Data Center Energy Trends

- Data center electricity usage
 - Increased by 56% from 2005 to 2010
 - 1.1% to 1.5% total world electricity usage
 - 1.7% to 2.2% total US electricity
 - (Note: Includes impact of 2008 recession.)
 - (Note: 2x increase 2000 to 2005, below prediction.)
 - Source: Koomey 2011

The Consequence

- At current growth rate (2000-2005) in energy usage for data centers, will need 30 new coal-fired or nuclear power plants by 2015

<table>
<thead>
<tr>
<th>% of World CO₂ Emissions</th>
<th>0.3</th>
<th>0.6</th>
<th>0.8</th>
<th>1</th>
<th>470</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Centers</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>Airlines</td>
<td>170</td>
<td>170</td>
<td>170</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>Shipyards</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>Steel plants</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
</tr>
</tbody>
</table>

Four-fold increase surpasses airline industry!

Source: Koomey 2011
Increasing Memory Demand

- Parallelism (core count)
- Larger & complex data sets
- More sophisticated applications
- Virtualization & consolidation

Today: 10's (to 100's) GB
Tomorrow: Terabyte and beyond???

Figure 1: Projected annual growth in number of cores and memory capacity.
The expected number of cores per socket (blue line) is growing at a faster rate than the expected DRAM capacity (orange line). On average, memory capacity per processor core is extrapolated to decrease 30% every two years.

More Memory

- Energy/power consumption shift

Terabyte in Buffered DRAM or DDR3 SDRAM
- 8GB: 125 DIMMs, 400W@DDR3, 1.25KW@FBDRAM
- Up to 4-10x more than already power hungry machines!

DRAM

- A long-time winner: Decades old!
 - Cost, power, performance trade-offs have favored it
 - Massive future capacity leads to a different outcome!

- Limitations to DRAM
 - Destructive reads: Must replace data after a read
 - Limited data retention: Periodic refresh
 - Susceptibility to errors: Charge can be disturbed
 - Scalability: Projections (ITRS) question below 22nm
The Wave Rolling In

- DRAM has long been the best choice until now...
- DRAM does offer advantages
 - Effectively unlimited write endurance (doesn't wear out)
 - Fast read/write (symmetric) latency
 - (And, of course, it's a commodity, here today, etc.)
- Can we use it judiciously? Just a little bit, please?
 - Combine with alternative technology
 - Small DRAM has reasonable energy, capacity
 - We've seen this before... SRAM cache vs DRAM?

US Patents Granted

For an "old technology", a dramatic change of events with tremendous interest!

Source: Lam, VLSI-TSA 2008

Alternative Memory Technology

<table>
<thead>
<tr>
<th>Technology</th>
<th>Read Speed</th>
<th>Write Speed</th>
<th>Cell Area</th>
<th>Endurance</th>
<th>Addressability</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM</td>
<td>20~50ns</td>
<td>20~50ns</td>
<td>6F²</td>
<td>10¹⁵</td>
<td>Yes</td>
</tr>
<tr>
<td>SRAM</td>
<td>~2ns</td>
<td>~2ns</td>
<td>1.4kF²</td>
<td>10¹¹~10¹⁵</td>
<td>Yes</td>
</tr>
<tr>
<td>NAND Flash</td>
<td>25ns</td>
<td>500ns</td>
<td>5F²</td>
<td>10¹⁰~10¹¹</td>
<td>No</td>
</tr>
<tr>
<td>STT-RAM</td>
<td>2ns</td>
<td>10ns</td>
<td>37~40F²</td>
<td>10¹²</td>
<td>Yes</td>
</tr>
<tr>
<td>PCM</td>
<td>30~50ns</td>
<td>~1ns</td>
<td>8~8F³</td>
<td>10⁸~10⁹</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Alternative Memory Technology

<table>
<thead>
<tr>
<th>Technology</th>
<th>Read Speed</th>
<th>Write Speed</th>
<th>Cell Area</th>
<th>Endurance</th>
<th>Addressability</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM</td>
<td>20~50ns</td>
<td>20~50ns</td>
<td>6F</td>
<td>10^{12}</td>
<td>Yes</td>
</tr>
<tr>
<td>SRAM</td>
<td>~2ns</td>
<td>~2ns</td>
<td>146F</td>
<td>10^2</td>
<td>No</td>
</tr>
<tr>
<td>NAND Flash</td>
<td>25ns</td>
<td>500ns</td>
<td>5F</td>
<td>10^{10}</td>
<td>No</td>
</tr>
<tr>
<td>STT-RAM</td>
<td>2ns</td>
<td>10ns</td>
<td>2.5~5F</td>
<td>10^{12}</td>
<td>Yes</td>
</tr>
<tr>
<td>PCM</td>
<td>30~50ns</td>
<td>~1ns</td>
<td>2~8F</td>
<td>10^{10}</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Fast, non-destructive reads: Nearing parity w/ DRAM
Non-volatile, non-destructive, no refresh, low energy

