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Abstract

Pathological speech usually refers to the condition of speech
distortion resulting from atypicalities in voice and/or inthe ar-
ticulatory mechanisms owing to disease, illness or other phys-
ical or biological insult to the production system. While auto-
matic evaluation of speech intelligibility and quality could come
in handy in these scenarios to assist in diagnosis and treatment
design, the many sources and types of variability often makeit
a very challenging computational processing problem. In this
work we design multiple subsystems to address different as-
pects of pathological speech characteristics. These subsystems
are then fused at the binary hard score level (intelligible or not
intelligible) using Bayesian networks. Results show that sub-
systems, such as multiple language phoneme probability sys-
tem, prosodic and intonational subsystem, and voice quality and
pronunciation subsystem, have discriminating power for intel-
ligibility (9.8%, 17.1%, 14.6% higher than by-chance respec-
tively). Noise-Majority based fusion shows 66.4% accuracy,
but the performance improvement by fusion is not made. Also,
voice clustering based joint classification is applied to minimize
misclassification of the best subsystem, and it shows the best
classification accuracy (79.9% on dev set, 76.8% on test set).
Index Terms: pathological speech, intelligibility of speech, fu-
sion of multiple subsystems

1. Introduction
Human vocal production can be disturbed or compromised by a
variety of factors, temporarily or permanently, includingdue to
illness and disease, resulting in atypicality in the speechchar-
acteristics. This usually results in difficulties in its perception
by others, and affects the quality of speech communication,and
hence quality of life. For example, head and neck tumors may
affect speech quality, and surgical and other interventions can
result in other forms of insult to the production system, chal-
lenging speech output quality. The factors causing pathological
speech quality are many, and so are the resulting characteris-
tics and their impact. This makes their diagnostic assessment,
and planning of appropriate treatment interventions, challeng-
ing. The state of the art in pathological speech assessment is
largely based on subjective judgments of clinical experts.There
has been, however, considerable interest over the years to of-
fer objective and automated schemes for measuring and classi-
fying pathological speech quality. This is hoped to offer both
improved accuracy and reliability as well as scalability and re-
duction in the cost of processing.

The perceived intelligibility of pathological speech relies
on a number of physical properties of the speech signal. Pre-
vious studies have reported a number of features for the au-
tomatic assessment of intelligibility for pathological speech

[1, 2, 3, 4, 5, 6]. Voice quality features, automatic speech recog-
nition (ASR) based features, perceptual features, phonemic fea-
tures, prosodic features, and estimated speech productionpa-
rameters like phonological features have all been reportedwith
their considerable discriminative power in classifying intelligi-
bility of pathological speech.

Despite the large variety, and number, of features devel-
oped, the problem continues to be challenged by the wide vari-
ability of speech characteristics by disorder. The relationship
between the intelligibility in human perception and the atypi-
cal variation of signal is still opaque. The wide variability in
speaker factors, for example native/non-native, dialectal, gen-
der and age difference, makes this problem even harder. These
issues pose a non-trivial challenge in designing automaticsys-
tem that would work in real world scenarios.

This paper targets the pathology sub-challenge in the
speaker trait challenge in Interspeech 2012. The database pro-
vided for the challenge includes sentence-level speech in Dutch
spoken by patients having head and neck tumors [7]. These
patients had gone through concomitant chemo-radiation treat-
ment. Various location and size of tumors may have determined
the distortions of their speech, resulting in intelligibility loss
of the resultant speech. For example, laryngeal tumors can im-
pede vocal fold movements, causing voice quality distortion [8].
Non-laryngeal tumors in the vocal tract can have negative influ-
ence on articulation in speech production, for instance a shift
in localization of articulation, modified articulatory tension and
compensatory articulation [9]. Inspired by some of these phys-
ical properties, we developed and tested a few prosodic fea-
tures, such as the phoneme-level pitch variation, the duration
of voiced segments, and stylization parameters for pitch con-
tour, as well as spectral envelope features encoding articulation
details.

ASR-based features are commonly used for intelligibility
analysis mainly associated to articulatory malfunction [4, 9, 10].
One approach is to use the output of ASR, like word error rate,
for intelligibility assessment, e.g. [3, 4]. Another approach is to
use the speech features derived from aligned pair of speech [10].
The drawback with these methods is that they require natural
speech data spoken in the same language. Since data collec-
tion is generally costly, we suggest an alternative way of using
ASR-based feature without any constraint on language. The
main idea is to represent acoustic property of each phoneme
in pathological speech by using the likelihood score to other
phonemes from different languages, acoustic models of which
are already readily available.

