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Distinguishing Systems and DistinguishingSenses: New Evaluation Methods for WordSense DisambiguationPHIL IP RESNIKDept. of Linguistics and Institute for Advanced Computer StudiesUniversity of MarylandCollege Park, MD 20742resnik@umiacs.umd.eduDAVID YAROWSKYDept. of Computer Science/CLSPJohns Hopkins UniversityBaltimore, MD 21218yarowsky@cs.jhu.eduAbstractResnik and Yarowsky (1997) made a set of observations about the state of the art in au-tomatic word sense disambiguation and, motivated by those observations, o�ered severalspeci�c proposals regarding improved evaluation criteria, common training and testingresources, and the de�nition of sense inventories. Subsequent discussion of those proposalsresulted in senseval, the �rst evaluation exercise for word sense disambiguation (Kilgarri�and Palmer forthcoming). This article is a revised and extended version of our 1997 work-shop paper, reviewing its observations and proposals and discussing them in light of thesenseval exercise. It also includes a new in-depth empirical study of translingually-basedsense inventories and distance measures, using statistics collected from native-speakerannotations of 222 polysemous contexts across 12 languages. These data show that mono-lingual sense distinctions at most levels of granularity can be e�ectively captured by trans-lations into some set of second languages, especially as language family distance increases.In addition, the probability that a given sense pair will tend to lexicalize di�erently acrosslanguages is shown to correlate with semantic salience and sense granularity; sense hierar-chies automatically generated from such distance matrices yield results remarkably similarto those created by professional monolingual lexicographers.1 IntroductionWord sense disambiguation (WSD) is perhaps the great open problem at the lexicallevel of natural language processing. For English, at least, performance of state-of-the-art systems on other lexical tasks such as part-of-speech (POS) tagging andmorphological analysis is respectable, if not perfect, and the dominant approaches



2 P. Resnik and D. Yarowsky(noisy channel models for tagging, two-level morphology) are by now well under-stood. These developments enable applications that can rely on accurate outputfrom lexical analysis | for example, Davis (1996) improves performance in cross-language information retrieval using a constrained word-translation technique thatrelies on accurate part-of-speech analysis for query terms.In contrast, although word sense ambiguity has been a central concern of naturallanguage processing since the inception of the �eld (Weaver 1949), algorithms forword sense selection have not yet reached the level of a reliable enabling technology.Until fairly recently, evaluation of WSD algorithms on a small set of \interesting"cases was the norm, and few, if any, researchers had even attempted broad-coveragedisambiguation. Prospects have changed, however, with the improved availabilityof common lexical resources (e.g. (Fellbaum 1998)), community-wide awareness ofalgorithms for exploiting large text corpora (Church and Mercer 1993), and theappearance of manually sense-tagged corpora (Landes et al. 1998; Ng and Lee 1996).As a result of these developments, a SIGLEX Semantic Tagging Workshop washeld in April, 1997, where we suggested a protocol for community-wide comparativeanalysis of word sense disambiguation techniques (Resnik and Yarowsky 1997). Theproposal sparked a lively debate, and subsequent discussions led to the �rst evalua-tion exercise for word sense disambiguation, senseval (Kilgarri� and Palmer forth-coming), and a related evaluation (romanseval) for Romance languages (V�eronis1998). This paper brie
y reviews our observations and extends the presentationof our proposals, including additional discussion in light of the senseval exercise.We also include a new empirical study of our proposals regarding translinguallymotivated sense inventories and semantic distance measures.2 ObservationsTraditional evaluation for WSD is not standardized. In other natural lan-guage processing tasks such as POS tagging and parsing, evaluation has becomefairly standardized, with most reported studies using common training and testingresources such as the Brown Corpus and Penn Treebank and fairly well acceptedevaluation metrics. In contrast, apart from a few studies using common test suites(e.g. the 1993 Leacock et al. line data, shared by Lehman, 1994, Mooney, 1996 andothers) there have traditionally been nearly as many WSD test suites as there areresearchers in this �eld. As a consequence, it can be di�cult to assess the state ofthe art.The potential for WSD varies by task. As Stevenson and Wilks (1996)emphasize, WSD is not an end in itself, but rather an intermediate, enabling task.Among the most common language-related applications, speech recognition has seenlittle use for word senses, since equivalence classes of contexts (e.g. Bahl et al. 1983;Katz 1987) have a far better track record than smoothing based on classes of words(e.g. Brown et al. 1992). In information retrieval, even perfect word sense informa-tion may be of only limited utility (Krovetz and Croft 1992; Voorhees 1993), thoughNLP techniques do appear to show more promise in cross-language information re-trieval than in monolingual retrieval (Doug Oard, personal communication). The



