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Principal Component Analysis (PCA)
Singular Value Decomposition (SVD)
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» Principal Component Analysis (PCA)
« Singular Value Decomposition (SVD)
«  Multi-Dimensional Scaling (MDS)

 Non-linear PCA extension:

e Kernel PCA




Outline

« Principal Component Analysis (PCA)

Real-World Data

Real world data and information therein may be:
* Redundant

— One variables may carry the same information as the
other variable

— Information covered by a set of variable may overlap
* Noisy
— Some dimensions may not carry any useful

information and the variation in that dimension is
purely due to noise in the observations

Important questions:
* how to reduce the dimensionality of the data

» what is the intrinsic dimensionality of the data?




Example

Three cameras tracking the movement of a ball on a string in
3D space.

e The ball moves in 2 D space (one dimension is redundant)
* Information collected by 3 cameras overlap.

camera B ‘
- l \; ' camera C

camera A

PCA

PCA finds a linear projection of data into orthogonal basis system
that has the minimum redundancy and preserves the variance in data.

Applications:
0 Identify the intrinsic dimensionality of the data

0 Lower dimensional representation of data with the smallest
reconstruction error.




PCA/SVD applications

» Dimensionality reduction

» LSI: Latent Semantic Indexing.

» Kleinberg/Hits algorithm

» Google/PageRank algorithm (random walk with restart).
» Image-compression (eigen faces)

» Data visualization (by projecting the data on 2D).

Background: eigenvectors

» If 4 is a square matrix, a non-zero vector v is an eigenvector of
A if there is a scalar A (eigenvalue) such that

Av=2av

+ Bample: (3 1)) = (5)=4()

» If we think of the squared matrix as a transformation matrix,
then multiply it with the eigenvector do not change its direction.

What are the eigenvectors of the identity matrix?

Iyad Batal




The Covariance Matrix of X

1

XTx
n—1

CX:

Diagonal terms: variance

Large values = signal
Off-diagonal: covariance

Large values = high redundancy

Covariance matrix is always symmetric
T_ 1 yTy\[ =1 yTy\—
Cx' =5 (XTX) =5 (XTX)=Cx

Matrix decomposition

Theorem 1: if square d X d matrix S is a real and symmetric
matrix (S = ST) then
s=VvAVT

where V.= [V1 ** Vg] are the eigenvectors of S and
A =diag(4, ..., A4) are the corresponding eigenvalues.

Proof:
SV=VA
[Svy, Sv,, .. SV ]= [A vy, AV, .. Agvy]

SV 1=yAy1
S =VAVT




Covariance matrix decomposition

XTx =vavT
where:

 V is a matrix of eigenvectors of X” X (arranged in columns);
* Ais a diagonal matrix of corresponding eigenvalues

Proof:
(XTX)V =VAD
(xTX)vvT = vavT
XTX = VAVT since eigenvectors are orthonormal

Change of Basis

Assume:
« Xisannxddata matrix
 Linear (affine) transformation: A

Y=XA
where

— A is a matrix that transforms X into ¥

— Columns of A are formed by basis vectors that re-express
the rows of X in the new coordinate system




Change of Basis

» But, what is the best “basis” vector?
— PCA assumption: the direction with the largest variance

The basis is just the best fit line

Camera B

Camera C

Goal and Assumptions of PCA

Y=XA

Goal: Find the best transformation A, so that ¥ has the minimal
noise and redundancy

Assumptions

1) A contains orthonormal basis vectors (makes computations
easier)

2) Covariance matrix captures all the information about X (only
true for exponential family distributions)




PCA Derivation

e Cy : Covariance of Y expressed in terms of A

Cy = YTy

n—1
_ 1 (XA)T(xA
= _11 (XA)
=—ATXTXA
n—1

1
=—AT(XTX)A
— X'X)

PCA

» Find the direction for which the variance is maximized:
v = argmaxy, W(le)
Subject to: vy Ty=1

Rewrite in terms of the covariance matrix:

1
var(Xvy) = 5—7 Xv)T (Xvy) =v,"

1
N — IXTX V= '011'6 L5

» Solve via constrained optimization:
L(vi,li) = Vilrc ™ + 11(1 - 1717‘01)




PCA

» Constrained optimization:
L(v, ) =v,"Cv + 2, (1—vv)

» Gradient with respect to v;:

dL(v,,
M = 2091 - 23.1‘01 = CV1 = 3-1‘01
d”1
This is the eigenvector problem!

