Multiplexor (aka MUX)
An example, yet VERY usetul circuit!

A
Y
B
S=0
Y=(S) 7?B:A;
when S =
0: output A
1: output B

CS/CoE1541: Intro. to Computer Architecture

>0

>
>~
<

e —)

M e D
— M
—_ O = O

Y=S’A+SB

University of Pittsburgh
56

A 3 2'bit MUX Use 32 1-bit muxes

Each mux selects 1 bit
S is connected to each mux

Select Select
32
A 32\ A3 —
M M
u 22\ ¢ u |+ c31
g 32 X B3l — |

A30 —

C30

B30 —

—
M
u
X .

A0 —»
M
u co
X

BO —=

a. A 32-bit wide 2-to-1 multiplexor b. The 32-bit wide multiplexor is actually an array
of 32 1-bit multiplexors

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
57

Building a 1-bit ALU

= ALU = arithmetic logic unit = arithmetic unit + logic unit

Operation
Carryln ‘
Operation a—1eo— \ (0
P " _J 0
a
0
> o
Result 1 » Result
1
b —HD !
> . 5
b |+—e—— ./
Y
CarryOut
CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

58

Building a 32-bit ALU

CS/CoE1541: Intro. to Computer Architecture

Operation
Carryln
—————%
l Y
a0 —, Carryln
bO ALUO > ResultO
CarryOut
—————¢
\ Y
aj —| Carryln
b1 ALUA » Resulti
CarryOut
—————
Y Y
a2__,| Carryln
b2 ALU2 » Result2
| CarryOut
a3i_| Carryln
b31 | ALUS31 > Result31

University of Pittsburgh

59

Implementing “sub”

Binvert

Operation

Carryln

Binvert=1
Carryln=1 for 1% 1-bit ALU
Operation=2

y

’
') w

1 » Result

\

|

CarryOut

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh
60

Implementing NAND and NOR

Ainvert Operation
‘ Binvert Carryln

NOR:
NOT (A OR B)

by DeMorgan’s Law:
(NOT A) AND (NOT B)

Thus,
Operation=0,
Ainvert=1,
Binvert=1 b

o
J

And, NAND???

CS/CoE1541: Intro. to Computer Architecture

Y
CarryOut

> Result

University of Pittsburgh

61

Implementing SLT (set-less-than)

Ainvert Operation
Binvert Carryln |

0

100

Less 3

J
CarryOut

1-bit ALU for bits 0~30

CS/CoE1541: Intro. to Computer Architecture

Result

Ainvert Operation
Binvert Carryln ’
a — >
0 _J\ (0 \
9
-) 1
o [
y » Result
b —o —
+ 2
1
Less - 3
» Se
v Y
Overflow Overflow
detection

1-bit ALU for bit 31

University of Pittsburgh
62

Implementing SLT (set-less-than)

SLT uses subtraction

slt $t0,$t1,$t2

$t1<$t2: $t1-$t2 gives negative result
set is 1 when negative

Setting the control

perform subtraction (Cin=1,Binvert=1)
select Less as output (Operation=3)
ALU31’s Set connected to ALUO Less

Consider
Suppose $t1=10 and $t2=11

$t1 - $t2 =-1 =1111...1 binary
$t0 = 0000...1

CS/CoE1541: Intro. to Computer Architecture

Ainvert

Binvert Operation
Carryln
! { ‘
a0—| Carryln > Result0]
b0 — ALUO
> Less
CarryOut
l Y
al— Carryln » Result1 0
b1 — ALUA
00— Less
CarryOut
1y
a2 —| Carryln » Result2 0
b2 — ALU2
00— Less
CarryOut
i : : Carryln
1 |
a3i—»| Carryln ~ Resultai 0
b31—» ALU31 Set
00— Less = Overflow
1

University of Pittsburgh

63

Implementing SLT (set-less-than)

SLT uses subtraction

slt $t0,$t1,$t2

$t1<$t2: $t1-$t2 gives negative result
set is 1 when negative

Setting the control

perform subtraction (Cin=1,Binvert=1)
select Less as output (Operation=3)
ALU31’s Set connected to ALUO Less

Why do we need Set? Could
we use just the Result31?

