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Abstract

The quality of student reflective responses has been shown
to positively correlate with student learning gains. However,
providing feedback on reflection quality to students is typi-
cally expensive and delayed. In this work, we automatically
predict the quality of student reflective responses using natu-
ral language processing. With the long-term goal of produc-
ing informative feedback for students, we derive a new set of
predictive features from a human quality-coding rubric. An
off-line intrinsic evaluation demonstrates the effectiveness of
the proposed features in predicting reflection quality, partic-
ularly when training and testing on different lectures, topics,
and courses. An extrinsic evaluation shows that both expert-
coded quality ratings and quality predictions based on the
new features positively correlate with student learning gain.

Introduction

It is widely recognized that while feedback plays an im-
portant role in promoting learning and motivating stu-
dents (Case 2007), students often do not receive such feed-
back (Ferguson 2011). This is becoming more severe in large
courses (e.g., introductory STEM, MOOCs).

In this work, we propose applying natural language pro-
cessing (NLP) techniques to predict the quality of student
responses to reflection prompts, with the long term goal of
providing automatic feedback on reflective response qual-
ity. Reflection prompts (Boud et al. 2013) have been demon-
strated to be effective in improving instructors’ teaching
quality and students’ learning outcomes (Van den Boom et
al. 2004; Menekse et al. 2011). Furthermore, the quality of
student reflective responses has been shown to positively
correlate with student learning gains (Menekse et al. 2011).

We have already built a mobile application1, to support
reflective response collection (Fan et al. 2015) and summa-
rization (Luo et al. 2015; Luo and Litman 2015). The moti-
vation of this work is to provide feedback on the collected
responses in the application. The concept of automatic feed-
back is illustrated by the partial mockup in Fig. 1. On the left
side of the figure (the current implementation), a student has
typed “everything was confusing” in response to the reflec-
tion prompt “Describe what was confusing or needed more

Copyright c© 2016, Association for the Advancement of Artificial
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1Freely available at www.coursemirror.com/download/app

detail” about today’s lecture. On the right side (the mockup),
after using the work reported in this paper to determine that
the student’s response is of low-quality, the system makes
a suggestion for improvement by popping-up, “Could you
provide more details?”

Figure 1: Proposed feedback (“Could you provide more de-
tails?”) to a low-quality student reflective response.

With this long-term goal of producing informative feed-
back for students, in this paper we formalize quality predic-
tion as a classification problem and design a new set of fea-
tures derived from a quality coding rubric provided by do-
main experts. The contributions of our work are as follows.
1) We propose a new application of NLP techniques moti-
vated by providing automatic feedback on student reflective
responses. 2) We develop a new set of features for predicting
reflective response quality. Because the proposed features
are derived from a human-coding rubric, they are meaning-
ful and interpretable, which should make them useful for
producing informative feedback. 3) An intrinsic evaluation
on off-line data shows that models which predict reflective
response quality with the new features outperform baseline
models, especially when training and testing on data from
different lectures, topics, and courses. 4) An extrinsic eval-
uation demonstrates the utility of our features, by showing
that correlations between reflective response quality and stu-
dent learning gain are similar whether using expert quality
annotations or automatic predictions.

Related Work

Automatic assessment of student responses is categorized
into summative (for providing grades) and formative assess-
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ment (for providing feedback) (Sadler 1989). Our research
is motivated by the latter as our long-term goal is to pro-
vide interactive feedback to students so as to allow self-
regulated learning. Prior research using NLP to trigger in-
teractive feedback after quality assessment in other educa-
tional contexts has inspired us. For example, Rahimi et al.
(2014) proposed a set of interpretable essay-scoring features
derived from a grading rubric for response to text assess-
ment, while Nguyen, Xiong, and Litman (2014) developed
a system to provide instant feedback during web-based peer
review whenever a student’s review was predicted to be of
low quality. Similar to our work, one of the functions of
SEEDING (Paiva et al. 2014) is to collect student responses
and provide a real-time analysis. However, SEEDING was
designed to help instructors quickly browse and review re-
sponses, while our work aims to deliver immediate feedback
to individual students automatically.

Automatic prediction of reflective response quality is
somewhat similar to automatic essay scoring (Burstein
2003; Attali et al. 2006; Lee, Gentile, and Kantor 2008;
Balfour 2013). Both are used to assign numeric scores to
textual responses. However, reflective responses are slightly
different from essays. First, reflective response length and
granularity range from single words to several sentences.
Second, reflective responses highly refer to content included
in external information sources such as textbooks, slides,
and other course materials. Finally, student reflective re-
sponses are scored from a different perspective than most
essays: e.g. specificity instead of traits such as grammar, co-
herence, organization etc.

