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Abstract

Pathological speech usually refers to the condition of clpee
distortion resulting from atypicalities in voice and/orttre ar-
ticulatory mechanisms owing to disease, illness or othgsph
ical or biological insult to the production system. Whilg@u
matic evaluation of speech intelligibility and quality ¢deome

in handy in these scenarios to assist in diagnosis and tesatm
design, the many sources and types of variability often nitake
a very challenging computational processing problem. is th
work we design multiple subsystems to address different as-
pects of pathological speech characteristics. These starg

are then fused at the binary hard score level (intelligiblaat
intelligible) using Bayesian networks. Results show thdd-s
systems, such as multiple language phoneme probability sys
tem, prosodic and intonational subsystem, and voice gueaiid
pronunciation subsystem, have discriminating power ftelin
ligibility (9.8%, 17.1%, 14.6% higher than by-chance respe
tively). Noise-Majority based fusion shows 66.4% accuyracy
but the performance improvement by fusion is not made. Also,
voice clustering based joint classification is applied taimize
misclassification of the best subsystem, and it shows the bes
classification accuracy (79.9% on dev set, 76.8% on test set)
Index Terms: pathological speech, intelligibility of speech, fu-
sion of multiple subsystems

1. Introduction

Human vocal production can be disturbed or compromised by a
variety of factors, temporarily or permanently, includisige to
iliness and disease, resulting in atypicality in the spesdr-
acteristics. This usually results in difficulties in its peption
by others, and affects the quality of speech communicagind,
hence quality of life. For example, head and neck tumors may
affect speech quality, and surgical and other intervestican
result in other forms of insult to the production system,lcha
lenging speech output quality. The factors causing patficéd
speech quality are many, and so are the resulting chamscteri
tics and their impact. This makes their diagnostic assessme
and planning of appropriate treatment interventions, lehgt
ing. The state of the art in pathological speech assessment i
largely based on subjective judgments of clinical expértere
has been, however, considerable interest over the yearfs to o
fer objective and automated schemes for measuring and-class
fying pathological speech quality. This is hoped to offethbo
improved accuracy and reliability as well as scalabilityl ae-
duction in the cost of processing.

The perceived intelligibility of pathological speech edli
on a number of physical properties of the speech signal. Pre-
vious studies have reported a number of features for the au-
tomatic assessment of intelligibility for pathologicaleggh

[1,2,3,4,5, 6]. Voice quality features, automatic speedog-
nition (ASR) based features, perceptual features, phantrat
tures, prosodic features, and estimated speech prodyzgion
rameters like phonological features have all been repavigd
their considerable discriminative power in classifyintgifigi-
bility of pathological speech.

Despite the large variety, and number, of features devel-
oped, the problem continues to be challenged by the wide vari
ability of speech characteristics by disorder. The refetiop
between the intelligibility in human perception and thepéty
cal variation of signal is still opaque. The wide varialilin
speaker factors, for example native/non-native, dialegen-
der and age difference, makes this problem even hardereThes
issues pose a non-trivial challenge in designing autonsgte
tem that would work in real world scenarios.

This paper targets the pathology sub-challenge in the
speaker trait challenge in Interspeech 2012. The databvase p
vided for the challenge includes sentence-level speeclufolD
spoken by patients having head and neck tumors [7]. These
patients had gone through concomitant chemo-radiatiai-tre
ment. Various location and size of tumors may have deterine
the distortions of their speech, resulting in intelligityilloss
of the resultant speech. For example, laryngeal tumorsroan i
pede vocal fold movements, causing voice quality distorfia).
Non-laryngeal tumors in the vocal tract can have negatiffe-in
ence on articulation in speech production, for instanceifa sh
in localization of articulation, modified articulatory t&on and
compensatory articulation [9]. Inspired by some of thesgsph
ical properties, we developed and tested a few prosodic fea-
tures, such as the phoneme-level pitch variation, the idurat
of voiced segments, and stylization parameters for pitafr co
tour, as well as spectral envelope features encoding katicn
details.

ASR-based features are commonly used for intelligibility
analysis mainly associated to articulatory malfunctiqrdj4.0].
One approach is to use the output of ASR, like word error rate,
for intelligibility assessment, e.qg. [3, 4]. Another apach is to
use the speech features derived from aligned pair of sp&éth [
The drawback with these methods is that they require natural
speech data spoken in the same language. Since data collec-
tion is generally costly, we suggest an alternative way ofgis
ASR-based feature without any constraint on language. The
main idea is to represent acoustic property of each phoneme
in pathological speech by using the likelihood score to othe
phonemes from different languages, acoustic models oftwhic
are already readily available.

