
CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
5

Binary arithmetic

§ (Sounds scary)

§ So far we studied
• Instruction set architecture basic
• MIPS architecture & assembly language

§ We will review binary arithmetic
algorithms and their implementations

§ Binary arithmetic will form the basis
for CPU’s datapath design

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
6

Binary number representations

§ We looked at how to represent a number (in fact the value
represented by a number) in binary

• Unsigned numbers – everything is positive

§ We will deal with more complicated cases
• Negative numbers
• Time permitting: Real numbers (a.k.a. floating-point numbers)

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
7

Unsigned Binary Numbers

§ Limited number of binary numbers (patterns of 0s and 1s)
• 8-bit number: 256 patterns, 00000000 to 11111111
• in general, there are 2N bit patterns, where N is bit width

16 bit: 216 = 65,536 bit patterns
32 bit: 232 = 4,294,967,296 bit patterns

§ Unsigned numbers use patterns for 0 and positive numbers
• 8-bit number range [0..255] corresponds to

00000000 0
00000001 1
… …
11111111 255

• 32-bit number range [0..4294,967,295]
• in general, the range is [0..2N-1]

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
9

Addition / Subtraction Rules

§ Binary addition
• 0 + 0 = 0, carry = 0 (no carry)
• 1 + 0 = 1, carry = 0
• 0 + 1 = 1, carry = 0
• 1 + 1 = 0, carry = 1

§ Binary subtraction
• 0 - 0 = 0, borrow = 0 (no borrow)
• 1 - 0 = 1, borrow = 0
• 0 - 1 = 1, borrow = 1
• 1 - 1 = 0, borrow = 0

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
11

Unsigned Binary Numbers

§ Binary arithmetic is straightforward

§ Addition: Just add numbers and carry as necessary
§ Consider adding 8-bit numbers:

11101111x
11101011 235d

+ 01001101 77d
---------- ----
100111000 312d

01001111x
01101011 107d

+ 01001101 77d
---------- ----
10111000 184d

carry

legal number: betw. 0 and 255

carry overflowed

illegal number: overflowed 8 bits

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
12

Unsigned Binary Numbers

§ Binary arithmetic is straightforward

§ Subtraction: Just subtract and borrow as necessary
§ Consider subtracting 8-bit numbers:

111111
01101011 107d

- 01101101 109d
---------- ----
111111110 -2d

111
01101011 107d

- 01001101 77d
---------- ----
00011110 30d

legal number: betw. 0 and 255

borrow

illegal number: underflowed 8 bits
(i.e., “borrow overflow”)

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
13

Unsigned Binary to Decimal

§ How to convert binary number?
• First, each digit is position i, numbered right to left
• e.g., for 8-bit number: b7b6b5b4 b3b2b1b0

§ Now, we just add up powers of 2
• b0×20 + b1×21 + b2×22 + … + b7×27

§ An example
1011 0111
= 1×20 + 1×21 + 1×22 + 0×23 + 1×24 + 1×25 + 0×26 + 1×27

= 1 + 2 + 4 + 0 + 16 + 32 + 0 + 128
= 183d

§ v = å (bi × 2i), where 0 ≤ i ≤ K-1, where K=# bits, i is bit posn

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
14

Important 7-bit Unsigned Numbers

§ American Standard Code for Information Interchange (ASCII)
• Developed in early 60s, rooted in telecomm
• Maps 128 bit patterns (27) into control, alphabet, numbers, graphics
• Provides control values present in other important codes (at the time)
• 8th bit might be present and used for error detection (parity)

§ Control: Null (0), Bell (7), BS (8), LF (0A), CR (0D), DEL (7F)
§ Numbers: (30-39)
§ Alphabet: Uppercase (41-5A), Lowercase (61-7A)
§ Other (punctuation, etc): 20-2F, 3A-40, 5E-60, 7B-7E

§ Unicode: A larger (8,16,32 bit) encoding; backward compatible with
ASCII

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
17

Signed Numbers

§ How to represent positive and negative numbers?

§ We still have a limited number of bit patterns
• 8-bit: 256 bit patterns (i.e., 00000000 … 11111111)
• 16 bit: 216 = 65,536 bit patterns
• 32 bit: 232 = 4,294,967,296 bit patterns

§ Re-assign bit patterns differently
• Some patterns are assigned to negative numbers, some to positive

§ How to assign available patterns? Three ways:
• Sign magnitude, 1’s complement, 2’s complement

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
18

Method 1: sign-magnitude

§ Same method we use for decimal numbers
§ {sign bit, absolute value (magnitude)}

• Sign bit (msb): 0 – positive, 1 – negative
• Examples, assume 4-bit representation

0000 +0
0011 +3
1001 -1 -1
1111 -7 -7
1000 -0 (two 0’s???)

§ Properties
• Two 0s – a positive 0 and a negative 0?
• Equal # of positive and negative numbers
• A + (-A) does not give zero!
• Consider sign during arithmetic

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
19

Sign-magnitude

§ Let’s check A + (-A) is not zero
§ Consider N = 5 bits number. Zero is 00000 or 10000.
§ Try this: -4 + 4 = ?????

