
CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
30

Addition

§ We are quite familiar with adding two numbers in decimal
• What about adding two binary numbers?

§ If we use the two’s complement method to represent binary
numbers, addition can be done in a straightforward way

Suppose:
N=8
a=20
b=30

What is result and carry out?

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
31

Addition

§ N=8, a=20, b=30
§ Do binary addition to get result and carryout

§ Convert A and B to binary? How?
• a=20=4+16=22+24 => a is 0001 0100b
• b=30=16+8+4+2=24+23+22+21 => b is 0001 1110b

0001 0100b

0001 1110b

0001 0100b
+ 0001 1110b

0 0011 0010b

0011 0010b

0b

NOTE: N=8 in this example

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
32

Addition

§ N=8, a=80, b=50
§ Do binary addition to get result and carryout

§ Convert A and B to binary? How?
• A=80=64+16=26+24 => a is 0101 0000b
• b=50=32+16+2=25+43+21 => b is 0011 0010b

0101 0000b

0011 0010b

0101 0000b
+ 0011 0010b

0 1000 0010b

1000 0010b

0b
Result is NEGATIVE!

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
33

Overflow

§ Because we use a limited number of digits to represent a number,
the result of an operation may not fit

§ No overflow when result remains in expected range
• We add two numbers with different signs
• We subtract a number from another number with the same sign

§ When can overflow happen?

a b overflow possible?
+ +
+ -
- +
- -

yes

yes

no
no

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
34

Overflow

§ What is special about the cases where overflow happened?
• The input values signs are the same; so, can go outside range

§ Overflow detection
• Adding two positive numbers yields a negative number
• Adding two negative numbers yields a positive number

0101 0000b

0011 0010b

Check signs
a is positive
b is positive
result isn’t!

1000 0010b

0b

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
36

What happens on overflow?

§ The CPU can
• Generate an exception (what is an exception?)
• Set a flag in the status register (what is the status register?)
• Do nothing

§ Languages may have different notions about overflow

§ Do we have overflows in the case of unsigned, always positive
numbers?

• Example: addu, addiu, subu

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
37

Unsigned Binary Numbers in MIPS

§ MIPS instruction set provides support
• addu $1,$2,$3 - adds two unsigned numbers ($2,$3)
• addiu $1,$2,10 - adds unsigned number with signed immediate
• subu $1,$2,$3 - subtracts two unsigned numbers
• etc.

§ Primary issue: The carry/borrow out is ignored
• Overflow is possible, but it is ignored
• Signed versions take special action on overflow (we’ll see shortly!)

§ Unsigned memory accesses: lbu, lhu
• Loaded value is treated as unsigned number
• Convert from smaller bit width (8 or 16) to a 32-bit number
• Upper bits in the 32-bit destination register are set to 0s

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
38

MIPS example

§ I looked at the MIPS32 instruction set manual

§ ADD, ADDI instructions generate an exception on overflow

§ ADDU, ADDIU are silent

li $t0,0x40000000
add $t1,$t0,$t0

li $t0,0x40000000
addu $t1,$t0,$t0

MARS give error

MARS doesn’t give error
$t1=0x80000000

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
39

Subtraction

§ We know how to add
§ We know how to negate a

number

§ We will use the above two
known operations to perform
subtraction

§ A – B = A + (-B)
§ The hardware used for addition

can be extended to handle
subtraction!

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
40

Subtraction

§ N=8, a=90, b=20
§ Do binary subtraction (A+(-B)) to get result and carryout
§ Convert A and B to binary? How?

• a=90 is 0101 1010b
• b=20 is 0001 0100b

0101 1010b

0001 0100b

find –b
invert 0001 0100b
= 1110 1011b
+ 0000 0001b

1110 1100b

0100 0110b

NOTE: N=8 in this example

1b

Now, add a
0101 1010b

+ 1110 1100b

1 0100 0110b

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
41

1-bit adder

§ We will look at a single-bit adder
• Will build on this adder to design a 32-bit adder

§ 3 inputs
• A: 1st input
• B: 2nd input
• Cin: carry input

§ 2 outputs
• S: sum
• Cout: carry out

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
42

1-bit adder

§ What are the binary addition rules?
• 0 + 0 = 0, Cout = 0
• 0 + 1 = 1, Cout = 0
• 1 + 0 = 1, Cout = 0
• 1 + 1 = 0, Cout = 1

A B S Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Input Values

Output Values

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
43

1-bit adder

§ What about Cin?

A B Cin S Cout
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
44

1-bit adder

§ What about Cin?

A B Cin S Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
45

N-bit adder

§ An N-bit adder can be constructed
with N single-bit adders

• A carry out generated in a stage is
propagated to the next (“ripple-carry
adder”

§ 3 inputs
• A: N-bit, 1st input
• B: N-bit, 2nd input
• Cin: carry input

§ 2 outputs
• S: N-bit sum
• Cout: carry out

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
46

N-bit ripple-carry adder

(0) (1) (1) (0) (0)

0 0 1 1 1

0 0 1 1 0

(0) 0 (0) 1 (1) 1 (1) 0 (0) 1

(0)

carry in
at each stage

carry out
at each stage