Lastly we classify multiple samples in group clustered by
acoustic similarity. This may help to fix noisy classificatide-
cisions. The idea is that if utterances share similar vaieeac-
teristics, then they should have a similar pathology artitota



This paper is organized as following. After a brief explana-
tion about baseline features and systems of this challemge,
will explain each subsystem. Next, the details of joint sias
fication method and fusion scheme will be discussed. Then,
we will present the experimental results and discussionuof o
whole system. Finally, we provide conclusions and direio
for future work.

2. Baseline features and systems

This section explains baseline features and systems for the
Pathology subchallenge briefly (more details in [7]). This
challenge uses “NKI CCRT Speech Corpus,” which includes
pathological Dutch speech produced by patients who undgrwe
chemo-radiation treatment due to the tumors of the head and
neck. 6125 baseline features in total are the functionalsvef

level descriptors (LLDs) for each utterance. LLDs consist o
energy, spectral and voicing related features, and fumaksoare
various statistics of the LLDs A. The baseline systems are a
SVM and a random forest using those baseline features. Their
classification accuracy will be provided in the result satti

3. Subsystems

This paper suggests two approaches for intelligible (I) @r n
intelligible (NI) classification: (1) the multiple expertilssys-
tem fusion and (2) the knn classifier with joint classificatio
scheme. The detailed description of each subsystem uskd in t
two approaches is provided in the following subsections.

3.1. Multiple language phoneme probability feature

This section explains the probability representationgims of
multiple languages’ phonemes and the rationale for its gse a
pathological speech features. The hypothesis is that thie va
ation of acoustic property of speech signal of one language
can be captured in terms of the likelihood of acoustic proper
ties of other languages. The likelihood of “multiple” larzme
phonemes might allow a finer representation, hence helping
in discriminating pathological speech sound against a#fur
well-produced sound.

To test this idea, we adapt the confusion network output
generated by the phoneme recognizers in [11] of 3 languages
viz. Czech (CZ), Hungarian (HU) and Russian (RU), which are
freely available. Each phoneme recognizer generatesrjmste
probabilities which can be used to create a lattice of reitiogn
hypotheses. We convert this, usitatice-too[12], to an ap-
proximate confusion lattice or sausage network, for whirre
exists some ordering. The timestamps are however lost$n thi
process, which we recover by edit distance alignment of ésé b
path from the confusion network with that from the latticg@-E
silon transitions are ignored during this alignment, anisteof
time synchronized phoneme hypotheses are obtained in these
languages.

Each Dutch phoneme in an utterance is then represented
with multiple language phoneme probability as follows. Let
U = {z', 2% .., 2"} represent an utterance in train or

development set, where® is ‘" phoneme inU; N is
the number of Dutch phoneme iti. Then, eachz’ in

U is represented by a probability vectoP’, consisting

of the weighted probability value of each phoneme of CZ,
HU and RU: P. = [PL,, Py, Phyl, where PL,
(Woz, Pz, Woz,Pbzy, v Woz, Pz, ], J: the total num-
ber of CZ's phonemeswg;, is a weighting term which is the

ratio of the duration of overlap betweérnz;, thej*" phoneme

of CZ and the phoneme boundary of, to the duration ofs*.
P andP%y; are defined similarly. Then, the Nl-score fdr,
S, is generated as

Pl —ul . . .
J’ cz; Moz, . i i i
s B - x
=1 MaXeL,, ) it |Poz; —pez| > (Cxoog;)
J

0

Si =
otherwise

where, ez, andogz, are the mean and the standard devia-

tion of all Pézj samples in the training data, respectively. Fi-
nally, the NI-score for each utterancg() is determined asy
=N, 5%, which is used as the feature for this subsystem. We
test this representation by I/NI classification performeansing
Linear Discriminant Analysis. Each sentence is tested-sepa
rately to minimize the variation due to co-articulation iif-d
ferent contexts. Parameters, suchids, , o, , € and C,

- . J J
are empirically determined for each sentence data basdueon t
classification accuracy on the training set.

3.2. Prosodic and intonational features

We observed that NI speakers often have difficulty in proeun
ing a few specific speech sounds, resulting in turn in abnbrma
prosodic and intonational shape. Additionally, we obsétat

the pitch trajectory is often not smooth for NI speakers. iMot
vated by these observations, we design the following pherem
level features to capture them: variance of pitch, the LGmor

of pitch and duration in voiced region, pitch stylization- pa
rameters obtained by fitting a quadratic polynomial and -near
est neighbor-based confidence estimates for the I/NI ddsse
each phoneme. We also compute features on the utterante leve
pitch trajectory. We use the duration of the utterance and LO
norm of pitch as features. Classification is done for each sen
tence to exclude context-dependent variability of thostuiees.
Training, development and test datasets are almost ectially
vided in terms of sentence, so it is reasonable to do thatléWhi
classification within sentence rids us of concerns of thenabr
ization (across sentences) for the features, it also redtne
amount of training set available among several classifinati
tasks. We thus use a rather simple K nearest neighbor-based
classification with K=10.