Lastly we classify multiple samples in group clustered by
acoustic similarity. This may help to fix noisy classification de-
cisions. The idea is that if utterances share similar voice charac-
teristics, then they should have a similar pathology annotation.



This paper is organized as following. After a brief explana-
tion about baseline features and systems of this challenge,we
will explain each subsystem. Next, the details of joint classi-
fication method and fusion scheme will be discussed. Then,
we will present the experimental results and discussion of our
whole system. Finally, we provide conclusions and directions
for future work.

2. Baseline features and systems
This section explains baseline features and systems for the
Pathology subchallenge briefly (more details in [7]). This
challenge uses “NKI CCRT Speech Corpus,” which includes
pathological Dutch speech produced by patients who underwent
chemo-radiation treatment due to the tumors of the head and
neck. 6125 baseline features in total are the functionals oflow-
level descriptors (LLDs) for each utterance. LLDs consist of
energy, spectral and voicing related features, and functionals are
various statistics of the LLDs +∆. The baseline systems are a
SVM and a random forest using those baseline features. Their
classification accuracy will be provided in the result section.

3. Subsystems
This paper suggests two approaches for intelligible (I) or not-
intelligible (NI) classification: (1) the multiple expert subsys-
tem fusion and (2) the knn classifier with joint classification
scheme. The detailed description of each subsystem used in the
two approaches is provided in the following subsections.

3.1. Multiple language phoneme probability feature

This section explains the probability representations in terms of
multiple languages’ phonemes and the rationale for its use as
pathological speech features. The hypothesis is that the vari-
ation of acoustic property of speech signal of one language
can be captured in terms of the likelihood of acoustic proper-
ties of other languages. The likelihood of “multiple” language
phonemes might allow a finer representation, hence helping
in discriminating pathological speech sound against naturally
well-produced sound.

To test this idea, we adapt the confusion network output
generated by the phoneme recognizers in [11] of 3 languages
viz. Czech (CZ), Hungarian (HU) and Russian (RU), which are
freely available. Each phoneme recognizer generates posterior
probabilities which can be used to create a lattice of recognition
hypotheses. We convert this, usinglattice-tool[12], to an ap-
proximate confusion lattice or sausage network, for which there
exists some ordering. The timestamps are however lost in this
process, which we recover by edit distance alignment of the best
path from the confusion network with that from the lattice. Ep-
silon transitions are ignored during this alignment, and a list of
time synchronized phoneme hypotheses are obtained in these
languages.

Each Dutch phoneme in an utterance is then represented
with multiple language phoneme probability as follows. Let
U = {x1, x2, ..., xN} represent an utterance in train or
development set, wherexi is ith phoneme inU ; N is
the number of Dutch phoneme inU . Then, eachxi in
U is represented by a probability vector,Pi

x, consisting
of the weighted probability value of each phoneme of CZ,
HU and RU: Pi
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samples in the training data, respectively. Fi-
nally, the NI-score for each utterance (SU ) is determined asSU
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i=1 S

i
x, which is used as the feature for this subsystem. We

test this representation by I/NI classification performance using
Linear Discriminant Analysis. Each sentence is tested sepa-
rately to minimize the variation due to co-articulation in dif-
ferent contexts. Parameters, such asµi

CZj
, σi

CZj
, ε andC,

are empirically determined for each sentence data based on the
classification accuracy on the training set.

3.2. Prosodic and intonational features

We observed that NI speakers often have difficulty in pronounc-
ing a few specific speech sounds, resulting in turn in abnormal
prosodic and intonational shape. Additionally, we observed that
the pitch trajectory is often not smooth for NI speakers. Moti-
vated by these observations, we design the following phoneme-
level features to capture them: variance of pitch, the L0 norm
of pitch and duration in voiced region, pitch stylization pa-
rameters obtained by fitting a quadratic polynomial and near-
est neighbor-based confidence estimates for the I/NI classes for
each phoneme. We also compute features on the utterance level
pitch trajectory. We use the duration of the utterance and L0
norm of pitch as features. Classification is done for each sen-
tence to exclude context-dependent variability of those features.
Training, development and test datasets are almost equallydi-
vided in terms of sentence, so it is reasonable to do that. While
classification within sentence rids us of concerns of the normal-
ization (across sentences) for the features, it also reduces the
amount of training set available among several classification
tasks. We thus use a rather simple K nearest neighbor-based
classification with K=10.

