Automatic Summarization of Student Course Feedback

Wencan Luo† Fei Liu‡ Zitao Liu† Diane Litman†
†University of Pittsburgh, Pittsburgh, PA 15260
‡University of Central Florida, Orlando, FL 32716
{wencan, ztliu, litman}@cs.pitt.edu feiliu@cs.ucf.edu

Abstract

Student course feedback is generated daily in both classrooms and online course discussion forums. Traditionally, instructors manually analyze these responses in a costly manner. In this work, we propose a new approach to summarizing student course feedback based on the integer linear programming (ILP) framework. Our approach allows different student responses to share co-occurrence statistics and alleviates sparsity issues. Experimental results on a student feedback corpus show that our approach outperforms a range of baselines in terms of both ROUGE scores and human evaluation.

1 Introduction

Instructors love to solicit feedback from students. Rich information from student responses can reveal complex teaching problems, help teachers adjust their teaching strategies, and create more effective teaching and learning experiences. Text-based student feedback is often manually analyzed by teaching evaluation centers in a costly manner. Albeit useful, the approach does not scale well. It is therefore desirable to automatically summarize the student feedback produced in online and offline environments. In this work, student responses are collected from an introductory materials science and engineering course, taught in a classroom setting. Students are presented with prompts after each lecture and asked to provide feedback. These prompts solicit “reflective feedback” (Boud et al., 2013) from the students. An example is presented in Table 1.

Referential Summary

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Describe what you found most interesting in today’s class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Responses</td>
<td></td>
</tr>
<tr>
<td>S1: The main topics of this course seem interesting and correspond with my major (Chemical Engineering)</td>
<td></td>
</tr>
<tr>
<td>S2: I found the group activity most interesting</td>
<td></td>
</tr>
<tr>
<td>S3: Process that make materials</td>
<td></td>
</tr>
<tr>
<td>S4: I found the properties of bike elements to be most interesting</td>
<td></td>
</tr>
<tr>
<td>S5: How materials are manufactured</td>
<td></td>
</tr>
<tr>
<td>S6: Finding out what we will learn in this class was interesting to me</td>
<td></td>
</tr>
<tr>
<td>S7: The activity with the bicycle parts</td>
<td></td>
</tr>
<tr>
<td>S8: “part of a bike” activity</td>
<td></td>
</tr>
<tr>
<td>... (rest omitted, 53 responses in total.)</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Example student responses and a reference summary created by the teaching assistant. ‘S1’–‘S8’ are student IDs.

In this work, we aim to summarize the student responses. This is formulated as an extractive summarization task, where a set of representative sentences are extracted from student responses to form a textual summary. One of the challenges of summarizing student feedback is its lexical variety. For example, in Table 1, “bike elements” (S4) and “bicycle parts” (S7), “the main topics of this course” (S1) and “what we will learn in this class” (S6) are different expressions that communicate the same or similar meanings. In fact, we observe 97% of the bigrams appear only once or twice in the student feedback corpus (§4), whereas in a typical news dataset (DUC 2004), it is about 80%. To tackle this challenge, we propose a new approach to summarizing
student feedback, which extends the standard ILP framework by approximating the co-occurrence matrix using a low-rank alternative. The resulting system allows sentences authored by different students to share co-occurrence statistics. For example, “The activity with the bicycle parts” (S7) will be allowed to partially contain “bike elements” (S4) although the latter did not appear in the sentence. Experiments show that our approach produces better results on the student feedback summarization task in terms of both ROUGE scores and human evaluation.

2 ILP Formulation

Let \(\mathcal{D} \) be a set of student responses that consist of \(M \) sentences in total. Let \(y_j \in \{0, 1\}, j = \{1, \cdots, M\} \) indicate if a sentence \(j \) is selected (\(y_j = 1 \)) or not (\(y_j = 0 \)) in the summary. Similarly, let \(N \) be the number of unique concepts in \(\mathcal{D} \). \(z_i \in \{0, 1\}, i = \{1, \cdots, N\} \) indicate the appearance of concepts in the summary. Each concept \(i \) is assigned a weight of \(w_i \), often measured by the number of sentences or documents that contain the concept. The ILP-based summarization approach (Gillick and Favre, 2009) searches for an optimal assignment to the sentence and concept variables so that the selected summary sentences maximize coverage of important concepts.

The relationship between concepts and sentences is captured by a co-occurrence matrix \(A \in \mathbb{R}^{N \times M} \), where \(A_{ij} = 1 \) indicates the \(i \)-th concept appears in the \(j \)-th sentence, and \(A_{ij} = 0 \) otherwise. In the literature, bigrams are frequently used as a surrogate for concepts (Gillick et al., 2008; Berg-Kirkpatrick et al., 2011). We follow the convention and use ‘concept’ and ‘bigram’ interchangeably in the paper.

\[
\max_{y,z} \sum_{i=1}^{N} w_i z_i \quad (1)
\]

s.t. \[\sum_{j=1}^{M} A_{ij} y_j \geq z_i \quad (2) \]
\[A_{ij} y_j \leq z_i \quad (3) \]
\[\sum_{j=1}^{M} y_j \leq L \quad (4) \]
\[y_j \in \{0, 1\}, z_i \in \{0, 1\} \quad (5) \]

Two sets of linear constraints are specified to ensure the ILP validity: (1) a concept is selected if and only if at least one sentence carrying it has been selected (Eq. 2), and (2) all concepts in a sentence will be selected if that sentence is selected (Eq. 3). Finally, the selected summary sentences are allowed to contain a total of \(L \) words or less (Eq. 4).