3.3. Voice quality and pronunciation features

Even though voice quality features, such as harmony-naise r
(HNR), jitter and shimmer, are popularly used for vocal diso
der assessment, they have been mostly tested on the prdlonge
vowel sound, e.g. /AA/. We tested their usefulness in ouadre
speech data. From concatenated vowel region signal, HNR se-
quence is extracted using Praat [19] with default paramgter
and jitter local and shimmer sequence are extracted by Opens
mile. The utterance level statistics, such as maximum, -mini
mum, [0.1 0.25 0.5 0.75 0.9] quantiles, are estimated.

We also extracted a few pronunciation features, such as cep-
stral mean normalized 39 MFCCs with 25 millisecond window
and 10 millisecond shifting, the 2nd, 3rd and 4th formants in
vowel regions, and temporal features, such as averagékylla
duration, pause duration to the number of syllable ratieraye
pause duration, mispronounced phone ratio, and averagel vow
duration. These features capture the rate of speech, disflue
and the mispronunciation of phones.

Then, the discriminative power of these features for I/NI
classes is tested by knn classification performance on dev se
(k=5-15) with brute-force feature selection.



4. Joint classification with speech clustering

In order to group similar speech utterances together, wplgim
went through a single Gaussian based bottom-up agglomerati
hierarchical clustering (AHC) method [20], using LPC based
features. The AHC with Kmean post refinement uses general-
ized likelihood ratio (GLR) as an inter-cluster distanceaswee
[21]. Using the AHC, a final stage of smoothing is applied for
correcting some of the predicted labels by knn. This is based
the hypothesis that if speech characteristics of two uitara
are very similar, then it is unlikely for an annotator to labe
them very differently. In other words we assume that the pre-
dicted labels should be locally smooth in the voice space. We
verify this empirically on the train and dev sets separatsly
clustering the utterances based on talker voices. Figunevis
that labels inside each cluster are usually very similar.stMo
clusters contain a large percentage of either | or NI lalels,
cept a few near the class boundary. Standard deviation of EWE
scores within a cluster are also mostly small. We enforce thi
constraint by clustering the utterances together on thestts
and then jointly classifying all utterances inside a clustng

a majority voting rule. For example, if 80% of the utterances
inside a cluster were predicted to be NI, then labels forhel t
utterances inside the cluster are changed to NI.

Clustering statistics in train set
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Figure 1: Distribution of pathology labels (I/NI) and EWE
scores in each cluster for the train set. The histogram iaigis
the percentage of | annotations in clusters. The red ling plo
indicates the EWE mean and standard deviation.

5. Multiple expert subsystem fusion

We adopt a late score level fusion scheme in this work due to
several reasons. First, it allows us to use classificatibrrses

tional probability tables (CPT) using only the train setvesi
these, the inference task is now to calculate the probwbilit
P(Int|S1,Ss,...,Sy) whereS, is the score from the)'”
subsystem. For training and performing exact inferencenin t
network we use the Bayes Net Toolbox [14].

6. Results and discussions

This section examines the performances of individual ssthsy
tems which we suggested in the previous sections. Thers-it di
cusses the benefit of fusion schemes, Naive Bayes and Noise-
Majority fusions. Lastly, it discusses the benefits of thester-
based joint classification on the result of the best subsyste
Table 1 shows the classification accuracy of each subsystem
(trained on train set and tested on dev set).

Table 1: (Unweighted) classification accuracy of each subsys-
tem trained on train set and tested on dev set. MLPP is the mul-
tiple language phoneme probability. ‘Pros+Into’ is our redv
prosodic and intonational features, VQ is voice qualityttees,
Pron is pronunciation features, RF is a random forest on base
line features. Note that SVM and RF are tuned and tested on
dev set (provided in the baseline paper [7]). (by-chance%b0