New Evaluation Methods for WSD 3potential for using word senses in high quality machine translation seems greater;for example, there is good reason to associate information about syntactic realiza-tions of verb meanings with verb senses rather than verb tokens (Dorr and Jones1996a, 1996b).The �eld has narrowed down approaches, but only a little. In the areaof POS tagging, the noisy channel model dominates (e.g. (Bahl and Mercer 1976;Jelinek 1985; Church 1988)), accompanied by transformational rule-based methods(Brill 1993) and grammatico-statistical hybrids (e.g. Tapanainen and Voutilainen1994). There seems to be consensus on what makes POS tagging successful:� The inventory of tags is small and fairly standard.� Context outside the current sentence has little in
uence.� The within-sentence dependencies are very local.� Prior (decontextualized) probabilities dominate in many cases.� The task can generally be accomplished successfully using only tag-level mod-els without lexical sensitivities besides the priors.� Standard annotated corpora of adequate size have long been available.In contrast, approaches toWSD attempt to take advantage of many di�erent sourcesof information (e.g. see McRoy 1992; Ng and Lee 1996; Bruce andWiebe 1994;Wilksand Stevenson 1998); it seems possible to obtain bene�t from sources ranging fromlocal collocational clues (Yarowsky 1993) to membership in semantically or topicallyrelated word classes (Yarowsky 1992; Resnik 1993) to consistency of word usageswithin a discourse (Gale et al. 1992a); and disambiguation seems highly lexicallysensitive, in e�ect requiring specialized disambiguators for each polysemous word.An up-to-date sampling of a wide range of methods can be found in the recentspecial issue of Computational Linguistics on WSD (Ide and V�eronis 1998).Adequately large sense-tagged data sets are di�cult to obtain. An-notated data has facilitated recent advances in POS tagging, parsing, and otherlanguage processing subproblems. Unfortunately, of the few sense-annotated cor-pora currently available, virtually all are tagged collections of a single ambiguousword such as line or tank. The WordNet semantic concordance, semcor (Milleret al. 1994), is an important and useful exception, providing the �rst large-scale,balanced data set for studying distributional properties of polysemy in English.However, its utility in supervised WSD is limited by its token-by-token sequentialtagging methodology, yielding too few tagged instances of the large majority ofpolysemous words (typically fewer than 10 each). In addition, sequential taggingforces annotators to repeatedly refamiliarize themselves with the sense inventoriesof each word, slowing annotation speed and lowering intra- and inter-annotatoragreement rates. The DSO corpus (Ng and Lee 1996), also having WordNet-basedsense tags, is another potential resource, but it must be viewed with caution: mea-surements of agreement between DSO and semcor are su�ciently low comparedto semcor inter-annotator agreement that, as Kilgarri� (1998, p. 583) comments,it is \impossible to regard [DSO] as a gold standard."Another potential source of sense-tagged data comes from parallel aligned bilin-gual corpora, where translation distinctions can provide a practical correlate to



4 P. Resnik and D. YarowskyTable 1. Probability distributions assigned by four hypothetical systemsSystemSense 1 2 3 4(1) monetary (e.g. on a loan) �47 �85 �28 1�00(2) stake or share ( correct �42 �05 �24 �00(3) bene�t/advantage/sake �06 �05 �24 �00(4) intellectual curiosity �05 �05 �24 �00sense distinctions (e.g. French droit and devoir correspond to English duty/taxversus duty/obligation). The availability and diversity of such corpora are in-creasing, o�ering the possibility of limitless \tagged" training data without manualannotation, and the World Wide Web represents another high-potential source ofparallel text, with the added advantage that, unlike static corpora, text on the Webtracks the continuous evolution of languages and their lexicons (Resnik 1998; Resnik1999). Given the data requirements for supervised learning algorithms and the cur-rent paucity of such data, we believe that unsupervised and minimally supervisedmethods o�er the primary near-term hope for broad-coverage sense tagging.13 Proposals3.1 A better evaluation criterionPrior to senseval, the standard for evaluation of word sense disambiguation algo-rithms was the appealingly simple \exact match" criterion, or simple accuracy:% correct = 100� # exactly matched sense tags# assigned sense tagsHowever, consider the context... bought an interest in Lydak Corp. ...(1)and assume the existence of 4 hypothetical systems that assign the probabilitydistributions in Table 1 to the 4 major senses of interest.Each of the systems prefers the incorrect classi�cation (sense 1) over the correctsense 2 (a stake or share). However, System 1 has been able to nearly rule outsenses 3 and 4 and assigns reasonably high probability to the correct sense, butis given the same penalty as other systems that either have ruled out the correctsense (systems 2 and 4) or e�ectively claim ignorance (system 3).If we intend to use the output of the sense tagger as input to another probabilistic1 In this context, we take \supervised learning" to mean algorithms requiring training oncorrectly sense-tagged text using a known inventory of senses, and \unsupervised" torefer to any method that does not require tagged training data; c.f. Sch�utze's (1998)use of the term \sense discrimination."



New Evaluation Methods for WSD 5Table 2. Illustration of cross-entropy calculationSystem1 2 3 4PrA(csijwi; contexti) �42 �05 �24 �00�log2PrA(csijwi; contexti) 1�25 4�32 2�05 1
system, such as a speech recognizer, topic classi�er, or IR system, it is importantthat it yield probabilities that are as accurate and robust as possible. If the taggeris con�dent, it should assign high probability to its chosen classi�cation. If it isless con�dent, but has e�ectively ruled out several options, the assigned probabilitydistribution should re
ect this, too.Experience in the speech community suggests that cross-entropy (or its relatedmeasures, perplexity and Kullback-Leibler divergence) can measure how well amodel assigns probabilities to its predictions. It is easily computed as� 1N NXi=1 log2 PrA(csijwi; contexti)where N is the number of test instances and PrA is the probability assigned bythe algorithm A to the correct sense, csi of word wi in contexti. Crucially, giventhe hypothetical case above, System 1 would get much of the credit for assigninghigh probability, even if not the highest, to the correct sense. Just as crucially,an algorithm would be penalized heavily for assigning very low probability to thecorrect sense,2 as illustrated in Table 2. Optimal performance is achieved underthis measure by systems that assign accurate probabilities, neither too conservative(System 3) nor too overcon�dent (Systems 2 and 4).This evaluation measure need not replace exact match. However, a measure basedon cross-entropy or perplexity would add a fairer test, especially for the commoncase where several �ne-grained senses may be correct and it is nearly impossibleto select exactly the sense chosen by the human annotator. A variant of the crossentropy measure without the log term ( 1N PNi=1 PrA(csijwi; contexti)) can be usedto measure improvement in restricting and/or roughly ordering the possible classi-�cation set without excessive penalties for systems with poor or absent probabilityestimates. In the latter case, when the assigned tag is given probability 1 and allother senses probability 0, this variant is equivalent to exact match.32 The extreme case of assigning 0 probability to the correct sense is given a penalty of 1by the cross-entropy measure.3 This variant of the cross entropy measure was suggested by Dan Melamed; expandedin (Melamed and Resnik submitted).



