• Kernel PCA

Outline

SVD
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SVD example

The rank of this matrix r=2 because we have 2 types of 
documents (CS and Medical documents), i.e. 2 concepts.

doc-to-concept
similarity matrix

concepts strengths

term-to-concept
similarity matrix

doc-to-concept
similarity matrix

concepts strengths

term-to-concept
similarity matrix

U: document-to-concept similarity matrix

V: term-to-concept similarity matrix. 

Example: U1,1 is the weight of CS concept in document d1, σ1 is the 
strength of the CS concept, V1,1 is the weight of ‘data’ in the CS concept. 

V1,2=0 means ‘data’ has zero similarity with the 2nd concept (Medical). 

What does U4,1 means?

SVD example
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PCA and SVD relation

Summary for PCA and SVD
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MDS
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MDS example

Given pairwise distances between different cities (Δ matrix), plot 
the cities on a 2D plane (recover location)!!

PCA and MDS relation
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Kernel PCA

Kernel PCA

Original space A non‐linear feature space