Density on par with DRAM, 2.5nm prototype

Alternative Memory Technology

<table>
<thead>
<tr>
<th>Technology</th>
<th>Read Speed</th>
<th>Write Speed</th>
<th>Cell Area</th>
<th>Endurance</th>
<th>Addressability</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM</td>
<td>20~50ns</td>
<td>20~50ns</td>
<td>6F²</td>
<td>10¹⁵</td>
<td>Yes</td>
</tr>
<tr>
<td>DRAM</td>
<td>20~50ns</td>
<td>20~50ns</td>
<td>6F²</td>
<td>10¹⁵</td>
<td>Yes</td>
</tr>
<tr>
<td>NAND Flash</td>
<td>25ns</td>
<td>500ns</td>
<td>5F²</td>
<td>10¹⁵</td>
<td>No</td>
</tr>
<tr>
<td>STT-RAM</td>
<td>2ns</td>
<td>10ns</td>
<td>37~40F²</td>
<td>10¹²</td>
<td>Yes</td>
</tr>
<tr>
<td>PCM</td>
<td>30~50ns</td>
<td>~1us</td>
<td>2~8F²</td>
<td>10¹⁰</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- **Write performance limited**
- Relatively slow bit cell writes but no block wear required like Flash
- Multiple write rounds of bit groups leading to 1us (Numonyx prototype)

Density on par with DRAM, 2.5nm prototype

Fast, non-destructive reads: Nearing parity w/DRAM

Alternative Memory Technology

<table>
<thead>
<tr>
<th>Technology</th>
<th>Read Speed</th>
<th>Write Speed</th>
<th>Cell Area</th>
<th>Endurance</th>
<th>Addressability</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM</td>
<td>20~50ns</td>
<td>20~50ns</td>
<td>6F²</td>
<td>10¹⁵</td>
<td>Yes</td>
</tr>
<tr>
<td>DRAM</td>
<td>20~50ns</td>
<td>20~50ns</td>
<td>6F²</td>
<td>10¹⁵</td>
<td>Yes</td>
</tr>
<tr>
<td>NAND Flash</td>
<td>25ns</td>
<td>500ns</td>
<td>5F²</td>
<td>10¹⁵</td>
<td>No</td>
</tr>
<tr>
<td>STT-RAM</td>
<td>2ns</td>
<td>10ns</td>
<td>37~40F²</td>
<td>10¹²</td>
<td>Yes</td>
</tr>
<tr>
<td>PCM</td>
<td>30~50ns</td>
<td>~1us</td>
<td>2~8F²</td>
<td>10¹⁰</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- **Write performance limited by individual bit and group of bits**
- Limited write cycles but better than Flash

Density on par with DRAM, 2.5nm prototype

Fast, non-destructive reads: Nearing parity w/DRAM

Alternative Memory Technology

<table>
<thead>
<tr>
<th>Technology</th>
<th>Read Speed</th>
<th>Write Speed</th>
<th>Cell Area</th>
<th>Endurance</th>
<th>Addressability</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM</td>
<td>20~50ns</td>
<td>20~50ns</td>
<td>6F²</td>
<td>10¹⁵</td>
<td>Yes</td>
</tr>
<tr>
<td>DRAM</td>
<td>20~50ns</td>
<td>20~50ns</td>
<td>6F²</td>
<td>10¹⁵</td>
<td>Yes</td>
</tr>
<tr>
<td>NAND Flash</td>
<td>25ns</td>
<td>500ns</td>
<td>5F²</td>
<td>10¹⁵</td>
<td>No</td>
</tr>
<tr>
<td>STT-RAM</td>
<td>2ns</td>
<td>10ns</td>
<td>37~40F²</td>
<td>10¹²</td>
<td>Yes</td>
</tr>
<tr>
<td>PCM</td>
<td>30~50ns</td>
<td>~1us</td>
<td>2~8F²</td>
<td>10¹⁰</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- **Write performance limited by individual bit and group of bits**