6 P. Resnik and D. YarowskyTable 3. Example sense inventory and distance/cost matrix for bankI Bank - repositoryI.1 Financial BankI.1a - the institutionI.1b - the buildingI.2 General Supply/ReserveII Bank - geographicalII.1 ShorelineII.2 Ridge/EmbankmentIII Bank - array/group/row
I.1a I.1b I.2 II.1 II.2 IIII.1a 0 1 2 4 4 4I.1b 1 0 2 4 4 4I.2 2 2 0 4 4 4II.1 4 4 4 0 1 4II.2 4 4 4 1 0 4III 4 4 4 4 4 03.2 Evaluation sensitive to semantic/communicative distanceCurrentWSD evaluation metrics also fail to take into account semantic/communicativedistance between senses when assigning penalties for incorrect labels. This is mostevident when word senses are nested or arranged hierarchically, as illustrated in Ta-ble 3, left. An erroneous classi�cation between close siblings in the sense hierarchyshould be given relatively little penalty, while misclassi�cations across homographsshould receive a much greater penalty. A penalty matrix distance(subsense1; subsense2)could capture taxonomic semantic distance, derived from a single semantic hierar-chy such as WordNet, or be based on a weighted average of simple hierarchicaldistances from multiple sources such as sense/subsense hierarchies in several dictio-naries. A very simple example of such a distance matrix for the bank sense hierarchyis given in Table 3, right.Penalties could also be based on general pairwise functional communicative dis-tance: errors between subtle sense di�erences would receive little penalty whilegross errors likely to result in misunderstanding would receive a large penalty. Suchdistances could be based on psycholinguistic data or models, such as experimen-tally derived estimates of similarity or confusability (e.g. (Miller and Charles 1991;Resnik forthcoming)). They could be based on a given task; for example, in speechsynthesis penalizing only sense distinction errors corresponding to pronunciationdistinctions (e.g. bass-/b�s/ vs. bass-/beis/). For machine translation, only sensedi�erences lexicalized di�erently in the target language would be penalized, with thepenalty proportional to communicative distance. Distances based on the weightedpercentage of all languages that lexicalize two subsenses di�erently are proposedin detail in Section 3.5. In general such a distance matrix could support arbitrarycommunicative cost/penalty functions, dynamically changable according to task.There are several ways in which such a (hierarchical) distance penalty weightingcould be utilized along with a cross-entropy measure. The simplest is to minimizemean distance/cost between assigned sense (asi) and correct sense (csi) over all Nexamples as an independent �gure of merit:1N NXi=1 distance(csi; asi)However, one could also use a metric such as the following, which measures e�cacy



New Evaluation Methods for WSD 7of probability assignment in a manner that penalizes probabilities assigned to in-correct senses weighted by the communicative distance/cost between that incorrectsense and the correct one:1N NXi=1 SiXj=1 distance(csi; sj)� PrA(sj jwi; contexti)where for any test example i, we consider all Si senses (sj) of word wi, weighting theprobability mass assigned by the classi�erA to incorrect senses (PrA(sj jwi; contexti))by the communicative distance or cost of that misclassi�cation.4Melamed and Resnik (submitted) proposed a variation of these ideas for the sen-seval exercise, which used the hector dictionary (Atkins 1993), organized in afashion similar to Table 3, as its sense inventory. One innovation of that proposalwas a scheme for the distribution of probability across levels of the sense hierarchy,accommodating selection of higher-level nodes (e.g. homograph-level distinctions)rather than bottom-level senses by human annotators and by disambiguation sys-tems. Another innovation was an extension to handle test instances for which whichmultiple \correct" sense tags are identi�ed, interpreting such multiple taggings dis-junctively.In senseval, scoring was done a number of di�erent ways, varying the assumedlevel of granularity (bottom-level versus higher-level senses), the assumption ofunique tags underlying the probabilistic scoring proposal, and the treatment ofmultiple correct tags. The Melamed-Resnik scoring was adopted as one of the set,but other scores were computed according to di�erent assumptions | for example,interpreting multiple correct tags conjunctively rather than disjunctively, thus pe-nalizing systems whenever they failed to include all the human-assigned sense tagsfor a test instance. Computing the \score of reference" for systems in senseval,instances assigned multiple tags by the human annotators were excluded from thetest set, reducing it by about 15%. In retrospect, there appears to have been someconfusion as to whether multiple human-assigned sense tags were intended to havebeen interpreted conjunctively or disjunctively; presumably this will be resolved byclearer speci�cations in future evaluations.In practice, it appears that most of the senseval systems provided categoricalresponses (whether a single tag or multiple tags) rather than a probability distri-bution, and senseval scoring more closely resembles the traditional exact matchcriterion than it does some variant of cross-entropy.3.3 A framework for common evaluation and test set generationSupervised and unsupervised sense disambiguation methods have di�erent needs re-garding system development and evaluation. Although unsupervised methods may4 Although this function enumerates over all Si senses of wi, because distance(csi; csi) = 0this function only penalizes probability mass assigned to incorrect senses for the givenexample. Note that in the special case of sense tagging without probability estimates (allare either 0 or 1), this formula is equivalent to the previous one (simple mean distanceor cost minimization).