CS/CoE1541: Intro. to Computer Architecture

Ainvert

Binvert Operation
Carryln
! l ‘
a0—| Carryin » ResultO
b0 — ALUO
> Less
CarryOut
l Y
al— Carryln » Result1
b1 — ALUA
00— Less
CarryOut
TN
a2 —| Carryln » Result2
b2 — ALU2
00— Less
CarryOut
i i : : Carryln
1]
a31— Carryln » Result31
b31— ALU3A Set
00— Less = Overflow

University of Pittsburgh

64

Supporting BEQ and BNE

Bnegate Operation
Ainvert
¥ l l
a0 — Carryln Resulio
b0—»| ALUO gst * - “ ’
. zero detector
BEQ uses subtraction > Less L
CarryOut
beq $t0,$t1,LABEL 4
perform $t0-$t1 ey
result=0 =» equality al—»| Carryln
b1 ALUA Resulti | _
00— Less
CarryOut Zero
Setting the control l
subtract (Cin=1,Binvert=1) 1y
. a2 —= Carryln
select result (operation=2) b2 ALU2 | Result2 N
detect zero result 0— Less
CarryQut
; : 3[: i Carryln I :
a31—»| Carryin Result31 . .
b31—s| ALU3{ Set
00— Less > Overflow

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

65

Abstracting ALU

ALU operation

ALU

N

b —»

CarryOut

L Zero
— Result

— Overflow

= Note that ALU 1s a combinational logic

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

66

Sequential Logic

= Output depends on sequence of previous inputs
« “Sequence of previous inputs” — this 1s history

« History is a state that captures how you get here
+ E.g., 25 cents vending = 10 cents + 10 cents + 5 cents
+ Or, 25 cents + 10 cents = 35 cents. Multiple ways are possible.

 State requires memory — remembering the past...
= Memory in logic
« Smallest element is 1 bit of memory

« Use logic gates to create a 1-bit memory
* Yet, combinational logic (using gates) depends on present inputs!

= Fundamental building block: “RS latch”
1 bit of history through feedback of gates

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

68

RS latch

Two NOR gates
With feedback

Q
N— Output

Inputs Current state (0 or 1)

RS control writing

a 0 or 1 1n state

Ol

Complement of
current state

= Beware of the feedback!

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

RS latch

0O R

= When R=0, S=1

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
71

RS latch

= When R=1, S=0

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
72

RS latch

= When R=0, S=0, and Q was 0

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
73

RS latch

= When R=0, S=0, and Q was 1

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
74

RS latch

1 R

Ol

1S

= What happens if R=S=1

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
75

RS latch truth table

Q(t) Q(t+1)

— Storage (R=0, S=0)

— Setto1 (S=1)

_ Reset to 0 (R=0)
L R R L

Invalid

Invalid

Outputs will track any changes in the inputs!
R=1, S=1 must be avoid.

Desirable to control when to capture input state.

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
76

D latch

Note that we have an RS latch in the back-end of this design

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

77

D latch

= Note that R, S inputs always get opposite values when C=1
= When C=0, S=R=0 = RS latch remembers the previous value

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

78

D latch

CS/CoE1541: Intro. to Computer Architecture

)" 1o
)s P10

“lJatched mode”

c D Q(t)
[\ | o | awb
\o/ | 1t | aev
m 0 0
\]J 1 1

“transparent mode”

University of Pittsburgh

79

D latch

D Latch

_ c —FH — Q’

— W
—

—
ﬁ’ -

—
-

> s
<

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
80

D flip-flop (D-FF)

latch

latch

Ql

= Two cascaded D latches; C input of the second is inverted

= This is a negative edge (aka “falling edge”) triggered D-FF

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

81

latch

D-FF

\

¢q=F---"

CS/CoE1541: Intro. to Computer Architecture

-

University of Pittsburgh

82

State Elements

DT

RS latch

R,S control mode (reset, set, storage)
Q,Q’track R and S

R=1, S=1 invalid

D Q D Q
> D latch > D latch
Q' Q’

D flip-flop (falling or negative edge triggered)