* Multiply by v,T:

11=1’1TC 41

The projection variance is the eigenvalue

PCA Derivation

« Assuming A =V, i.e. each column is an eigenvector of X7 X
Cy = L VT (XTX)V
¥ “n-1

1
— T T
=—V (vbvT)v

1
=——VTypvTy
n—1

1
v-lvpv-lv
n—1

n—1

After the transformation of X with V, the covariance matrix
becomes diagonal




PCA as dimensionality reduction

(1) If the data lives in a lower dimensional space d’, then some of
the eigenvalues in D matrix are set to 0

(2) If we want to reduce the dimensionality of the data from d to
some fixed k, we choose the eigenvectors with the k highest
eigenvalues — the dimensions that preserve most of the variance
in the data

(3) This selection also minimizes the data reconstruction error (so
the best k dimensions lead to best error).

Original M=1 M =10 M =50 M =250

2113131313

PCA for dimensionality reduction

PCA steps: transform an N X d matrix X into an N X m matrix ¥:
» Centralized the data {(subtract the mean).

» Calculate the d % d covariance matrix: C = ﬁx TX (different
notation from tutorial!!f)

0 Cpj =g ENe1 Xgs-Xqy

o (i (diagonal) is the variance of variable i.

o G (off-diagonal) is the covariance between variables i and j.
* Calculate the cigenvectors of the covariance matrix (orthonormal).

* Select m eigenvectors that correspond to the largest 7 eigenvalues to
be the new basis.
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PCA: example

X : the data matrix with A=1I7 objects and d=2 dimensions.

El

3

2

T iPCAQata dat” -+

» Step 1: subtract the mean and calculate the covariance matrix C.

PCA: example

_(0.716 0.615
€= (0.

615 0.61
T sPCAgata dat -
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4
=
-
”
+ +
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e
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1 2 3 a
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PCA: eexample

» Step 2: Calculate the eigenvectors and eigenvalues of the

covariance matrix:

M~1.28, v, = [-0.677 -0.735]", X, =0.49, v, ~ [-0.735 0.677]"

Mean adjusted data with

eigenvectors overlayed

2 AG taad| L.ISI dat" ! +
(- 74 068248‘3 671855252)"x
s L (- 671855252/- TA0682469 )% i
Notice that v, and v, _
1+ + N bl
are orthonormal: +
os | " |
viI=1 P
o
|V2|:1 P T
_ 0.5 —
v .v,=0 i
S . |
.
1.5 | -
-2 -1.5 -1 -0.5 v} 05 1 1.5 2

PCA: example

» Step 3: project the data

Let V = [vy, .. Py is d X m matrix where the columns ¥, are the
eigenvectors corresponding to the largest m eigenvalues
The projected data: ¥ = X V is N X m matrix.
If m=d (more precisely rank({X)), then there is no loss of information!

Mean adjusted data with eigenvectors overlayed

2 2
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PCA: example

» Step 3: project the data

M=1.28, v, = [-0.677 -0.735]T, A, =0.49, v, = [-0.735 0.677]"

The eigenvector with the highest eigenvalue is the principle

component of the data.

if we are allowed to pick only one dimension, the principle

component is the best direction (retain the maximum variance).

Our PC is v, = [-0.677 -0.735]"

T

PCA: example

» Step 3: project the data

If we select the first PC and reconstruct the data, this is what we get:

4

T T
"/PCAdata dat”  +

" /lossyplusmean. dat"

+

]

L
1

L
2
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L
3 4 1 a

I
1

L L
2 3

We lost variance along the other component (lossy compression!)

13



Outline

« Singular Value Decomposition (SVD)

SVD
Any N X d matrix X can be uniquely expressed as:
Nxd N xr rXr rxd
X=UxEZxVT
- <] <[]

r is the rank of the matrix X (# of linearly independent columns/rows).
U is a column-orthonormal N X r matrix.

Z is a diagonal r X r matrix where the singular values o, are sorted
in descending order.