8 P. Resnik and D. Yarowsky1. Collect a very large (e.g., N = 1 billion words), diverse unannotated corpus.2. Select a sense inventory (e.g. WordNet, LDOCE) with respect to which algorithmswill be evaluated (see Section 3.4).3. Pick a subset of R < N (e.g., 100 million) words of unannotated text, and releaseit to the community as a training set.4. Pick a smaller subset of S < R < N (e.g., 10 million) words of text as the sourceof the test set. Generate the test set as follows:(a) Select a set of M (e.g., 100) ambiguous words that will be used as the basis forthe evaluation, without revealing what those words will be.(b) For each of the M words, annotate all available instances of that word in thetest corpus. Make sure each annotator tags all instances of a single word, e.g.using a concordance tool, as opposed to going through the corpus sequentially.(c) For each of the M words, compute evaluation statistics using individual anno-tators against other annotators.(d) For each of the M words, go through the cases where annotators disagreed andmake a consensus choice, by vote if necessary.5. Instruct participants in the evaluation to \freeze" their code; that is, from this pointonwards, no changes may be made.6. Have each participating algorithm do WSD on the full S-word test corpus.7. Evaluate the performance of each algorithm considering only instances of the Mwords that were annotated as the basis for the evaluation. Compare exact match,cross-entropy, and inter-judge reliability measures (e.g. Cohen's �) using inter-annotator results as an upper bound.8. Release this year's S-word test corpus as a development corpus for those algorithmsthat require supervised training, so they can participate from now on, being evalu-ated in the future via cross-validation.9. For next year's evaluation, go back to Step 3..Fig. 1. Protocol for common evaluation and test set generationbe evaluated (with some limitations) by a sequentially tagged corpus such as sem-cor (with a large number of polysemous words represented but with few examplesof each), supervised methods require much larger data sets to provide adequatetraining and testing material. The protocol in Figure 1 satis�es the needs of bothsupervised and unsupervised tagging research; it served with some modi�cation asthe basis for the senseval exercise.There are a number of advantages to this paradigm, in comparison with simplytrying to annotate large corpora with word sense information.First, it combines an emphasis on broad coverage with the advantages of evaluat-ing on a limited set of words, as is done traditionally in the WSD literature. Step 4.acan involve any desired criteria (frequency, level of ambiguity, part of speech, etc.)to narrow down to a set of candidate words, and then employ random selectionamong those candidates. At the same time, it avoids a common criticism of studiesbased on evaluation using small sets of words, namely that there is not enoughattention given to scalability. In this evaluation paradigm, all algorithms must beable to sense tag all words in the corpus meeting speci�ed criteria, because thereis no way to know in advance which words will be used to compute the �gure(s) ofmerit.Second, the process avoids some problems that arise in using exhaustively anno-tated corpora for evaluation. By focusing on a relatively small set of polysemouswords, much larger data sets for each word can be produced. This focus will alsoallow more attention to be paid to selecting and vetting comprehensive and robust



New Evaluation Methods for WSD 9sense inventories, including detailed speci�cations and de�nitions for each. Fur-thermore, by having annotators focus on one word at at time using concordancesoftware, the initial level of consistency is likely to be far higher than that obtainedby a process in which one jumps from word to word to word by going sequentiallythrough a text, repeatedly refamiliarizing oneself with di�erent sense inventoriesat each word. Finally, by computing inter-annotator statistics blindly and then al-lowing annotators to confer on disagreements, a cleaner test set can be obtainedwithout sacri�cing trustworthy upper bounds on performance.Third, the experience of the Penn Treebank and other annotation e�orts hasdemonstrated that it is di�cult to select and freeze a comprehensive tag set for theentire vocabulary in advance. Studying and writing detailed sense tagging guide-lines for each word is comparable to the e�ort required to create a new dictionary.By focusing on only 100 or so polysemous words per evaluation, the annotatingorganization can a�ord to do a multi-pass study of and detailed tagging guidelinesfor the sense inventory present in the data for each target word. This would beprohibitively expensive to do for a full vocabulary. Also, by utilizing di�erent setsof words in each evaluation, such factors as the level of detail and the sources ofthe sense inventories may change without worrying about maintaining consistencywith previous data.Fourth, both unsupervised and supervised WSD algorithms are better accommo-dated in terms of the data available. Unsupervised algorithms can be given verylarge quantities of training data: since they require no annotation the value of R canbe quite large. And although supervised algorithms are typically plagued by sparsedata, this approach will yield much larger training and testing sets per word.The senseval exercise adopted some though not all aspects of this protocol. Thediverse, balanced corpus (Step 1) was a 17M word pilot for the British NationalCorpus, which has since reached a size of over 100M words. The selected sense inven-tory (Step 2) was the hector database, constructed by selecting a sample of wordsand sense-tagging all instances of them in the corpus | thus, as suggested above,the sense-tagging process provided feedback for re�nement of the sense inventoryitself.Because the evaluation exercise included both supervised and unsupervised sys-tems, the initial distribution of training materials included tagged rather than un-tagged data (contrary to Step 3) for a set of 29 target words; otherwise, however,the creation of the test set proceeded largely as speci�ed in Step 4, for a set of 34target words and a test set of 8448 instances, and systems were frozen in advanceof the release of test data, as speci�ed in Step 5.The greatest departure of the senseval exercise from the protocol describedabove was the requirement that systems perform WSD on all words in a test corpus(Steps 6 and 7), with their developers remaining ignorant of which words were tobe used for scoring. Instead, participating systems were grouped into categories,making it possible to do within-group comparisons of systems that disambiguatedonly the words in the test set, and a separate within-group comparison for those thatdisambiguated all content words appearing in the test collection. Comparison acrossgroups indicates, not surprisingly, that the highest performance was obtained by



10 P. Resnik and D. Yarowskysystems using supervised training to learn classi�ers speci�cally tuned to the wordsin the test set.3.4 A multilingual sense inventory for evaluationOne of the most vexed issues in applied lexical semantics is how to de�ne wordsenses. Although we certainly do not propose a de�nitive answer to that question,we suggest here a general purpose criterion that can be applied to existing sourcesof word senses in a way that, we suggest, makes sense both for target applicationsand for evaluation, and is compatible with the major sources of available trainingand test data.The essence of the proposal is to restrict a word sense inventory to distinctionsthat are typically lexicalized cross-linguistically. This cuts a middle ground betweenrestricting oneself to homographs within a single language, which tends towarda very coarse-grained distinction, and an attempt to express all the �ne-graineddistinctions made in a language, as found in monolingual dictionaries. In practicethe idea would be to de�ne a set of target languages (and associated bilingualdictionaries), and then to require that any sense distinction be realized lexically ina minimum subset of those languages. This would eliminate many distinctions thatare arguably better treated as regular polysemy. For example, table can be used torefer to both a physical object and a group of people:(1) a. The waiter put the food on the table.b. Then he told another table their food was almost ready.c. He �nally brought appetizers to the table an hour later.In German, for example, the two meanings can actually be lexicalized di�erently(Tisch vs. Tischrunde). However, as such sense distinctions are typically con
atedinto a single word in most languages, and because even German can use Tisch inboth cases, one could plausibly argue for a common sense inventory for evaluationthat con
ates these meanings.A useful reference source for both training and evaluation would be a table link-ing sense numbers in established lexical resources (such as WordNet or LDOCE)with these crosslinguistic translation distinctions, such as Table 4. A comparablemapping could readily be extracted semi-automatically from bilingual dictionariesor EuroWordNet (Bloksma et al. 1996). We note that the table follows many lex-ical resources, such as the original WordNet, in being organized at the top levelaccording to parts of speech. This seems to us a sensible approach to take forsense inventories, since POS tagging accomplishes much of the work of semanticdisambiguation, at least at the level of homographs (Stevenson and Wilks 1996).Although cross-linguistic divergence is a signi�cant problem, and 1-1 translationmaps do not exist for all sense-language pairs, this table suggests how multipleparallel bilingual corpora can be used to yield sets of training data covering di�erentsubsets of the English sense inventory, that in aggregate may yield tagged data forall given sense distinctions when any one language alone may not be adequate.For example, a German-English parallel corpus could yield tagged data for senses