| Subsystem |Accuracy (%)|

MLPP 59.8%
Pros+Into 67.1%
VQ+Pron 64.6%

SVM (baseline 1 61.1%
RF (baseline 2) 64.8%

Table 1 shows that our subsystems have useful information
for I/NI classification. Average classification accuracyvifPP
subsystem is 59.8%¢ = 3.36, p = 0.07). It indicates that the
MLPP subsystem can be useful, but it is not statistically sig
nificant for I/NI classification of pathological speech thay
chance. The standard deviation of classification accuriall o
sentences is 7.5%, showing that it is context-dependene Th
classification accuracy of the sentence-dependent pwsodi
intonational subsystem is 67.1%7 = 22.7, p< 0.01), which
is higher than the accuracy of the best baseline system%§4.8
alone. Lastly, the classification accuracy of voice quédityl
pronunciation features (the best performance was achieyed
knn classifier (k=15) with the maximum HNR + all 5 pronun-
ciation features) is 64.6%y€ = 11.40, p0.01). The signifi-
cance statistics in parenthesis are obtained by Mc Nemlair's ¢
square test, compared against by chance. These results show
that each subsystem is useful for intelligibility assessinand
further the performances of the prosodic and intonationb} s
system and the voice quality and pronunciation subsystem ar

matched to each of the subsystems. This is required because statistically significant.

each subsystem is designed to take care of a particulartaspec
of intelligibility loss and can hence be thought of as a high
level descriptor correlated with the binary labels for ligée
bility. The contribution of each subsystem to the final aacyr
thus, depends on the extent to which they are correlatediégth
intelligibility labels and also among themselves. Featavel
fusion schemes often make oversimplifying assumptioret, th
might not hold in general.

In this work, we use a Naive Bayes and a Noise Major-
ity models to fuse the individual subsystem scores. We first
learn the parameters for this Bayesian Network viz. the ieond

The scores from some combinations of subsystems are used
for the final decision of I/NI by fusion scheme. We tested two
Bayesian fusion schemes and joint classification on some sub
systems or the best subsystem. Table 2 shows the classificati
accuracy of them.

Table 2 shows that the best performance is achieved by the
joint classification. The joint classification is conductadthe
best subsystem, the prosodic and intonational subsystaém;w
additional features. The 5 additional features are saldoten
baseline features by brute-force forward feature selecfihe
joint classification scheme improves classification pentamce



Table 2: (Unweighted) classification accuracy of final systems |3
(by chance: 50.0%). The best baseline system is a random for-

est with baseline features in [7]. “dev set” and “test set”’-in

dicates the classification accuracies on dev set and testeset 13]
spectively. Note that baseline systems are tuned on dewdet a
tested on dev set or test set, while our systems (Bayesian net
work fusions and joint classification) are tuned on train @etl

tested on dev set, or tuned on dev set and tested on test set. Th  [4]
classification accuracy of the best final system is highéight

System | dev set (%1 test set (%1 5]
Baseline SVM 61.1 68.0
Baseline RF 64.8 68.9
| Naive Bayes 65.2 [6]
Bayesian fusionNoise-Majority 66.4
Joint classification 79.9 76.8

(7]

significantly from the knn classification with the prosodit, (8]
tonational and 5 additionally selected featurgs € 22.61,

p<0.01). It shows that the joint classification reduces theoi

from knn'’s strict classification result. Its classificatiaccuracy

is significantly higher than that of the random forest systgm [9]
=58.26, p0.01). We also tried to perform the joint classifica-

tion for a cluster at the posterior level, which yielded ?8.&c-

curacy. Itis less than the hard label fusion results (79.9%t [10]
classification performances of Bayesian fusions on subsyst

show even lower accuracy than that of the best subsystem. The
reason might be that the data is too small to train the Bagesia
networks. [11]

7. Conclusion and future works 12l

This study proposes a few novel features, a novel joint iflass
cation scheme for knn classifier, and a Bayesian networkdbase
fusion schemes of multiple subsystems for automatic igtell [13]
bility assessment. The prosodic and intonational featumnes-
tiple language phoneme probability feature, voice qudés-
tures and pronunciation features showed discriminatingepo [14]
for binary classification (9.8%, 17.1%, 14.6% higher than by
chance, respectively). Bayesian Network based fusionadsth [15]
Naive Bayes and Noise Majority did not perform well, prolyabl
because of insufficient number of data for training Bayesitn
work. Joint classification based on utterance clusterirayvsh
significant improvement of classification accuracy fronsiib- (16]
system (the prosodic and intonational subsystem) uselkdows
that joint classification scheme was able to reduce the numbe
of samples misclassified by knn on the features.

Further analysis is required to study the effect of fusion on
each subsystem. Using structure learning on a general Bayes

(17]

network system might help in this case. In addition, we would (18]
also like to study the effectiveness of other features likeited
glottal pulses or phonological representations that mighture [19]

issues in speech production. Lastly, it will be worth to inpm

rate the knowledge from voice clustering at the trainingsta
to use similar utterance to train the classifier togethdeat of 20]
treating them as separate samples. This might help to eptur
the variability within the pathology classes. 21]
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