SpotPatch: Parameter-Efficient Transfer
Learning for Mobile Object Detection

*1[0000—0002—7349—7762 : e 1[0000—0003—1901—9660
Keren Ye*!l], Adriana Kovashka!l I

Mark Sandler2(0000-0003-0352-6051] \[englong Zhu?2[0000-0003-4796—6235]
Andrew Howard?, and Marco Fornonj?[0000—0001-5538—8012]

L University of Pittsburgh, Pittsburgh PA 15260, USA
2 Qoogle Research, Paris 75009, France

1 Introduction

As mobile hardware technology advances, on-device computation is becoming
more and more affordable. On one hand, efficient backbones like MobileNets
optimize feature-extraction costs by decomposing convolutions into more efficient
operations. On the other hand, one-stage detection approaches like SSD provide
mobile-friendly detection heads. As a result, detection models are now massively
being moved from server-side to on-device. While this constitutes great progress,
it also brings new challenges. Specifically, multiple isolated models are often
downloaded to perform related tasks, like detecting faces, products, bar-codes,
etc. This rises the questions: Can we represent a diverse set of detection tasks
as a small set of “patches” applied to a common model? If the common model
also needs to be updated, can we represent the update as a small patch too? To
answer the above questions, we studied two experimental scenarios:
1. Adapting a mobile object detector to solve a new task.
2. Updating an existing model, whenever additional training data is available.
To learn the patches, we propose an approach simultaneously optimizing
for both accuracy and footprint: (1) for each layer, we compactly represent the
patch with scaled 1-bit weight residuals; (2) we employ a gating mechanism to
adaptively patch only the most-important layers, reusing the original weights
for the remaining ones. We evaluate on object detection tasks, using a setting
similar to [9], which we refer to as “Detection Decathlon”. We also showcase our
method’s ability to efficiently update a detector whenever new data becomes
available. To the best of our knowledge this is the first systematic study of
parameter-efficient transfer learning techniques on object detection tasks.
Related Work: [9] proposed a Visual Decathlon benchmark for adapting im-
age classifiers. |1} [8] proposed to “patch” MobileNets by fine-tuning only batch-
normalization and depthwise-convolution layers. [6, |7] used binary masks and
simple linear transformations to obtain the target kernels. Their work is simi-
lar to quantization approaches [4, |5] but using 1-bit representation. [2] built a
dynamic routing network to choose for each layer, between fine-tuning it and
reusing the pre-trained weights. Our approach differs from the above in that we

* Work partially done during an internship at Google

2 K. Ye et al.

combine scaled binary mask residuals, with a loss function explicitly minimizing
the number of patched layers. This allows our model to adaptively minimize the
patch footprint in a task-dependent fashion.

2 Approach

We assume a deep neural network M of depth N is composed of a set of layers
6 ={Wiy,..., Wy} To adapt M to solve a new task, we seek a task-specific
0’ = {W1,..., W/} that optimizes the loss on the target dataset. In addition,
since we do not want to fully re-learn €', we look for a transformation with
minimum cost (in terms of bit-size) to convert the original 8 to 6’. Assume
the transformation function can be expressed as 8 = f(0,7) where v is an
additional set of parameters for the new task, and f is a function that combines
the original parameters 8 with the parameter “patch” . Our goal is to reduce
the bit-size of 4. In other words, we want the “footprint” of v to be small.

Task-specific weight transform. Given the weights @ = {W1,..., W} shared
across tasks, the task-specific weight trasformation adds weight residuals w;S;
to them: W} = W, 4+ w;S;, where S, is a binary mask of the same shape as W,
with values in {—1,+1}, and w; is a scaling factor. To learn these scaled and
zero-centered residuals, we use similar techniques as @ , which use real-valued
mask variables to achieve differentiable gradients during training. To deploy the
model, only the masks S; and the per-layer scalar w; are used. The incremental
footprint of the model is thus {w;, S;| 7 € {1,..., N}}, or roughly 1-bit per model
weight, with a negligible additional cost for the per-layer scalar w;