Two cascaded D latches

C=1 means 1% latch transparent, 2" latched
C=0 means 1% latch latched, 2"¢ transparent
Output changes on falling edge (C: 1=>0)

CS/CoE1541: Intro. to Computer Architecture

C R
Q

D 1— S

D latch

C controls mode (0=latched, 1=transparent)

D is data input (“copied” during transparent)
Signal value triggered: Q,Q’ track D when C=1
Guarantees R=1,S=1 can not be done

D Q D Q
> D latch > D latch
Q’ Q’

D flip-flop (rising or positive edge triggered)
Same as falling edge triggered
Output changes on rising edge (C: 0=>1)

University of Pittsburgh

Signaling Behavior

| Q goes high R=0,S=1

_:J N:\E\I—I:—I i\li—\: Storage mode

s 2ns 3ns 4nwr s Tns
RS latch behavio Q goes low R=1,S=0

-
el

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

Signaling Behavior

|
|
|
1

D latch behavior

Q stays low b/c C=0

Q went low C=1,D=0

Q tracked D when C=1

Q goes C=1, D=1

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

Signaling Behavior

C
D -
| rising edge
Q
o | falling edge

no change b/c not a falling edge

D flip-flop (falling edge triggered)

tracks D at time of falling edge

no change b/c not falling edge

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

— g ———— —

—— e —— . —

— e —— g —

6ns 7ns

5ns

3ns 4ns
D latch behavior
1 rising edge
| falling edge

ins 2ns

Imk

0 a (e}

>

b — —— —

b ————

6ns 7ns

5ns
RS latch behavior

3ns 4ns

ins 2ns

Signaling Behavior

University of Pittsburgh

3ns 4ns 5ns 6ns 7ns

ins 2ns

D flip-flop (falling edge triggered)

CS/CoE1541: Intro. to Computer Architecture

Example circuits and clocking

= Suppose we want to:
 1-bit value A stored in a D flip-flop
 1-bit value B stored in a D flip-flop
» 1-bit value C stored in a D flip-flip
« Do I-bit addition of A and B, producing C

= C=A+B
« What is the circuit?
* Need three D flip-flops
« Need one 1 bit adder

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

88

ing

ts and clock

ircui

Example ¢

D Q——

>

D flip-flop

1-bit adder

>

D flip-flop
D fiip-flop

D Q

University of Pittsburgh

CS/CoE1541: Intro. to Computer Architecture

Example circuits and clocking

= [s there any difference in the delay with this one?

D Q
1-bit adder >
D flip-flop
—D Q
D flip-flop

= In fact, sequential logic often looks like this....

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

Example circuits and clocking

= Now, suppose we want to build a 4-bit counter?

« Counter increments by 1 for a clock pulse (falling edge event)
* 4 1-bit adders

* 4 1-bit D flip-flops

= What’s the circuit?

= How often to “pulse” the clock (increment counter)?

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

91

Example circuits and clocking

1 | 1 1
Y Y \ Y
A B A B A B A B
+ + + +
«—Co Cil= Co Cij= Co Cil= Co Cij= 1
TS
D Q D Q D Q D Q
> > > >
D flip-flop D flip-flop D flip-flop D flip-flop

Clock

Recall: The flip-flops are edge triggered -- assuming falling edge (negative)

How often can an edge event happen?

No more frequent than the maximum propagation delay
Let’s compute the delay -- assume 2ns for latch to stabilize and 4ns for adder

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

Example circuits and clocking

Values of output bits must all be stable

« le., can’t pulse the clock (increment) until all four bits are computed

Adder circuit 1s ripple-carry: Must wait for carries

* 4ns per adder
* 4-bit adder
e thus, 4 * 4ns = 16ns for the adder

Flip-flops

« Must wait for 15t latch of last bit to stabilize (others done in parallel)
« Must wait for 24 latch of all bits to stabilize (all done in parallel)
 thus, 2ns + 2ns = 4ns

Overall delay = 16ns + 4ns = 20ns. Clock pulse 1s 20ns.

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

93

Example circuits and clocking

Can we build a counter with just flip-flops?

Q' D<-|

-

CLR
INC
——CLK

4

What’s the propagation delay?

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh
94