3.3. Voice quality and pronunciation features

Even though voice quality features, such as harmony-noise ratio
(HNR), jitter and shimmer, are popularly used for vocal disor-
der assessment, they have been mostly tested on the prolonged
vowel sound, e.g. /AA/. We tested their usefulness in our “read”
speech data. From concatenated vowel region signal, HNR se-
quence is extracted using Praat [19] with default parameters,
and jitter local and shimmer sequence are extracted by Opens-
mile. The utterance level statistics, such as maximum, mini-
mum, [0.1 0.25 0.5 0.75 0.9] quantiles, are estimated.

We also extracted a few pronunciation features, such as cep-
stral mean normalized 39 MFCCs with 25 millisecond window
and 10 millisecond shifting, the 2nd, 3rd and 4th formants in
vowel regions, and temporal features, such as average syllable
duration, pause duration to the number of syllable ratio, average
pause duration, mispronounced phone ratio, and average vowel
duration. These features capture the rate of speech, disfluency,
and the mispronunciation of phones.

Then, the discriminative power of these features for I/NI
classes is tested by knn classification performance on dev set
(k=5-15) with brute-force feature selection.



4. Joint classification with speech clustering
In order to group similar speech utterances together, we simply
went through a single Gaussian based bottom-up agglomerative
hierarchical clustering (AHC) method [20], using LPC based
features. The AHC with Kmean post refinement uses general-
ized likelihood ratio (GLR) as an inter-cluster distance measure
[21]. Using the AHC, a final stage of smoothing is applied for
correcting some of the predicted labels by knn. This is basedon
the hypothesis that if speech characteristics of two utterances
are very similar, then it is unlikely for an annotator to label
them very differently. In other words we assume that the pre-
dicted labels should be locally smooth in the voice space. We
verify this empirically on the train and dev sets separatelyby
clustering the utterances based on talker voices. Figure 1 shows
that labels inside each cluster are usually very similar. Most
clusters contain a large percentage of either I or NI labels,ex-
cept a few near the class boundary. Standard deviation of EWE
scores within a cluster are also mostly small. We enforce this
constraint by clustering the utterances together on the test set,
and then jointly classifying all utterances inside a cluster using
a majority voting rule. For example, if 80% of the utterances
inside a cluster were predicted to be NI, then labels for all the
utterances inside the cluster are changed to NI.
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Figure 1: Distribution of pathology labels (I/NI) and EWE
scores in each cluster for the train set. The histogram indicates
the percentage of I annotations in clusters. The red line plot
indicates the EWE mean and standard deviation.

5. Multiple expert subsystem fusion
We adopt a late score level fusion scheme in this work due to
several reasons. First, it allows us to use classification schemes
matched to each of the subsystems. This is required because
each subsystem is designed to take care of a particular aspect
of intelligibility loss and can hence be thought of as a high
level descriptor correlated with the binary labels for intelligi-
bility. The contribution of each subsystem to the final accuracy
thus, depends on the extent to which they are correlated withthe
intelligibility labels and also among themselves. Featurelevel
fusion schemes often make oversimplifying assumptions, that
might not hold in general.

In this work, we use a Naive Bayes and a Noise Major-
ity models to fuse the individual subsystem scores. We first
learn the parameters for this Bayesian Network viz. the condi-

tional probability tables (CPT) using only the train set. Given
these, the inference task is now to calculate the probability
P (Int∣S1, S2, . . . , SN) whereSn is the score from thenth

subsystem. For training and performing exact inference on this
network we use the Bayes Net Toolbox [14].

6. Results and discussions
This section examines the performances of individual subsys-
tems which we suggested in the previous sections. Then, it dis-
cusses the benefit of fusion schemes, Naive Bayes and Noise-
Majority fusions. Lastly, it discusses the benefits of the cluster-
based joint classification on the result of the best subsystem.
Table 1 shows the classification accuracy of each subsystem
(trained on train set and tested on dev set).