Spot patching. Since the difficulty of adapting a detector depends on the
target task, we design a gating mechanism to adjust the model patch complexity
in a task-dependent fashion: W, = W, + g;(w;S;). Simply speaking, we add a
gate g; for each network layer. The layer uses the original pre-trained weights
if the gate value is 0, and weight transform otherwise (Fig. . The benefit of
gating with g; is that it allows to search for a task-specific subset of layers to
patch, rather than patching all layers. Compared to patching the whole network,
it reduces the patch footprint to v = {w;,S;| i € {1,...,N} and ¢, = 1}. To
learn g; we use similar differentiable binarization techniques as for learning S;.
Furthermore, to force the number of patched layers to be small, we add to the
training loss a term minimizing the number of patched layers Zi\;l G-

Pre-trained weights Pre-trained weights Pre-trained weights

Weights residuals ~ Weights residuals Weights residuals

Fig. 1: Our method simultaneously reduces: (1) the bit-size of the weights resid-
uals and (2) the number of patched layers.

SpotPatch: Parameter-Efficient Transfer Learning 3

Besides task-specific weight transform and spot patching, we also train task-
specific Batch Normalization (BN), which does not significantly increase the
footprint. To learn the task-specific patch «, we minimize the following loss:
L(7v) = Laet(7) + Asps Lsps (V) + AadpLaap (), where: Lget(7y) is the detection loss
optimizing the class confidence scores and box coordinates. Lgys(y) = Zf\il Gi
is the sparsity—inducin%floss, pushing the number of patched layers to be small.
Finally, Laap(y) = Y.;—|lwil|3 is a domain-adaptation loss forcing the scaling
factors w; to be small, and thus 0’ to be similar to 6.

3 Experiments

We consider the two experimental scenarios proposed in the introduction. For the
baselines, we compare our method with the following transfer learning methods,
which we reproduced in the detection setting:

— FINE-TUNING [3] fine-tunes the whole network.

— TOWER PATCH [3] fine-tunes only the parameters in the detection head.

— BN PatcH [§], Dw PaTcH [8], and BN+Dw PaTcH |1} 8] learn task-specific

BatchNorm, Depthwise, or BatchNorm + Depthwise layers.

— PrcayBACK [6] and WEIGHTTRANS (7] learn task-specific 1-bit masks and
simple linear transformations to obtain the task-related kernels.

Detection Decathlon. We adapt a model trained on Openlmages V4 to nine
additional vertical-specific detection tasks: Caltech-UCSD Birds, Stanford Cars,
COCO, Stanford Dogs, WiderFace, Kitti, Oxford-IIIT Pet, Retail Product Check-
out (RPC), and Pascal VOC. We compare models on the basis of how well they
solve all the problems (mAP@0.5), and how small is their relative footprint.
Similarly to [9], we use a decathlon-inspired scoring function to evaluate the
performance of each method. Scores are normalized so that the FINE-TUNING
method reaches 2,500 points. We also report the Score/Footprint ratio [7], which
practically measures the performance achieved for every Mb of footprint. Tab.
shows detection decathlon results. Our approach provides the best tradeoff by
being parameter-efficient and yet accurate, as measured by the Score/Footprint
ratio. This is achieved by learning patches with a task-adaptive footprint, re-
sulting on average in a 24% footprint gain with respect to WEIGHTTRANS.

Model updating. We pre-trained detection models on 10%, 20%, 40%, and
80% of the COCO data. These models achieved 20.9%, 24.2%, 31.4%, and 35.7%
mAP@0.5 on the COCO17 validation set, respectively. Then, we applied differ-
ent patching approaches to update these imprecise models, using 100% of the
COCO data. We then compared mAP@Q.5 of the patched models, as well as
the resulting patch footprint. Tab. [2] shows the results. At 10% training data, we
achieve comparable mAP as WEIGHTTRANS (32.0% v.s. 32.7%) at a comparable
footprint (5.04% v.s. 5.15%). However, when more data is available, the patch
footprint generated by our approach is smaller than WEIGHTTRANS (2.08% v.s.
5.15%), while accuracy remains comparable (35.8% v.s. 35.9%). Our method can
effectively adapt the patch footprint to the amount of new data to be learned
by the patch, while maintaining high accuracy.