New Evaluation Methods for WSD 11Table 4. Mapping between cross-linguistic sense labels and established lexiconsTarget WordNet EnglishWord Sense # description Spanish French German Italian Japaneseinterest 1 monetary inter�es, int�erêt Zinsen interesse rishi,(noun) (e.g. on loan) r�edito risoku2 stake/share inter�es, int�erêt Anteil interesse rikenparticipaci�on participation3,4 intellectual inter�es, int�erêt Interesse interesse kanshin,curiosity ky�omi5 bene�t, provecho, inte- int�erêt Interesse interesse riekiadvantage r�es, bene�ciodrug 1a medicine medicamento, medicament Medikament, medicina kusuri(noun) droga Arzheimittel1b narcotic narc�otica drogue Drogue, droga mayakudroga Rauschgiftbank 1 shoreline ribera, orilla banc, rive Ufer sponda,riva kishi(noun) 2 embankment loma, cuesta talus, terasse Erdwall muccio teib�o3 �nancial inst. banco banque Bank banca gink�o4 supply/reserve banco banque Bank banca gink�o5 bank building banco banque Bank banca gink�o6 array/row hilera, bater��a rang, batterie Reihe batteria retsu�re 1 dismiss despedir, renvoyer feuern licenziare kubi ni(t. verb) from job echar shimasu2 arouse, provoke excitar, en
ammer, be
�ugeln accendere k�ofunenardecer animer entz�unden in�ammare saseru4 discharge weapn disparar lâcher abfeuern sparare happ�o s.5 bake pottery cocer cuire brennen cuocere yaku1 and 2 for interest, and the presence of certain Spanish words (provecho, bene�-cio) aligned with interest in a Spanish-English corpus will tag some instances ofsense 5, with a Japanese-English aligned corpus potentially providing data for theremaining sense distinctions. In some cases it will not be possible to �nd any lan-guage (with adequate on-line parallel corpora) that lexicalizes some subtle Englishsense distinction di�erently, but this may be evidence that the distinction is regularor subtle enough to be excluded or handled by other means. Section 3.5 providesempirically-observed examples of such cases.Table 4 is not intended for direct use in machine translation. Also note thatwhen two word senses are in a cell they are not necessarily synonyms. In somecases they realize di�erences in meaning or contextual usage that are salient to thetarget language. However, at the level of sense distinction given in the table, theycorrespond to the same word senses in English and the presence of either in analigned bilingual corpus will indicate the same English word sense.Monolingual sense tagging of another language such as Spanish would yield asimilar map, such as distinguishing the senses of the Spanish word dedo, which canmean �nger or toe. Either English or German could be used to distinguish thesesenses, but not Italian or French, which share the same sense ambiguity.It would also be helpful for Table 4 to include alignments between multiple mono-



12 P. Resnik and D. Yarowskylingual sense representations, such as COBUILD sense numbers, LDOCE tags, orWordNet synsets, to support the sharing and leveraging of results between multiplesystems. This highlights an existing problem, of course: di�erent sense inventorieslead to di�erent algorithmic biases. For example, WordNet as a sense inventorywould tend to bias an evaluation in favor of algorithms that take advantage oftaxonomic structure; LDOCE might bias in favor of algorithms that can take ad-vantage of topical/subject codes, and so forth. Unfortunately we have no solutionto propose for the problem of which representation (if any) should be the ultimatestandard; we anticipate that discussion of the use of hector in senseval will shedsome light on this issue.53.5 A translingual empirical study of sense inventories and measuresThis section presents an empirical investigation of the proposals outlined in Sec-tions 3.2 and 3.4. Speci�cally, it will de�ne a translingually motivated distancemeasure for word senses, and show how this can be used to generate an empiricallymotivated sense inventory and cost matrix. This measure will also be used to eval-uate the hector sense inventory used in the senseval framework. To this end, 21native speakers of 12 diverse languages annotated 222 words in context, randomlyselected from the senseval round-2 training set.6 Each of the examples had anassociated hector sense tag, but these were hidden from the annotators. For 180of the sentences, annotators were asked to select a single preferred translation ofthe English senseval word in context in their native language, and give the unin-
ected root form of that word.7 An example of this tagging environment is givenin Table 5, with the annotator's response in the boxes on the left.Table 5. Example of the free annotation task for a Japanese annotatorJapanese hector SenseTranslation Word In Context (hidden)bando West Country folk jazz band Red Jasper will be I.1haba cope with quite a narrow band of frequencies . II.2.1suji of obsidian , except for a band of turquoise around II.2.3ichidan �end who with his rag-tag band of followers, obtains I.2ittai under-populated. In a wide band of west Africa , II.1.3ichidan are preparing to repel a band of gypsies who have I.25 The SIGLEX'99 workshop on \Standardizing Lexical Resources" (University of Mary-land, June 1999) focuses on standardization of lexical resources and performance-preserving mappings between existing resources.6 Basque, Japanese, Korean, Chinese, Turkish, Hungarian, Romanian, Greek, Hindi, Ara-bic, Spanish, and Swedish native speakers, all at a high level of English pro�ciency.7 Nancy Ide proposed a similar cross-lingual annotation and clustering e�ort using nativespeakers in her Herstmonceux senseval presentation (Ide forthcoming).



