Network Flow
Consider a directed, weighted graph $G(V, E)$

- Weights are applied to edges to state their capacity
 - $c(u, w)$ is the capacity of edge (u, w)
 - if there is no edge from u to w, $c(u, w) = 0$

Consider two nodes, a source s and a sink t

- Let’s determine the maximum flow that can run from s to t in the graph G
Let the $f(u, w)$ be the amount of flow being carried along the edge (u, w)

Some rules on the flow running through an edge:

- $\forall (u, w) \in E \; f(u, w) \leq c(u, w)$
- $\forall u \in (V - \{s,t\}) \; (\sum_{w \in V} f(w, u) - \sum_{w \in V} f(u, w)) = 0$
Let all edges in G have an allocated flow of 0

While there is path p from s to t in G s.t. all edges in p have some residual capacity (i.e., $\forall (u, w) \in p \ f(u, w) < c(u, w)$):

- (Such a path is called an augmenting path)
- Compute the residual capacity of each edge in p
 - Residual capacity of edge (u, w) is $c(u, w) - f(u, w)$
- Find the edge with the minimum residual capacity in p
 - We’ll call this residual capacity new_flow
- Increment the flow on all edges in p by new_flow
Ford Fulkerson example
Ford Fulkerson example redux

```
  s                     A                     B                     t

5 /5

5 /10

$0/10

5 /5

$0/10

$0/10
```
To find the max flow we will have need to consider re-routing flow we had previously allocated.

- This means, when finding an augmenting path, we will need to look not only at the edges of G, but also at backwards edges that allow such re-routing.

 - For each edge $(u, w) \in E$, a backwards edge (w, u) must be considered during pathfinding if $f(u, w) > 0$.

- The capacity of a backwards edge (w, u) is equal to $f(u, w)$.
We will perform searches for an augmenting path not on G, but on a residual graph built using the current state of flow allocation on G.

The residual graph is made up of:

- V
- An edge for each $(u, w) \in E$ where $f(u, w) < c(u, w)$
 - (u, w)'s mirror in the residual graph will have 0 flow and a capacity of $c(u, w) - f(u, w)$
- A backwards edge for each $(u, w) \in E$ where $f(u, w) > 0$
 - (u, w)'s backwards edge has a capacity of $f(u, w)$
 - All backwards edges have 0 flow
Residual graph example
Another example
Edmonds Karp

- How the augmenting path is chosen affects the performance of the search for max flow

- Edmonds and Karp proposed a shortest path heuristic for Ford Fulkerson
 - Use BFS to find augmenting paths
Another example
But our flow graph is weighted...

- Edmonds-Karp only uses BFS
 - Used to find spanning trees and shortest paths for *unweighted* graphs
 - Why do we not use some measure of priority to find augmenting paths?
Implementation concerns

- Representing the graph:
 - Similar to a directed graph
 - Can store an adjacency list of directed edges
 - Actually, more than simply directed edges
 - Flow edges
Flow edge implementation

- For each edge, we need to store:
 - Start point, the from vertex
 - End point, the to vertex
 - Capacity
 - Flow
 - Residual capacities

■ For forwards and backwards edges
public class FlowEdge {
 private final int v; // from
 private final int w; // to
 private final double capacity; // capacity
 private double flow; // flow

 public double residualCapacityTo(int vertex) {
 if (vertex == v) return flow;
 else if (vertex == w) return capacity - flow;
 else throw new IllegalArgumentException("Illegal endpoint");
 }

 ...
}
edgeTo = [|V|]
marked = [|V|]
Queue q
q.enqueue(s)
marked[s] = true
while !q.isEmpty():
 v = q.dequeue()
 for each (v, w) in AdjList[v]:
 if residualCapacity(v, w) > 0:
 if !marked[w]:
 edgeTo[w] = e;
 marked[w] = true;
 q.enqueue(w);

Each FlowEdge object is stored in the adjacency list twice:
Once for its forward edge
Once for its backwards edge
An example to review
An st-cut on G is a set of edges in G that, if removed, will partition the vertices of G into two disjoint sets.

- One contains s
- One contains t

May be many st-cuts for a given graph.

Let’s focus on finding the minimum st-cut.

- The st-cut with the smallest capacity
- May not be unique
How do we find the min st-cut?

- We could examine residual graphs
 - Specifically, try and allocate flow in the graph until we get to a residual graph with no existing augmenting paths
 - The set of saturated edges makes up a minimum st-cut
Min cut example

A
s

B

C

1 /1

2 /5

1 /7

3 /3

2 /7

3 /7

3 /9

1 /3

3 /9

3 /7

3 /7

2 /3
Max flow == min cut

- A special case of duality
 - I.e., you can look at an optimization problem from two angles
 - In this case to find the maximum flow or minimum cut
 - In general, dual problems do not have to have equal solutions
 - The differences in solutions to the two ways of looking at the problem is referred to as the *duality gap*
 - If the duality gap = 0, strong duality holds
 - Max flow/min cut uphold strong duality
 - If the duality gap > 0, weak duality holds
Determining a minimum st-cut

- First, run Ford Fulkerson to produce a residual graph with no further augmenting paths.
- The last attempt to find an augmenting path will visit every node reachable from s.
 - Edges with only one endpoint in this set comprise a minimum st-cut.
Determining the min cut

Min Cut
Max flow / min cut on unweighted graphs

- Is it possible?
- How would we measure the Max flow / min cut?
- What would an algorithm to solve this problem look like?
Unweighted network flow