Automatic short answer grading has also received a lot of
attention. It is the task of assessing short responses to objec-
tive questions (Burrows, Gurevych, and Stein 2015) and typ-
ically aims to search for alternatives of provided “right” an-
swers (Hirschman et al. 2000). In contrast, student responses
are subjective and there is no correct answer.

Task Description and Data
To collect the reflective response corpus described in de-
tail below, students were asked to respond to a carefully de-
signed prompt called “muddiest point,” “describe what was
confusing or needed more detail,” at the end of each lecture.
The prompt was the same across lectures, but the student
responses were different because they were based on indi-
vidual course content.

After collection, human experts evaluated the reflec-
tive responses based on relevance to lecture content and
specificity of explanation. The operational scoring rubric
(Menekse et al. 2011) is illustrated in Fig. 2.

The coding rubric followed an ordinal scale of 0-3 to indi-
cate the degree of quality of reflections. Examples of coded
reflections from the dataset described below are shown in
Table 2. 1) A score of “0” was given if the student did not
write anything as a muddiest point, or if the student’s re-
flection was completely irrelevant to any class topic, discus-
sion, and/or assignment. For example, “Elephant stampede
in a rainstorm” and “Who will ever tell my random thoughts
to once in graduate your class” are not related to any class
topic. 2) A score of “1” was given to vague reflections, in

Figure 2: Quality coding rubric

which the student addressed course content, but simply re-
stated one of the broad concepts or titles from a slide. This
category also included statements referring to class organi-
zation or any course assignment. For example, “size of print
and colors are hard to read” is talking about the handout
and “Elastic module” is one of the slide titles. 3) A score
of “2” was given to general reflections which were neither
deep/detailed statements nor simple repetitions of slide ti-
tles. 4) A score of “3” in our coding schema referred to
deep/specific reflection statements. An example of a reflec-
tion that was scored in this category was “computing length,
edges and atomic packing factor for FCC.” This reflection
was very specific about the student’s area of concern.

The quality of students’ reflections is considered to be in-
dicative of the degree to which the reflections were relatively
active or constructive according to Chi’s framework (Chi
2009), which in turn correlates to learning gain (Menekse
et al. 2011) in the data described below.

Course Student # Lecture # Response #
Spring 2010 27 4 108
Spring 2011 53 23 1149

Table 1: Statistics for the data sets.

The data for our study are student responses collected
from two undergraduate courses. Both are introductory ma-
terials science and engineering classes, but taught in two
different semesters: Spring 2010 and Spring 2011. Addi-
tional external resources are also available, including the
lecture slides and textbook (Callister and Rethwisch 2010).
Data are first preprocessed to convert noisy responses like
‘Blank’,‘ ’, ‘N/A’, ‘?’ to blank responses based on a man-
ual examination of Spring 2011 data. 2 The statistics of the
data are shown in Table 1. The length of the responses varies
a lot, as shown in Table 3. Based on a sample of 100 re-
sponses from Spring 2011, Kappa for the rubric (between

2This affected 72 and 12 responses for Spring 2011 and Spring
2010 respectively.
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score=0

‘’
‘Elephant stampede in a rainstorm’
‘Not sure if I understand’
‘Made some kind of sense’
‘Who will ever tell my random thoughts to once

in graduate your class’

score=1

‘size of print and colors are hard to read’
‘Elastic module’
‘I tried to follow along but I couldn’t grasp the

concepts. Plus it’s hard to see what’s written on
the white board when the projector shines on it’

‘I found a little confusing properties related to
bond strength’

score=2 ‘The repulsive/ attraction charts’
‘I didn’t understand the attractive and repulsive

force graphs from the third slide’

score=3

‘Part III on worksheet in class, comparing metals. I
was confused about why each metal was selected’

‘computing length, edges and atomic packing
factor for FCC’

‘The working definition of elasticity is not very
clear. I think I’m imagining resilience instead’

Table 2: Examples of student responses to the reflection
prompt “Describe what was confusing or needed more de-
tail.” The left column shows the quality scores given by do-
main experts. The right column shows student responses be-
longing to each quality category.

single annotator we use as gold standard and two additional
independent annotators) is 0.73.