3 Our Approach

Because of the lexical diversity in student responses, we suspect the co-occurrence matrix \(A \) may not establish a faithful correspondence between sentences and concepts. A concept may be conveyed using multiple bigram expressions; however, the current co-occurrence matrix only captures a binary relationship between sentences and bigrams. For example, we ought to give partial credit to “bicycle parts” (S7) given that a similar expression “bike elements” (S4) appears in the sentence. Domain-specific synonyms may be captured as well. For example, the sentence “I tried to follow along but I couldn’t grasp the concepts” is expected to partially contain the concept “understand the”, although the latter did not appear in the sentence.

The existing matrix \(A \) is highly sparse. Only 2.7% of the entries are non-zero in our dataset (§4). We therefore propose to impute the co-occurrence matrix by filling in missing values. This is accomplished by approximating the original co-occurrence matrix using a low-rank matrix. The low-rankness encourages similar concepts to be shared across sentences. The data imputation process makes two notable changes to the existing ILP framework. First, it extends the domain of \(A_{ij} \) from binary to a continuous scale \([0, 1]\) (Eq. 2), which offers a better sentence-level semantic representation. The binary concept variables (\(z_i \)) are also relaxed to continuous domain \([0, 1]\) (Eq. 5), which allows the concepts to be “partially” included in the summary.

Concretely, given the co-occurrence matrix \(A \in \mathbb{R}^{N \times M} \), we aim to find a low-rank matrix \(B \in \mathbb{R}^{N \times M} \) whose values are close to \(A \) at the observed positions. Our objective function is

\[
\min_{B \in \mathbb{R}^{N \times M}} \frac{1}{2} \sum_{(i,j) \in \Omega} (A_{ij} - B_{ij})^2 + \lambda \|B\|_*, \quad (6)
\]

where \(\Omega \) represents the set of observed value positions. \(\|B\|_* \) denotes the trace norm of \(B \), i.e., \(\|B\|_* = \sum_{i=1}^{r} \sigma_i \), where \(r \) is the rank of \(B \) and \(\sigma_i \) are the singular values. By defining the following
The reference summaries are created by a teaching assistant. She is allowed to create abstract summaries using her own words in addition to selecting phrases directly from the responses. Because summary annotation is costly and recruiting annotators with proper background is nontrivial, 12 out of the 25 lectures are annotated with reference summaries. There is one gold-standard summary per lecture and question prompt, yielding 36 document-summary pairs. On average, a reference summary contains 30 words, corresponding to 7.9% of the total words in student responses. 43.5% of the bigrams in human summaries appear in the responses.

5 Experiments

Our proposed approach is compared against a range of baselines. They are 1) MEAD (Radev et al., 2004), a centroid-based summarization system that scores sentences based on length, centroid, and position; 2) LEXRANK (Erkan and Radev, 2004), a graph-based summarization approach based on eigenvector centrality; 3) SUMBASIC (Vanderwende et al., 2007), an approach that assumes words occurring frequently in a document cluster have a higher chance of being included in the summary; 4) BASELINE-ILP (Berg-Kirkpatrick et al., 2011), a baseline ILP framework without data imputation.

For the ILP based approaches, we use bigrams as concepts (bigrams consisting of only stopwords are removed and sentence frequency as concept weights. We use all the sentences in 25 lectures to construct the concept-sentence co-occurrence matrix and perform data imputation. It allows us to leverage the co-occurrence statistics both within and across lectures. For the soft-impute algorithm, we perform grid search (on a scale of [0, 5] with step-size 0.5) to tune the hyper-parameter λ. To make the most use of annotated lectures, we split them into three folds. In each one, we tune λ on two folds and test it on the other fold. Finally, we report the averaged results. In all experiments, summary length is set to be 30 words or less, corresponding to the

1This data set is publicly available at http://www.coursemirror.com/download/dataset.
2Bigrams with one stopword are not removed because 1) they are informative ("a bike", "the activity", "how materials"); 2) such bigrams appear in multiple sentences and are thus helpful for matrix imputation.
average number of words in human summaries.

In Table 2, we present summarization results evaluated by ROUGE (Lin, 2004) and human judges. ROUGE is a standard evaluation metric that compares system and reference summaries based on n-gram overlaps. Our proposed approach outperforms all the baselines based on three standard ROUGE metrics.\(^3\) When examining the imputed sentence-concept co-occurrence matrix, we notice some interesting examples that indicate the effectiveness of the proposed approach, shown in Table 3.