4

K. Ye et al.

Table 1: Detection Decathlon. We show footprint, per-dataset mAP, average
mAP, score, and score/footprint for each method, best method in bold, second-
best underline. High score, low footprint, and high score/footprint ratio are good.

| 0 = o > ..
58| ® 5% o ¥ 8§ E s B2 3 |v%| & |giz
oD O o 3 ~ [a o 3 s S+%
Method | & & | M 5 A =B X 2 5 |<E| & |g28

FINE-TUNING | 9.00 | 40.8 90.4 39.7 68.5 35.6 71.9 90.9 99.5 68.3 | 67.3 |2500 | 278

Towkr PaTcH | 0.35 | 10.0 25.5 31.4 21.2 29.1 49.7 66.1 87.6 70.6 | 43.5 | 827 | 2362

BN PATCH 0.19 | 22.6 71.6 30.2 47.8 26.0 50.7 80.6 92.0 71.1| 54.7 | 910 |4789
Dw Parcu 0.34 | 22.6 69.2 30.7 43.6 26.4 52.1 80.0 92.6 70.8 | 54.2 | 898 | 2642

BN+Dw Parcu| 0.50 | 27.3 80.9 31.0 52.7 28.0 53.1 83.3 95.7 70.6 | 58.1|1012 |2023

PiceyBack | 0.30 | 32.2 87.5 324 60.8 286 574 87.7 97.0 66.0 | 61.1 | 1353 | 4509

WEIGHTTRANS | 0.46 | 36.6 90.3 37.2 66.6 30.6 65.3 90.5 98.7 70.7 | 65.2 1987|4319

OURS 0.35 | 35.8 89.8 36.6 63.3 30.1 64.0 90.3 98.9 70.6 | 64.4 | 1858 | 5310

Table 2: Model updating. Only one footprint number is shown for the baseline
methods since they can only generate a constant-sized model patch.

Footprint (% mAP (%

Method |y ho; * 5005 40%)80% 10% 20% 4(10?)5 80%
FINE-TUNING 100.0 37.6 37.6 38.2 38.5
TOWER PATCH 3.85 24.5 26.7 324 35.8
BN PaTcH 2.08 26.2 28.1 33.0 35.8
Dw PATcH 3.76 25,9 27.8 33.1 36.0
BN+Dw PaTcH 5.59 26.8 28.7 33.4 359
P1cGYBACK 3.32 26.4 28.3 32.0 35.3
‘WEIGHTTRANS 5.15 32.7 32.4 34.8 35.9
OURS 5.04 498 4.21 2.08|32.0 31.4 34.2 35.8

References

1.

2.

Guo, Y., Li, Y., Feris, R.S., Wang, L., Rosing, T.S.: Depthwise convolution is all
you need for learning multiple visual domains. In: AAAT (2019)

Guo, Y., Shi, H., Kumar, A., Grauman, K., Rosing, T., Feris, R.: Spottune: Transfer
learning through adaptive fine-tuning. In: CVPR (2019)

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, 1.,
Wojna, Z., Song, Y., Guadarrama, S., Murphy, K.: Speed/accuracy trade-offs for
modern convolutional object detectors. In: CVPR (2017)

Hubara, 1., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neu-
ral networks: Training neural networks with low precision weights and activations.
JMLR (2017)

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H.,
Kalenichenko, D.: Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In: CVPR (2018)

. Mallya, A., Davis, D., Lazebnik, S.: Piggyback: Adapting a single network to mul-

tiple tasks by learning to mask weights. In: ECCV (2018)

Mancini, M., Ricci, E., Caputo, B., Rota Bulo, S.: Adding new tasks to a single
network with weight transformations using binary masks. In: ECCV Workshop on
Transferring and Adapting Source Knowledge in Computer Vision (2018)
Mudrakarta, P.K., Sandler, M., Zhmoginov, A., Howard, A.: K for the price of 1.
parameter efficient multi-task and transfer learning. In: ICLR (2019)

Rebuffi, S.A., Bilen, H., Vedaldi, A.: Learning multiple visual domains with residual
adapters. In: NeurIPS (2017)

	SpotPatch: Parameter-Efficient Transfer Learning for Mobile Object Detection