-4 is 10100
4 is 00100

so, let’s add them together:
10100 -4d

+ 00100 4d
------- ---

11000 -8d YIKES!

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
20

Method 2: one’s complement

§ Negation of +X is ((2N – 1) – X), where N is number of bits
• A + (-A) = 2N – 1 (i.e., -0)
• Given a number A, it’s negation is done by (1111…1111 – A)
• In fact, simple bit-by-bit inversion will give the same-magnitude number with a

different sign
• Examples, assume 4-bit representation

0000 0
0011 3
1001 -6
1111 -0
1000 ?

§ Properties
• There are two 0s
• There are equal # of positive and negative numbers
• A+(-A) = 0 (whew!) but… A+0=A only works for +0 (try it with -0!)
• 2 step process for subtraction (accounts for “carry out”)

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
21

One’s Complement

§ Negation of X (2N – 1) – X), positive are usual value
§ Consider N=4

Binary One’s Binary One’s
0000 0 1000 -7
0001 1 1001 -6
0010 2 1010 -5
0011 3 1011 -4
0100 4 1100 -3
0101 5 1101 -2
0110 6 1110 -1
0111 7 1111 -0

notice how the counting works: 1111 is -0… then -1… -2… etc.

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
22

One’s Complement

§ Let’s check the “0 property”: A + (-A) = 0
§ Suppose A = 5

5 is 0101
negation of 5 is (24-1)-5 = (16-1) - 5 = 15 - 5 = 10
10 (unsigned) is 1010
check the table: 1010 is -5 in 1’s complement
now, let’s try 5 + (-5) in 1’s complement

0101 5 1010 1010
+ 1010 -5 + 0000 (+0) + 1111 (-0)
------ ---- ------ ------

1111 -0 1010 (-5) 1001 (-6)

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
23

Method 3: two’s complement

§ Negation is (2N – X)
• A + (-A) = 2N

• Given a number A, it’s negation is done by (1111…1111 – A) + 1
• In fact, simple bit-by-bit inversion followed by adding 1 will give the same-

magnitude number with a different sign
• Examples, assume 4-bit representation

0000 0
0011 3
1001 -7
1111 -1
1000 ?

§ Properties
• There is a single 0
• There are unequal # of positive and negative numbers
• Subtraction is simplified - one step based on addition (we’ll see! J)

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
24

Two’s Complement

§ Negation of X (2N – X), positive are usual value
§ Consider N=4

Binary One’s Binary One’s
0000 0 1000 -8
0001 1 1001 -7
0010 2 1010 -6
0011 3 1011 -5
0100 4 1100 -4
0101 5 1101 -3
0110 6 1110 -2
0111 7 1111 -1

notice how the counting works: 1000 is -8… 1001 is -7… etc.

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
25

Two’s Complement

§ Let’s check the “0 property”: A + (-A) = 0
§ Suppose A = 5

5 is 0101
negation of 5 is 24 - 5 = 16 - 5 = 11
11(unsigned) is 1011
check the table: 1011 is -5 in 2’s complement
now, let’s try 5 + (-5) in 2’s complement

0101 5 1011 0111 (7)
+ 1011 -5 + 0000 (0) + 0001 (1)
------ ---- ------ ------
1 0000 0 1011 (-5) 1000 (-8)

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
26

Two’s Complement

§ Negation: (28 – X) vs. (11111111 - X) + 1
§ Note 28 needs 9 bits:

• 28 is 256, from earlier conversion process: 1 0000 0000 = 1 * 28

§ Whereas the other form has only 8 bits. Let’s try it!
• Consider X = 10 and we want to find -10

1111 1111
- 0000 1010 (10d)

1111 0101 (-11d)

+ 1

1111 0110 (-10d)

Oh, cool!
That’s just flipping bits!

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
27

Two’s Complement

§ How to convert binary 2’s complement number?
• Same as before, except most significant bit is “sign”

§ Consider an 8-bit 2’s complement number
• b0×20 + b1×21 + b2×22 + … + b7×(-27)

§ An example
1011 0111
= 1×20 + 1×21 + 1×22 + 0×23 + 1×24 + 1×25 + 0×26 + 1×(-27)
= 1 + 2 + 4 + 0 + 16 + 32 + 0 + (-128)
= -73d

§ What is 73d in 2’s complement binary number?

§ v = (å (bi × 2i)) + bK-1× -2K-1,
where 0 ≤ i < K-1, where K=# bits, i is bit posn

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
28

Summary

§ Issues
• # of zeros
• Balance
• Arithmetic algorithm implementation

Code Sign-Magnitude 1’s Complement 2’s Complement

000 +0 +0 +0

001 +1 +1 +1

010 +2 +2 +2

011 +3 +3 +3

100 -0 -3 -4

101 -1 -2 -3

110 -2 -1 -2

111 -3 -0 -1

