University of Pittsburgh

CS 1502 Spring 2004 Exam 1

There are a total of 100 points. This is a closed book exam.

You may ask a question if you think there is an error of some kind.

We can't answer questions like What do you want for this question? or I don't understand the question. That would be too disruptive, and also wouldn't be fair, because some people would get more information than others.

Good luck!!

1. (6 points) Determine whether the following is a **tautology** and/or whether it is a **logical necessity**. Support your answers. Your answers must show that you know what **tautologies** and **logical necessities** are.

$$c = c \vee Tet(a)$$

Tautology? (circle one) YES NO***

Logical Necessity? (circle one) YES*** NO

SUPPORT YOUR ANSWERS HERE:

c=c	Tet(a)	c=c	v	Tet(a)
T	T		T	
T	F		T	
F	T		Τ	
F	F		F	

We can see from the last row in the truth table that the sentence is not always true. Hence, the sentence is not a tautology.

However, the last two rows of the truth table are spurious (since c=c cannot be false). Since the sentence is true in all the non-spurious rows, the sentence is a logical necessity.

- 2. (16 points) Translate the following English sentences into first-order logic.
 - (a) Neither ${\bf a}$ nor ${\bf b}$ is a cube, but both of them are large.

(b) a is a cube only if it's large.

(c) a is a cube unless it's large.

(d) If a is a cube, then if it isn't small then b is neither a cube nor a tet.

3. (6 points) Convert the following sentence into conjunctive normal form. Please show your work.

$$\neg (R \land (P \lor Q))$$

OR

- 4. (10 points) Give a resolution proof of the following argument. Please show your work.
 - 1. P \vee Q
 - 2. ¬P

3. Q ∨ W

So, the clauses are
$$\{P,Q\}$$
, $\{\tilde{P}\}$, $\{\tilde{Q}\}$, $\{\tilde{W}\}$

Resolution Proof:

5.	(10 points) For each of the following, state whether the argument is valid or invalid. If
	the argument is invalid, show that it is invalid. If it is valid, there is nothing else
	to do.

```
\begin{split} & \text{Tet}(\mathbf{a}) \to \text{Large}(\mathbf{a}) \\ & \text{Large}(\mathbf{a}) \\ & - \\ & \text{Tet}(\mathbf{a}) \end{split}
```

Invalid. The premises are true and the conclusion is false if, for example, \mathbf{a} is a large cube.

$$\begin{split} & \operatorname{Tet}(a) \to \operatorname{Large}(a) \\ & - \\ & (\operatorname{Tet}(a) \vee \operatorname{Cube}(b)) \to \operatorname{Large}(a) \end{split}$$

Invalid. The premises are true and the conclusion is false if, for example, \mathbf{b} is a cube and \mathbf{a} is a small cube.

```
\begin{aligned} & \text{Tet}(\mathbf{a}) \to \text{Large}(\mathbf{a}) \\ & \neg \text{Large}(\mathbf{a}) \\ & - \\ & \neg \text{Tet}(\mathbf{a}) \end{aligned}
```

Valid.

$$\begin{split} & \operatorname{Tet}(a) \to \operatorname{Large}(a) \\ & - \\ & (\operatorname{Tet}(a) \wedge \operatorname{Cube}(b)) \to \operatorname{Large}(a) \end{split}$$

Valid.