New Evaluation Methods for WSD 13Table 6. Example of the pairwise annotation task for a Turkish annotatorTurkish hector SenseTranslation Word In Context (hidden)topluluk marvelous jazz and blues band . I.1bant hand he bent the 
exible band around the bird's leg II.2.1bant hand he bent the 
exible band around the bird's leg II.2.1serit of obsidian , except for a band of turquoise around II.2.3The remaining 52 examples consisted of paired senseval sentences exhibitingtwo di�erent senses of a single word. The granularity of the sense di�erence variedfrom di�erent top-level (homograph) sense numbers to di�erent subsenses of thesame major sense, as illustrated in Table 6. Additional details are given in Section3.5.2.Annotators were asked speci�cally on the pairwise test to identify if there was anyword pair in their language that distinguished the two meanings, i.e. a translationfor word 1 that could not be used for word 2, and a translation for word 2 that couldnot be used for word 1. Thus these pairwise annotations attempted to elicit directlywhether a lexical distinction existed in the tagger's native language su�cient toseparate the two meanings (and hence would be usable as cross-lingual sense labelsfor this particular sense distinction).3.5.1 A cross-linguistic measure of sense di�erenceOne measure of the signi�cance of a particular sense di�erence sensei/sensej in agiven inventory is the probability that these two senses will be lexicalized di�erentlyin some language L, or more formally, PL(di�erent-lexicalizationjsensei; sensej).One can estimate this probability directly from the pairwise data shown in Table6 by presenting several sensei/sensej pairs and measuring the percentage that arelexicalized di�erently in language L. Although this directly addresses the question,data collection costs limit pairwise enumeration to a relatively small subset of thepossible sense pairs. Thus this measure is primarily useful for computing aggregatevalues such as the average probability for a given granularity of sense ambiguity.The second method of estimating PL(di�erent-lexicalizationjsensei; sensej) isbased on the other part of the data set, where annotators simply gave their preferredtranslation for a randomly ordered set of examples covering several instances of allthe target hector word senses. The probability of di�erent lexicalization can beaveraged over all possible pairings of sensei/sensej examples, as follows:PL(di�erent-lexicalizationjsensei; sensej) =1jsenseijjsensej j Xx2fsensei examplesg;y2fsensej examplesgtranslation[x; L] == translation[y; L]:



14 P. Resnik and D. YarowskyEssentially this computes the likelihood of an arbitrary pairing of examples of senseiand sensej in the data being labelled with the same translation in language L. Itis a weaker estimate of the probability that language L lexicalizes the distinctionbetween sensei and sensej in that annotators were not told to use distinguishingwords if they exist, nor would this be possible as they were not considering speci�cpairings. They may have choosen to use the same word for two subtly di�erentmeanings even though another word pair may exist that can capture the meaningdi�erence. Nevertheless, this measure does capture the tendency for the preferredword choice in language L to lexicalize a given English/hector sense distinction.This measure can also be computed over all pairs sensei/sensej , not merely theselected subset given in the experiment. For these two reasons the measure is ofpractical merit.3.5.2 Sensitivity of cross-lingual lexicalization di�erences to sense granularityBefore considering speci�c polysemous words, we examine the general e�ect ofsense granularity on the tendency of word senses to be lexicalized di�erently acrosslanguages.The paired sense data can be classi�ed as one of four levels of similarity: theRoman-numeraled homograph level (band-I (group) vs. band-II (ring)), the majorsense level (band-I.1 (music group) vs band-I.2 (other group)), the subsense level(which we arbitrarily use to refer to the distance between a general sense numbersuch as I.1 and its specialization (I.1.2)), and �nally the subsubsense level (such asbetween I.1.1 and I.1.2).8 Computing averagePL(di�erent-lexicalizationjsensei; sensej)broken down by granularity yields the following table:Table 7. Sense lexicalization probabilities based on the pairwise sense annotationsAverage PL(di�erent-lexicalizationjsensei; sensej)All Indo-European Non-IndoEuoropeanLevel of Granularity Languages Languages LanguagesHomograph Level .95 .94 .96Major sense level .78 .64 .85Subsense level .72 .59 .82Subsubsense level .52 .39 .62Avg. of all levels .74 .64 .81Note that for homographs, 95% of all observed pairings were given di�erenttranslations.9 In contrast, at the �ner subsubsense level only 52% of the given8 The full sense inventories and examples utilized for these data are available athttp://www.cs.jhu.edu/�yarowsky/nle/inventories.html.9 Indeed the sole case where a homograph-level distinction was translated the same ina non-Indo-European language was for a single annotator in Japanese, who gave themusical band and bird-leg-band senses of band the same translation, bando, which isactually a case of polysemy inherited from English through two independent borrowings.



New Evaluation Methods for WSD 15pairs were translated di�erently. This suggests that homograph-level distinctionsare broadly salient and tend to be treated consistently as separate words acrosslanguages, while subsubsense distinctions appear to be less salient in that separatelexicalizations for these similar concepts have not evolved in the majority of thestudied languages.There also appear to be interesting di�erences in granularity e�ects betweenIndo-European and non-Indo-European languages. Both tend to strongly lexical-ize homograph-level distinctions at nearly equal probability, but for the �ner sensedistinctions, many of the Indo-European languages tend to exhibit parallel ambi-guities to English and di�erently lexicalize the more subtle meaning distinctions ata lower probability than more distantly related languages. This suggests the im-portant practical implication that if parallel bilingual corpora are to be used forassigning monolingual sense tags, languages more distantly related to English willtend to be more e�ective at di�erently labelling the �ner sense ambiguities.3.5.3 Correlation between pair-based annotation and free annotationAs we have observed, pair-based annotation produces a more direct measure of theability of languages to di�erently lexicalize speci�c sense distinctions, while freeannotation of unpaired examples achieves broader coverage at the risk of giving thesame translation for a pair of examples where a pair of adequately distinguishingwords may well exist in the target language. However, for all but the �nest sub-subsense level, these two di�erent measuring strategies tend to yield results thatare closely correlated. Table 8 is the analog to Table 7 above, but based on freetranslation rather than pairwise annotation. The correlation coe�cient between theall-languages columns in the two tables exceeds r = :99. This suggests that the freeannotations of translations on average tend to capture the same general distin-guishing capacity for word senses as an explicit pairwise analysis of speci�c sensedi�erences. This indicates that at least at the coarser levels of sense granularity,the statistics utilized in this approach may be collected adequately from bilingualcorpora produced by human translation.Table 8. Sense lexicalization probabilities based on the free translation annotationsAverage PL(di�erent-lexicalizationjsensei; sensej)All Indo-European Non-IndoEuoropeanLevel of Granularity Languages Languages LanguagesHomograph Level .95 .94 .96Major sense level .74 .69 .80Subsense level .68 .58 .78Subsubsense level .44 .38 .50Avg. of all levels .70 .65 .76



