
CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
56

Multiplexor (aka MUX)
An example, yet VERY useful circuit!

A

Y

B

S
Y = (S) ? B:A;

0

1

when S =
0: output A
1: output B

S A B Y

0 0 x 0
0 1 x 1
1 x 0 0
1 x 1 1

Y=S’A+SB
S=0S=1

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
57

A 32-bit MUX Use 32 1-bit muxes
Each mux selects 1 bit
S is connected to each mux

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
58

Building a 1-bit ALU

§ ALU = arithmetic logic unit = arithmetic unit + logic unit

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
59

Building a 32-bit ALU

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
60

Implementing “sub”

Binvert=1
CarryIn=1 for 1st 1-bit ALU
Operation=2

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
61

Implementing NAND and NOR

NOR:
NOT (A OR B)
by DeMorgan’s Law:
(NOT A) AND (NOT B)

Thus,
Operation=0,
Ainvert=1,
Binvert=1

And, NAND???

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
62

Implementing SLT (set-less-than)

1-bit ALU for bits 0~30 1-bit ALU for bit 31

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
63

Implementing SLT (set-less-than)

SLT uses subtraction
slt $t0,$t1,$t2
$t1<$t2: $t1-$t2 gives negative result
set is 1 when negative

Setting the control
perform subtraction (Cin=1,Binvert=1)
select Less as output (Operation=3)
ALU31’s Set connected to ALU0 Less

Consider
Suppose $t1=10 and $t2=11

$t1 - $t2 = -1 = 1111…1 binary
$t0 = 0000...1

1

0

0

0

1

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
64

Implementing SLT (set-less-than)

SLT uses subtraction
slt $t0,$t1,$t2
$t1<$t2: $t1-$t2 gives negative result
set is 1 when negative

Setting the control
perform subtraction (Cin=1,Binvert=1)
select Less as output (Operation=3)
ALU31’s Set connected to ALU0 Less

Why do we need Set? Could
we use just the Result31?

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
65

Supporting BEQ and BNE

“zero detector”BEQ uses subtraction
beq $t0,$t1,LABEL
perform $t0-$t1
result=0 è equality

Setting the control
subtract (Cin=1,Binvert=1)
select result (operation=2)
detect zero result

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
66

Abstracting ALU

§ Note that ALU is a combinational logic

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
68

Sequential Logic

§ Output depends on sequence of previous inputs
• “Sequence of previous inputs” – this is history
• History is a state that captures how you get here

E.g., 25 cents vending = 10 cents + 10 cents + 5 cents
Or, 25 cents + 10 cents = 35 cents. Multiple ways are possible.

• State requires memory – remembering the past…

§ Memory in logic
• Smallest element is 1 bit of memory
• Use logic gates to create a 1-bit memory
• Yet, combinational logic (using gates) depends on present inputs!

§ Fundamental building block: “RS latch”
• 1 bit of history through feedback of gates

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
70

RS latch

§ Beware of the feedback!

Output
Current state (0 or 1)

Two NOR gates
With feedback

Complement of
current state

Output
Current state (0 or 1)

Inputs
RS control writing

a 0 or 1 in state

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
71

RS latch

§ When R=0, S=1

0

1 0

1
0

1

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
72

RS latch

§ When R=1, S=0

1

0 1

0
1

0

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
73

RS latch

§ When R=0, S=0, and Q was 0

0

0 1

0
1

0

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
74

RS latch

§ When R=0, S=0, and Q was 1

0

0 0

1
0

1

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
75

RS latch

§ What happens if R=S=1

1

1

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
76

RS latch truth table

R S Q(t) Q(t+1)
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 Invalid
1 1 1 Invalid

Storage (R=0, S=0)

Set to 1 (S=1)

Reset to 0 (R=0)

Outputs will track any changes in the inputs!
R=1, S=1 must be avoid.

Desirable to control when to capture input state.

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
77

D latch

§ Note that we have an RS latch in the back-end of this design

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
78

D latch

§ Note that R, S inputs always get opposite values when C=1
§ When C=0, S=R=0 Þ RS latch remembers the previous value

S

R

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
79

D latch

S

R C D Q(t)

0 0 Q(t-1)

0 1 Q(t-1)

1 0 0

1 1 1

“transparent mode”

“latched mode”

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
80

D latch

D

C

Q

Q’

D Latch

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
81

D flip-flop (D-FF)

§ Two cascaded D latches; C input of the second is inverted
§ This is a negative edge (aka “falling edge”) triggered D-FF

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
82

D flip-flop

D

C

Q

Q’

D-FF

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

State Elements

RS latch
R,S control mode (reset, set, storage)
Q,Q’ track R and S
R=1, S=1 invalid

D latch
C controls mode (0=latched, 1=transparent)
D is data input (“copied” during transparent)
Signal value triggered: Q,Q’ track D when C=1
Guarantees R=1,S=1 can not be done

D flip-flop (falling or negative edge triggered)
Two cascaded D latches
C=1 means 1st latch transparent, 2nd latched
C=0 means 1st latch latched, 2nd transparent
Output changes on falling edge (C: 1=>0)

D flip-flop (rising or positive edge triggered)
Same as falling edge triggered
Output changes on rising edge (C: 0=>1)

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

Signaling Behavior

RS latch behavior Q goes low R=1,S=0

Storage mode

Q goes high R=0,S=1

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

Signaling Behavior

D latch behavior

Q goes C=1, D=1

Q tracked D when C=1

Q went low C=1,D=0

Q stays low b/c C=0

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

Signaling Behavior

D flip-flop (falling edge triggered)

no change b/c not falling edge

tracks D at time of falling edge

no change b/c not a falling edge

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

Signaling Behavior

RS latch behavior D latch behavior

D flip-flop (falling edge triggered)

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
88

Example circuits and clocking

§ Suppose we want to:
• 1-bit value A stored in a D flip-flop
• 1-bit value B stored in a D flip-flop
• 1-bit value C stored in a D flip-flip
• Do 1-bit addition of A and B, producing C

§ C = A + B
• What is the circuit?
• Need three D flip-flops
• Need one 1 bit adder

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

Example circuits and clocking

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
90

Example circuits and clocking

§ Is there any difference in the delay with this one?

§ In fact, sequential logic often looks like this….

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
91

Example circuits and clocking

§ Now, suppose we want to build a 4-bit counter?
• Counter increments by 1 for a clock pulse (falling edge event)
• 4 1-bit adders
• 4 1-bit D flip-flops

§ What’s the circuit?
§ How often to “pulse” the clock (increment counter)?

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

Example circuits and clocking

Recall: The flip-flops are edge triggered -- assuming falling edge (negative)

How often can an edge event happen?

No more frequent than the maximum propagation delay
Let’s compute the delay -- assume 2ns for latch to stabilize and 4ns for adder

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
93

Example circuits and clocking

§ Values of output bits must all be stable
• I.e., can’t pulse the clock (increment) until all four bits are computed

§ Adder circuit is ripple-carry: Must wait for carries
• 4ns per adder
• 4-bit adder
• thus, 4 * 4ns = 16ns for the adder

§ Flip-flops
• Must wait for 1st latch of last bit to stabilize (others done in parallel)
• Must wait for 2nd latch of all bits to stabilize (all done in parallel)
• thus, 2ns + 2ns = 4ns

§ Overall delay = 16ns + 4ns = 20ns. Clock pulse is 20ns.

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
94

Example circuits and clocking

Can we build a counter with just flip-flops?

What’s the propagation delay?