The Spring 2010 data were analyzed in the study
(Menekse et al. 2011). For this study, students took a pre-test
before and a post-test after the 4 lectures. After each lecture,
students submitted their responses. There are 27 students
who regularly submitted their responses and also finished
the pre-test and post-test. The quality scores were annotated
by domain experts after all the responses were collected ac-
cording to the rubric (Fig. 2). Thus, each student received 4
quality scores (each for a lecture), ranging from 0 to 3. A
positive correlation was found between the total sum of the
4 scores and the learning gain calculated from the pre-test
and post-test, r = 0.473, p = 0.013.

Features

As discussed above, the long-term goal of our research in
predicting the quality of student responses is to provide in-
teractive feedback that suggests to students how to write bet-
ter quality responses. Therefore, we want to design a set of
interpretable features that capture the domain knowledge en-
coded in the coding rubric. To operationalize key decision
points in Fig. 2, we extract the following five types of fea-
tures from student responses, corresponding to each of the
key decision points.

Existence (E) is a binary indicator of whether a statement
has any words.

Content (C) is defined to capture whether a statement is
about course content. We use an exhaustive list of words
that appear in the rubric, including lecture, slide, activity,

Course score N min max mean std

Spring 2010

0 19 0 9 0.6 2.0
1 20 1 23 8.0 6.6
2 33 1 11 3.5 2.2
3 36 2 23 7.1 4.4

Spring 2011

0 447 0 24 1.1 3.4
1 225 1 36 6.5 6.1
2 250 2 30 7.9 4.9
3 227 3 44 13.1 7.1

Table 3: Quality score distribution. ‘N’ is the number of re-
sponses; ‘min’, ‘max’, ‘mean’, and ‘std’ show the minimal,
maximal, mean, and standard deviation of the number of
words in student responses for each score.

and discussion. If any of these keywords (stemmed (Porter
1997)) is present in a statement, the feature is set to True.

Organization and Assignment (OA) captures whether a
statement refers to the organization of class or any course
assignments. Similar to C feature, we include keywords or-
ganization, assignment, homework, HW, exam, and exami-
nation to compute this feature.

Specific (S) features are extracted to capture the node
“does reflection include any detailed and specific state-
ments”. High-quality response includes specific examples,
reasons or an explanation of why some points are con-
fusing. Most existing work (Caraballo and Charniak 1999;
Ryu and Choi 2006; Reiter and Frank 2010) focuses on
specificity at the term level, which cannot meet our needs.
Recently, a freely available tool called Speciteller (Li and
Nenkova 2015) was released, which judges whether a sen-
tence is general or specific by including neural network word
embedding and word cluster features. It computes how much
detail is present in a sentence by giving a rating ranging from
0 (most general) to 1 (most detailed). We use this tool to ex-
tract two features derived from a response’s specific rating:
the raw rating and a binary decision using the threshold 0.5.

Title (T) features are used to capture “is reflection simply
an exact repetition of a title in slides?” We first extract all
the titles from the lecture slides automatically. Next, we ex-
tract three features in this category: 1) whether a statement
repeats part of a title or its entirety; 2) number of title words
in a statement; 3) ratio of title words. The title words are
defined as words in the titles but not stop words.

The features above are inspired by the rubric (Fig. 2),
and thus named as rubric (R) features. In addition to these
features, we also extracted Word Count (WC) and Lexi-
con (L) unigram as features because they are widely used
and effective in automatic text scoring (Rahimi et al. 2014;
Attali et al. 2006; Lee, Gentile, and Kantor 2008), text classi-
fication (Joachims 1998; Rousseau, Kiagias, and Vazirgian-
nis 2015), etc. In our problem, longer statements tend to
have higher quality scores (Table 3). These two types of fea-
tures are named as baseline (B) features.
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Experiments

To test how our model performs with the proposed features
in different situations, we configure a series of experiments
to test the validity of the following hypotheses.

• H1: Models with rubric features will outperform or at
least perform equally well at predicting reflection qual-
ity, compared to models using only baseline features.

• H2: Models with rubric features will transfer better (i.e.
have better predictive utility when trained and tested on
different lectures, topics, and different courses) compared
to models using only baseline features.

• H3: Relationships between reflection quality and student
learning gain will be the same whether using human or
automatically-predicted quality scores.