16 P. Resnik and D. Yarowsky3.5.4 Correlation between language distance and tendency to lexicalize di�erentlyTable 9 lists the mean probability that a given language di�erently lexicalizes anEnglish sense distinction in the hector inventory, averaged over the 4 di�erentlevels of sense granularity. There appears to be a strong association between lan-guage distance from English and this mean probability value, further re�ning thedi�erences in distinguishing strength observed between Indo-European (IE) andnon-Indo-European (NI) languages.Table 9. Mean probablility that a language L will di�erently lexicalize an Englishsense ambiguity, correlated with language family distanceLanguage Avg. PL # Taggers Language Avg. PL # TaggersNI - Basque 0.885 1 IE - Romanian 0.667 3NI - Japanese 0.856 4 IE - Greek 0.635 2NI - Korean 0.846 1 IE - Hindi 0.558 2NI - Chinese 0.808 3 NI - Arabic 0.538 1NI - Turkish 0.692 1 IE - Spanish 0.500 1NI - Hungarian 0.692 1 IE - Swedish 0.461 1One implication of these results for machine translation is that for relatively sim-ilar languages, such as Spanish-English, the importance of word sense disambigua-tion is apparently lower, given that approximately 50% of the sense distinctionsnoted by lexicographers need not be resolved due to parallel polysemy in the targetlanguage, while for more distant languages from English such as Japanese, 86% ofthe monolingual sense distinctions also corresponded to translation distinctions andhence need resolving for MT. Nevertheless, both values are arguably high enough towarrant some form of word sense disambiguation for lexical choice in MT systems.3.5.5 A cross-lingually motivated de�nition for cost matricesSection 3.2 discusses the advantages of evaluating sense taggers via a matrix ofsemantic distance and/or the communicative cost of confusing two senses. A verynatural measure of this semantic distance is the mean probability that the twosenses will be lexicalized di�erently in a second language, which we have alreadyargued is an indication of the salience of a sense distinction and clearly correlatesdirectly with error rate in lexical choice.10We can de�ne a single-language-speci�c cost function as:Cost(sensei; sensej ; L) = PL(di�erent-lexicalizationjsensei; sensej)or a multi-lingual cost function:Cost(sensei; sensej) = 1jLanguagesj XL2LanguagesPL(di�-lexicalizationjsensei; sensej)10 Senses lexicalized di�erently in a target language tend to yield translation errors whenconfused.



New Evaluation Methods for WSD 17Table 10. Translingually generated distance matrices for band and bitterI/1 I/2 II/1 II/1.2 II/1.3 II/2 II/2.1band/I/1 (music) 0 0.857 0.885 0.943 0.979 0.962 0.943band/I/2 (group) 0.857 0 0.995 0.969 1.000 0.865 0.961band/II/1 (strip) 0.885 0.995 0 0.740 0.729 0.847 0.844band/II/1.2 (stripe) 0.943 0.969 0.740 0 0.698 0.833 0.750band/II/1.3 (portion) 0.979 1.000 0.729 0.698 0 0.778 0.729band/II/2 (range) 0.962 0.865 0.847 0.833 0.778 0 0.771band/II/2.1 (radio) 0.943 0.961 0.844 0.750 0.729 0.771 0
 band/II/2.1 - radio

 band/II/2 - range 

 band/II/1.3 - portion

 band/II/1.2 - stripe 

 band/II/1 - strip 

 band/I/2 - group

 band/I/1 - music

 bitter//6 - beer

 bitter//1 - taste

 bitter//4 - end

 bitter//2 - feelings

 bitter//3 - argument

 bitter//5 - weather

1 2 3 4 5 6bitter//1 (taste) 0 0.576 0.875 0.549 0.896 0.250bitter//2 (feelings) 0.576 0 0.788 0.514 0.882 0.583bitter//3 (argument) 0.875 0.787 0 0.725 0.879 0.875bitter//4 (end) 0.549 0.514 0.725 0 0.875 0.583bitter//5 (weather) 0.896 0.882 0.879 0.875 0 0.896bitter//6 (beer) 0.250 0.583 0.875 0.583 0.896 0
This estimates the pairwise cost of confusing hector sensei and sensej basedon the tendency of the language to use di�erent words for the two meanings. If themeaning distinction has a high probability of being lexicalized in many languages,then this provides some evidence that the distinction is important. If few or no hu-man languages lexicalize this meaning distinction, this may be considered evidencethat the distinction is less salient or has lower cost of ambiguity.Tables 10 and 11 show distance matrices computed using the multi-lingual costfunction above, based on the free translation rather than pairwise annotation methodof computing PL(di�erent-lexicalizationjsensei; sensej). Finer sense distinctionsclearly have lower pairwise costs than coarser distinctions under this measure inthe given examples. To help visualize these matrices better, we have applied a hier-archical agglomerative clustering procedure using maximal linkage (Duda and Hart1973), yielding automatically derived sense trees that optimize between-cluster dis-tance. These trees (also shown in Tables 10 and 11) are based exclusively on thefree-tagging of the preferred translations of randomly ordered examples in context,and the hector sense numbers were not utilized in any way in the clustering pro-cedure. Yet these induced trees precisely mirror the sense hierarchy given by thehector lexicographers, at not only the homograph level but down to the subsub-sense level as well.