Because ROUGE cannot thoroughly capture the semantic similarity between system and reference summaries, we further perform human evaluation. For each lecture and prompt, we present the prompt, a pair of system outputs in a random order, and the human summary to five Amazon turkers. The turkers are asked to indicate their preference for system A or B based on the semantic resemblance to the human summary on a 5-Likert scale (‘Strongly preferred A’, ‘Slightly preferred A’, ‘No preference’, ‘Slightly preferred B’, ‘Strongly preferred B’). They are rewarded $0.08 per task. We use two strategies to control the quality of the human evaluation. First, we require the turkers to have a Human Intelligence Task (HIT) approval rate of 90% or above. Second, we insert some quality checkpoints by asking the turkers to compare two summaries of same text content but different sentence orders. Turkers who did not pass these tests are filtered out. Due to budget constraints, we conduct pairwise comparisons for three systems. The total number of comparisons is 3 system-system pairs \(\times\) 12 lectures \(\times\) 3 prompts \(\times\) 5 turkers = 540 total pairs. We calculate the percentage of “wins” (strong or slight preference) for each system among all comparisons with its counterparts. Results are reported in the last column of Table 2. **OUR APPROACH** is preferred significantly more often than the other two systems\(^4\). Regarding the inter-annotator agreement, we find 74.3% of the individual judgements agree with the majority votes when using a 3-point Likert scale (‘preferred A’, ‘no preference’, ‘preferred B’).

Table 4 presents example system outputs. This offers intuitive understanding to our proposed approach.

\(^3\)F-scores are slightly lower than P/R because of the averaging effect and can be illustrated in one example. Suppose we have P1=0.1, R1=0.4, F1=0.16 and P2=0.4, R2=0.1, F2=0.16. Then the macro-averaged P/R/F-scores are: P=0.25, R=0.25, F=0.16. In this case, the F-score is lower than both P and R.

\(^4\)For the significance test, we convert a preference to a score ranging from -2 to 2 (‘2’ means ‘Strongly preferred’ to a system and ‘-2’ means ‘Strongly preferred’ to the counterpart system), and use a two-tailed paired t-test with \(p < 0.05\) to compare the scores.
6 Related Work

Our previous work (Luo and Litman, 2015) proposes to summarize student responses by extracting phrases rather than sentences in order to meet the need of aggregating and displaying student responses in a mobile application (Luo et al., 2015; Fan et al., 2015). It adopts a clustering paradigm to address the lexical variety issue. In this work, we leverage matrix imputation to solve this problem and summarize student response at a sentence level.

The integer linear programming framework has demonstrated substantial success on summarizing news documents (Gillick et al., 2008; Gillick et al., 2009; Woodsend and Lapata, 2012; Li et al., 2013). Previous studies try to improve this line of work by generating better estimates of concept weights. Galanis et al. (2012) proposed a support vector regression model to estimate bigram frequency in the summary. Berg-Kirkpatrick et al. (2011) explored a supervised approach to learn parameters using a cost-augmentative SVM. Different from the above approaches, we focus on the co-occurrence matrix instead of concept weights, which is another important component of the ILP framework.

Most summarization work focuses on summarizing news documents, as driven by the DUC/TAC conferences. Notable systems include maximal marginal relevance (Carbonell and Goldstein, 1998), submodular functions (Lin and Bilmes, 2010), jointly extract and compress sentences (Zajic et al., 2007), optimize content selection and surface realization (Woodsend and Lapata, 2012), minimize reconstruction error (He et al., 2012), and dual decomposition (Almeida and Martins, 2013). Albeit the encouraging performance of our proposed approach on summarizing student responses, when applied to the DUC 2004 dataset (Hong et al., 2014) and evaluated using ROUGE we observe only comparable or marginal improvement over the ILP baseline. However, this is not surprising since the lexical variety is low (20% of bigrams appear more than twice compared to 3% of bigrams appear more than twice in student responses) and thus less data sparsity, so the DUC data cannot benefit much from imputation.

7 Conclusion

We make the first effort to summarize student feedback using an integer linear programming framework with data imputation. Our approach allows sentences to share co-occurrence statistics and alleviates sparsity issue. Our experiments show that the proposed approach performs competitively against a range of baselines and shows promise for future automation of student feedback analysis.

In the future, we may take advantage of the high quality student responses (Luo and Litman, 2016) and explore helpfulness-guided summarization (Xiong and Litman, 2014) to improve the summarization performance. We will also investigate whether the proposed approach benefits other informal text such as product reviews, social media discussions or spontaneous speech conversations, in which we expect the same sparsity issue occurs and the language expression is diverse.

Acknowledgments

This research is supported by an internal grant from the Learning Research and Development Center at the University of Pittsburgh. We thank Muhsin Menekse for providing the data set. We thank Jingtao Wang, Fan Zhang, Huy Nguyen and Zahra Rahimi for valuable suggestions about the proposed summarization algorithm. We also thank anonymous reviewers for insightful comments and suggestions.
References