V is a column-orthonormal d X r matrix.
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SVD example

) doc-to-concept
refrieval similarity matrix

int. . un
o) brain "8 /
data _ concepts strengths

T 11 0 0] [omo

cg |22 200 0,36 0

) 111 00 018 0 0.64 0 term-to-concept
bolss s oo|=lowo |¥lo s
T 000 22 0 053

MD |20 0353 0 080 058 058 0580 0

b o oz [O 00 D.?lﬂ.?]

The rank of this matrix r=2 because we have 2 types of
documents (CS and Medical documents), i.e. 2 concepts.

SVD example

. doc-to-concept
- retrieval similarity matrix

inf. . lun
ata ) brain U0
data ! concepts strengths

I 111 00 0.18 0

cs [22 200 036 0

’ 111 00 018 0 0.64 0 term-to-concept
Volss s o o0|l=] oo xljo saof X
T 00 0 2 2 0 053

MD |00 033 0 080 0,58 058 058 0 0
b 0 0z |:0 D 0 D.?lO.?]

U: document-to-concept similarity matrix
V: term-to-concept similarity matrix.

Example: U, ; is the weight of CS concept in document d,, o, is the
strength of the CS concept, V| | is the weight of ‘data’ in the CS concept.

V,,=0 means ‘data’ has zero similarity with the 2nd concept (Medical).
What does U, ; means?
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PCA and SVD relation

Theorem: Let X =U Z VTbe the SVD of an N X d matrix X and
==—X"X be the d X d covariance matrix. The eigenvectors of
C are the same as the right singular vectors of X.

Proof:
XTX=VIUUIVT =VIZV =VEYT

X2
But C is symmetric, hence C =V A VT (according to theorem1).
Therefore, the eigenvectors of the covariance matrix are the same
as matrix V (right singular vectors) and the eigenvalues of C can be

computed from the singular values & = 2

Summary for PCA and SVD
Objective: project an N X d data matrix X using the largest m
principal components V = [vy, ... V).

1. zero mean the columms of X.
2. Apply PCA or SVD to fmd the principle components of X,
PCA:
L Calculate the covariance matrix C =ﬁx7x.
II. V corresponds to the eigenvectors of C,
SVD:
I. Calculate the SVD of X=UZ VT,
II. 'V corresponds to the right singular vectors.
3. Project the data in an m dimensional space: Y=XV
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«  Multi-Dimensional Scaling (MDS)

MDS

Multi-Dimensional Scaling [Cox and Cox, 1994] .
MDS give points in a low dimensional space such that the Euclidean

Given distance matrix

011 b1 -+ Oy
p | B
0r1 01z -+ Opg

Map input points X; to z; such as ||z; — z|| = &,
Classical MDS: the norm || . || is the Euclidean distance.

Distances - inner products (Gram matrix) - embedding
There is a formula to obtain Gram matrix G from distance matrix A.
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MDS example

Given pairwise distances between different cities (A matrix), plot
the cities on a 2D plane (recover location)!!

[
Seattle NYC
Chicago DC

Denver

SF N

Atlanta
i E
MW i

PCA and MDS relation

» Preserve Buclidean distances = retaining the maximum variance.

» Classical MDS is equivalent to PCA when the distances in the
input space are the Fuclidean distance.

» PCA uses the d X d covariance matrix: C=ﬁXTX

» MDS uses the N X N Gram (inner product) matrix: ¢ = X X7

» If we have only a distance matrix (we don’t know the points in
the original space), we cannot perform PCA!

» Both PCA and MDS are invariant to space rotation!
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Kernel PCA

Kernel PCA [Scholkopf et al. 1998] performs nonlinear projection.

Given mput (x;, ... xy), kernel PCA computes the principal
components in the feature space (@(x,), ... @(xy))-

Avoid explicitly constructing the covariance matrix in feature
space.

The kernel trick: formulate the problem in terms of the kernel
function k(x,x") = @(x). @(x") without explicitly doing the
mapping.

Kernel PCA is non-linear version of MDS use Gram matrix in the

feature space (a.k.a Kernel matrix} instead of Gram matrix in the
input space.

Kernel PCA

Original space A non-linear feature space