18 P. Resnik and D. YarowskyTable 11. Translingually generated distance matrices for brilliant and accident1 2 3 4 5 6 9brilliant//1 (achievement) 0 0.537 0.570 0.781 0.756 0.850 0.637brilliant//2 (performance) 0.537 0 0.405 0.862 0.866 0.929 0.625brilliant//3 (intelligence) 0.570 0.405 0 0.844 0.856 0.900 0.613brilliant//4 (color) 0.781 0.863 0.844 0 0.320 0.656 0.766brilliant//5 (sun) 0.756 0.866 0.856 0.320 0 0.630 0.750brilliant//6 (smile) 0.850 0.929 0.900 0.656 0.630 0 0.792brilliant//9 (admiration) 0.637 0.625 0.613 0.766 0.750 0.792 0
 brilliant//9 - admiration

 brilliant//3 - intelligence

 brilliant//2 - performance

 brilliant//1 - achievement

 brilliant//6 - smile

 brilliant//5 - sun

 brilliant//4 - color

 accident//2.1 - by accident

 accident//2 - chance event

 accident//1.b - crash/n-mod

 accident//1  - crash/mishap

1 1.b 2 2.1accident//1 (crash/mishap) 0 0.18 0.97 0.98accident//1.b (crash/n-mod) 0.18 0 0.97 0.96accident//2 (chance event) 0.97 0.97 0 0.45accident//2.1 (by accident) 0.98 0.96 0.45 0Interestingly, many of the hector sense inventories are quite 
at (such as forthe adjectives bitter and brilliant), exhibiting only a single non-hierarchical list ofmajor numbered senses. However, the sense trees derived using the translingualcost matrix show a quite natural hierarchical clustering of these meanings, such asrecognizing that bitter//1 (taste) and bitter//6 (beer) are quite similar (only 25%probability of being lexicalized di�erently across languages). Also, note that the\radiant" senses of brilliant (4=color,5=sun,6=smile) are clustered together whilethe achievement/accomplishment/intelligence senses (1,2,3,9) are also clustered to-gether in a natural hierarchy. This suggests that hierarchical clustering based on theprobability of di�erential lexicalization across languages may have additional meritin superimposing an empirically motivated sense hierarchy on 
at sense inventories.4 ConclusionsThe most important of our observations about the state of the art in word sensedisambiguation is that it is still a di�cult, open, and interesting problem, on whichthe �eld has not typically reached consensus. We have made several suggestions thatwe believe will help assess progress and advance the state of the art. In summary:� We proposed that the accepted standard for WSD evaluation include a cross-entropy like measure that tests the accuracy of the probabilities assigned tosense tags and o�ers a mechanism for assigning partial credit.



New Evaluation Methods for WSD 19� We suggested a paradigm for common evaluation that combines the bene�ts oftraditional \interesting word" evaluations with an emphasis on broad coverageand scalability.� We outlined a criterion that should help in determining a suitable sense inven-tory to use for comparison of algorithms, compatible with both hierarchicalsense partitions and multilingually motivated sense distinctions.These proposals have in large part been put into practice by the �rst sensevalexercise, yielding an impressive array of new comparative data on the performanceof sense disambiguation systems, insights into the nature of the problem, and freshdebates over the process of evaluation.We also presented a substantial exploration of the relationship between monolin-gual sense inventories and translation distinctions across languages. Speci�cally, wemeasured the probability of English monolingual sense distinctions in the hectordatabase being lexicalized di�erently across 12 widely diverse languages, studied atseveral levels of sense granularity. This measure has been shown to correlate withmonolingual sense distance, and thus may be e�ective as the basis of a semanticdistance or cost matrix for sense disambiguation evaluation. New sense hierarchiesautomatically generated from these matrices using hierarchical agglomerative clus-tering also yield results remarkably similar to those created by the hector mono-lingual lexicographers. These parallel structures suggest that the lexicographer'sintuitions regarding sense distance and clustering closely resemble empirically mea-sured distances in cross-lingual data, providing further evidence for the plausibilityof these monolingual sense hierarchies.ReferencesS. Atkins. (1993). Tools for computer-aided lexicography: the Hector project. In Papersin Computational Lexicography: COMPLEX '93, Budapest.L. Bahl and R. Mercer. (1976). Part-of-speech assignment by a statistical decision algo-rithm. In International Symposium on Information Theory, Ronneby, Sweden.L. Bahl, F. Jelinek, and R. Mercer. (1983). A maximum likelihood approach to continuousspeech recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,PAMI-5(2):179{190.L. Bloksma, P. D��ez-Orzas and P. Vossen. (1996). User Requirements and FunctionalSpeci�cation of the EuroWordNet Project. http://www.let.uva.nl/~ewnE. Brill. (1993). A Corpus-Based Approach to Language Learning. Ph.D. thesis, Computerand Information Science, University of Pennsylvania.P. Brown, V. Della Pietra, P. deSouza, J. Lai, and R. Mercer. (1992). Class-based n-grammodels of natural language. Computational Linguistics, 18(4):467{480.R. Bruce and J. Wiebe. (1994). Word-sense disambiguation using decomposable models.In Proceedings of ACL '96, Las Cruces, NM., pp. 139-146.K. Church. (1988). A stochastic parts program and noun phrase parser for unrestrictedtexts. In Proceedings of the Second Conference on Applied Natural Language Processing,Austin, Texas, pp. 136{143.K. Church and R. Mercer. (1993). Introduction to the special issue on computationallinguistics using large corpora. Computational Linguistics, 19(1):1{24.M. Davis. (1996). New Experiments In Cross-Language Text Retrieval at NMSU'sComputing Research Lab, In E. M. Voorhees and D. K. Harman (eds.), The Fifth
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