Density on par with DRAM, 2.5nm prototype

Fast, non-destructive reads: Nearing parity w/DRAM

Fast, non-destructive reads: Nearing parity w/DRAM

Write performance limited by individual bit and group of bits

Density on par with DRAM, 2.5nm prototype

Similar array structure/operation as DRAM: bit/byte addressability

Repeated writes lead to wear on bit cell

Write performance limited by individual bit and group of bits

Density on par with DRAM, 2.5nm prototype

Fast, non-destructive reads: Nearing parity w/DRAM
Alternative Memory Technology

<table>
<thead>
<tr>
<th>Technology</th>
<th>Read Speed</th>
<th>Write Speed</th>
<th>Cell Area</th>
<th>Endurance</th>
<th>Addressability</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM</td>
<td>20~50ns</td>
<td>20~50ns</td>
<td>6F²</td>
<td>10¹⁰</td>
<td>Yes</td>
</tr>
<tr>
<td>DRAM</td>
<td>~2ns</td>
<td>~2ns</td>
<td>4F²</td>
<td>10¹³</td>
<td>Yes</td>
</tr>
<tr>
<td>NAND Flash</td>
<td>25ns</td>
<td>500ns</td>
<td>5F²</td>
<td>10¹⁰</td>
<td>No</td>
</tr>
<tr>
<td>STT-RAM</td>
<td>2ns</td>
<td>~10ns</td>
<td>37~40F²</td>
<td>10¹²</td>
<td>Yes</td>
</tr>
<tr>
<td>PCM</td>
<td>30~50ns</td>
<td>~1ns</td>
<td>2~8F²</td>
<td>10¹⁰</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Nearly ideal complement (maybe replacement?) for DRAM (scales, low standby power, bit addressable, fast reads)

BUT... must find techniques to overcome limitations

PCM: The Fundamental Idea

- Similar process as CD-R
- Chalcogenide (GST)
- Application of heat changes state of material
- Resistance associated with each state stores a bit
 - Crystalline (low, SET, 1)
 - Amorphous (high, RESET, 0)
- Operation
 - Write: Heat/cool
 - Read: Measure resistance

PCM Read/Write Operations

- **Read**
 - Measure resistance
 - Low: logic 1 (SET)
 - High: logic 0 (RESET)
 - Relatively fast
 - Power efficient
 - Non-destructive

- **Writes**
 - Slow bit writes: heating/cooling: 50ns – 150ns
 - Limited parallel bit writes: large programming current
 - Long latency: 1000ns
 - High write energy
 - Heat stress leads to failure, with limited endurance (10⁷)

Diagram/photo: Micron Technology
http://www.micron.com/innovations/pcm.html
Consequences of PCM

- **Asymmetric read/write latency and bandwidth**
 - Reads projected to reach parity with DRAM
 - Writes will remain slow due to heating/cooling

- **Wear-out and endurance management**
 - Integrated relatively near CPU leads to heavy usage
 - E.g., one write/second: PCM fails in 110 days
 - Memory will quickly fail without precautions

Nonvolatility

Reliability

Important, desirable properties. Most focus has been on making it work first, then find ways to exploit these properties.

Rethinking Main Memory for PCM

Starting Point: DRAM Main Memory

- Sandy Bridge

Hybrid Memory Archetype

Conventional memory adapted to PCM

- ** Essential idea**
 - Small DRAM combined with a large PCM
 - "Capacity, low standby power, write performance, endurance"

- **Capacity of change, high volume**
 - Accelerate DRAM PCM
 - DRAM write cache
 - DRAM write buffer

- **Small DRAM (single fast DIMM)**
 - Write performance
 - Write energy
 - Endurance
 - Capacity, standby power
DRAM read/write cache

- Phase-change Main Memory Architecture (PMMA)

- DRAM replacement
- Maintain same interfaces
- Connectivity components
- Isolate changes to mem ctrl

- PMMA acts as cache
- Accesses to main memory made through the cache
- Write performance
- Endurance management

PMMA

- System Agent
- Acts as controller to DRAM/PCM
- Hit: Check tags, access AEB
- Miss: Check tags, access PCM & AEB

PMMA
Request Controller

- Operates on pages (larger than cache block from CPU)
- Processes requests & allocates resources
 - Multiple outstanding requests
 - Page allocation & eviction (AEB)
- Map physical to device address
- Book keeping
 - Track resources used, including what is cached & where
 - Map physical address (PA) to PCM device address (DA)
- IFB: High speed memory buffers inflight pages (AEB/PCM)
RC: Read Miss

- Read B
 - AEB tag array
 - PCM pages B/C
- IFB Busy Bitmap
- PSM
- AEB cntrl
- FSM
- Read B: PCM to AEB
 - Make request, copy to IFB
 - Page B: PCM to AEB
 - Page C is clean