Table 1: (Unweighted) classification accuracy of each subsys-
tem trained on train set and tested on dev set. MLPP is the mul-
tiple language phoneme probability. ‘Pros+Into’ is our novel
prosodic and intonational features, VQ is voice quality features,
Pron is pronunciation features, RF is a random forest on base-
line features. Note that SVM and RF are tuned and tested on
dev set (provided in the baseline paper [7]). (by-chance: 50%)

Subsystem Accuracy (%)

MLPP 59.8%
Pros+Into 67.1%
VQ+Pron 64.6%

SVM (baseline 1) 61.1%
RF (baseline 2) 64.8%

Table 1 shows that our subsystems have useful information
for I/NI classification. Average classification accuracy ofMLPP
subsystem is 59.8% (χ2 = 3.36, p = 0.07). It indicates that the
MLPP subsystem can be useful, but it is not statistically sig-
nificant for I/NI classification of pathological speech thanby
chance. The standard deviation of classification accuracy of all
sentences is 7.5%, showing that it is context-dependent. The
classification accuracy of the sentence-dependent prosodic and
intonational subsystem is 67.1% (χ2 = 22.7, p< 0.01), which
is higher than the accuracy of the best baseline system (64.8%)
alone. Lastly, the classification accuracy of voice qualityand
pronunciation features (the best performance was achievedby
knn classifier (k=15) with the maximum HNR + all 5 pronun-
ciation features) is 64.6% (χ2 = 11.40, p<0.01). The signifi-
cance statistics in parenthesis are obtained by Mc Nemar’s chi
square test, compared against by chance. These results show
that each subsystem is useful for intelligibility assessment, and
further the performances of the prosodic and intonational sub-
system and the voice quality and pronunciation subsystem are
statistically significant.

The scores from some combinations of subsystems are used
for the final decision of I/NI by fusion scheme. We tested two
Bayesian fusion schemes and joint classification on some sub-
systems or the best subsystem. Table 2 shows the classification
accuracy of them.

Table 2 shows that the best performance is achieved by the
joint classification. The joint classification is conductedon the
best subsystem, the prosodic and intonational subsystem, with 5
additional features. The 5 additional features are selected from
baseline features by brute-force forward feature selection. The
joint classification scheme improves classification performance



Table 2: (Unweighted) classification accuracy of final systems
(by chance: 50.0%). The best baseline system is a random for-
est with baseline features in [7]. “dev set” and “test set” in-
dicates the classification accuracies on dev set and test set, re-
spectively. Note that baseline systems are tuned on dev set and
tested on dev set or test set, while our systems (Bayesian net-
work fusions and joint classification) are tuned on train setand
tested on dev set, or tuned on dev set and tested on test set. The
classification accuracy of the best final system is highlighted.

System dev set (%) test set (%)

Baseline SVM 61.1 68.0
Baseline RF 64.8 68.9

Bayesian fusion
Naive Bayes 65.2

Noise-Majority 66.4
Joint classification 79.9 76.8

significantly from the knn classification with the prosodic,in-
tonational and 5 additionally selected features (χ2 = 22.61,
p<0.01). It shows that the joint classification reduces the noise
from knn’s strict classification result. Its classificationaccuracy
is significantly higher than that of the random forest system(χ2

= 58.26, p<0.01). We also tried to perform the joint classifica-
tion for a cluster at the posterior level, which yielded 78.8% ac-
curacy. It is less than the hard label fusion results (79.9%). The
classification performances of Bayesian fusions on subsystems
show even lower accuracy than that of the best subsystem. The
reason might be that the data is too small to train the Bayesian
networks.

7. Conclusion and future works
This study proposes a few novel features, a novel joint classifi-
cation scheme for knn classifier, and a Bayesian network based
fusion schemes of multiple subsystems for automatic intelligi-
bility assessment. The prosodic and intonational features, mul-
tiple language phoneme probability feature, voice qualityfea-
tures and pronunciation features showed discriminating power
for binary classification (9.8%, 17.1%, 14.6% higher than by-
chance, respectively). Bayesian Network based fusion methods,
Naive Bayes and Noise Majority did not perform well, probably
because of insufficient number of data for training Bayesiannet-
work. Joint classification based on utterance clustering shows
significant improvement of classification accuracy from itssub-
system (the prosodic and intonational subsystem) used. It shows
that joint classification scheme was able to reduce the number
of samples misclassified by knn on the features.

Further analysis is required to study the effect of fusion on
each subsystem. Using structure learning on a general Bayesian
network system might help in this case. In addition, we would
also like to study the effectiveness of other features like inverted
glottal pulses or phonological representations that mightcapture
issues in speech production. Lastly, it will be worth to incorpo-
rate the knowledge from voice clustering at the training stage,
to use similar utterance to train the classifier together instead of
treating them as separate samples. This might help to capture
the variability within the pathology classes.
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