RC: Read Miss w/o Writeback

- Read B
 - AEB tag array
 - PCM pages B/C
- IFB Busy Bitmap
- PSM
- AEB cntrl
- FSM
- Read B: PCM to AEB
 - Make request, copy to IFB
 - Page B: PCM to AEB
 - Page C is clean

RC: Read Miss w/o Writeback

- Read B
 - AEB tag array
 - PCM pages B/C
- IFB Busy Bitmap
- PSM
- AEB cntrl
- FSM
- Read B: PCM to AEB
 - Make request, copy to IFB
 - Page B: PCM to AEB
 - Page C is clean
RC: Read Miss w/o Writeback

Read B

DRAM

IFB Busy Bitmap

Page B: PCM to AEB
Copy to AEB

Suppose evicted page, C, was dirty: Miss with eviction

Hand-off to DRAM to finish read

Active Request Queue

FSM

AEB tag array

Read B

PCM cntrl

Page B: C to PCM
Copy to AEB

IFB (Pages)

AEB cntrl

V

PAdr

n-way

Suppose evicted page, C, was dirty: Miss with eviction

Hand-off to DRAM to finish read

Active Request Queue

FSM

AEB tag array

Read B

PCM cntrl

V

PAdr

n-way
① Optimization: Page Partitioning

Sub-page is request unit
1x tag/map per page
Requested on demand
Presence/absence tracked

Asymmetric size

Requested on demand
Sub-page is request unit

Small dirty granularity
① Optimization: Page Partitioning

- Block transfer unit
- Smallest data transfer
- Fixed to PCM banks
- Higher priority requests pre-empt below blocks

② Optimization: CW + AEB bypass

- Critical block (word) first
 - Deliver block generating miss to CPU
 - Transfer remaining blocks on page
- AEB bypass
 - Inflight pages can service requests, if data available
 - Data delivered directly from AEB

③ Optimization: RWR

- PCM read-write-read (RWR)
 - RWR avoids writing unchanged blocks in sub-page
 - Read verify detects failed page
 - Failed write leads to spare allocation
3 Optimization: RWR

- PCM read-write-read (RWR)
 - RWR avoids writing unchanged blocks in sub-page
 - Read verify detects failed page
 - Failed write leads to spare allocation

<table>
<thead>
<tr>
<th>Read old block</th>
<th>Write block</th>
<th>Read new block</th>
</tr>
</thead>
<tbody>
<tr>
<td>blk'</td>
<td>blk'</td>
<td>blk</td>
</tr>
<tr>
<td>same</td>
<td>same</td>
<td>evicted dirty sub-page allocate spare</td>
</tr>
</tbody>
</table>

1. Read old block
2. Check for difference
3. If different, write block

4 Optimization: Endurance

- AEB eviction policy (N-chance) to minimize writes
- Non-uniform writes to memory
 - Uneven writes cause pages to fail before others
 - Failed page(s): memory is now broken
- Wear-leveling to uniformly distribute writes
 - Wear pages at same level
 - Pages will fail at approximately same time
- Spare capacity
 - Replace failed pages on-demand
PMMA Energy-Delay

• Compared to equivalent capacity in DRAM-only system (16GB, 4 core)
• PMMA small DRAM (speed optimized) with large PCM

E*D improved (small losses/gains are wins, e.g., bwaves)

256MB DRAM (224MB AEB+32MB meta) is good compromise

1024, 2048B page is good compromise tag area vs. locality

Small performance gain (~10%)
Inherently, not much better than DRAM
IFB + spatial locality + faster DRAM

E*D improved from PCM's low read power, smaller DRAM power, and filtering of writes at DRAM

E*D improved (small losses/gains are wins, e.g., bwaves)
- Poor spatial locality combined with large footprint.
- Brings in lots of pages, which are shortly evicted due to footprint.
- Lots of extra cost...

Compromise: Small $E \times D$ gain, with small pages and moderate sized AES (224 MB)

- $E \times D$ improved (small losses/gains are wins, e.g., bwaves)
- 256 MB DRAM (224 MB AES + 32 MB meta) is good compromise
- 1024B vs 2048B page trades tag/spare table vs. locality
Read-Write Page Partitioning

Results for AEB size 224 MB (+32MB meta data)
1024B best overall result but larger metadata storage
R/W page partitioning recoups losses from 2048B

Lifetime: Cumulative Impact

- Wear-leveling is essential to achieve 8 years
- 7-chance and RWR also have a large impact
Summary

- PCM architectures
 - DRAM complement for main memory?
 - Flash replacement
 - Memory + storage combination
- Current front-runners share essential idea
 - Small DRAM + Large PCM
- Endurance on the way to being solved?
- Write bandwidth and energy likely to persist