To test H1, we use Spring 2011 data and perform a 10-
fold cross-validation (CV) since this data set is larger than
Spring 2010; for H2 and H3, we use both Spring 2010 and
Spring 2011 data. Among the three hypotheses, H1 and H2
are evaluated intrinsically and the performance measures we
report are accuracy, Kappa, and Quadratic Weighted Kappa
(QWKappa). For the classifier, we used SVM, with default
parameters implemented in Weka. We include Kappa for
evaluation since the distribution of quality scores is not even
and Kappa measures how the classifier agrees with humans
after correcting for chance. Since our quality scores are or-
dered and incorrect predictions have different costs (e.g.,
predicting ‘3’ as ‘1’ is more severe than predicting ‘3’ as
‘2’), we also report QWKappa. H3 is evaluated extrinsically
by performing an end-to-end evaluation to test whether we
can observe the original correlation between response qual-
ity and learning gain when using automatically predicted
(rather than manually annotated) scores.

H1

We first examine the hypothesis that adding the rubric-based
features will outperform or at least perform equally well as
the baseline (H1). It is based on the observation that al-
though the baseline features (WC and Lexicon) captured
some information (not exactly the same) of the Existence
(E), Content (C), Organization and Assignment (OA) fea-
tures, or even Specific (S) to some extent, it is hard to cap-
ture the title information. Therefore, we hypothesize the
rubric features provide more information about the student
response and thus yield better performance.

In this experiment, we do 10-fold cross validation and the
results are shown in Table 4. The rubric features3 perform
significantly worse than the baseline in terms of accuracy

3Among responses coded as ‘0’, 16 of them in Spring 2010 and
358 in Spring 2011 have a word count of 0 (the left path from the
root of Fig. 2). We thus also explored a hybrid approach where
machine-learning was done without the feature E and the empty
responses were removed from the training data. During testing, if
E was True, the score was assigned to be ‘0’ in a rule-based man-
ner, while in all other cases the score was predicted by the learned
model. For all hypotheses, this hybrid approach yielded similar re-
sults as the approach described in the text (using all Rubric features
and all data for training) so will not be described further.

Feature Accuracy Kappa QWKappa
Baseline (B) .693 .567 .794
B+E .743* .646* .846*
B+C .697* .573* .793
B+OA .693 .567 .794
B+S .708 .591 .790
B+T .725* .616* .819*
Rubric (R) .645* .503* .759*
ALL (B+R) .755* .661* .859*

Table 4: H1. 10-fold cross-validation within Spring 2011.
Baseline includes WC and L features; Rubric features are
E+C+OA+S+T; All uses both baseline and rubric features.
‘*’ means significantly different from Baseline (p < 0.05).

and Kappa. However, adding the rubric features together
with the baseline features yields significantly better perfor-
mance on all three metrics.

Therefore, the hypothesis H1 holds. To judge which types
of features help the baseline, we add each type of the rubric
features to the baseline. The biggest improvement comes
from the Existence (E) feature due to the fact that a large
number of responses (31%) have a length of 0. A significant
improvement can also be obtained by adding the Title (T)
features. It makes sense because the WC and lexical features
cannot capture whether a response is an exact repetition of
a slide title. In addition, these features are complementary
with each other since the model with All features are sig-
nificantly better than all other combinations of features in
Table 4, with the only exception that the improvement over
B+E is not statistically significant for accuracy and Kappa.

H2

Although WC and Lexicon features are widely used in text-
based scoring systems, they are criticized a lot due to poor
generality. In contrast, the rubric features are derived only
from the rubric decision tree and do not rely on ad-hoc
words. Therefore, we hypothesize that the rubric features
transfer better to different lectures, topics, and courses (H2),
which can be divided into three sub-hypotheses.

First, the rubric features transfer better to different lec-
tures (H2.a). In the experiment to examine H1, we used 10-
fold cross-validation, that is, all the responses are randomly
divided into 10 folds. 9 of them are used to train the model
and the remaining one is used to test it. However, this setting
might favor the baseline with the lexical features because
students may use the same words in the same lecture. This
is indeed true and that is one of the reasons why the baseline
did well in the H1 setting. For example, in one lecture, 16 out
of 53 students used the words “phrase diagram” because that
is the most frequent confusing point in that lecture. There-
fore, we perform leave-one-lecture-out evaluation (in total,
there are 23 lectures) so that responses in the training and
testing come from different lectures. The results are shown
in Table 5. As we can see, the model of rubric features is
comparable as the baseline now (they are not statistically
significant different any more). At the same time, the state-
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ment that adding the rubric features improves the baseline
significantly still holds under the cross-lecture setting.

Second, the rubric features transfer better to different top-
ics (H2.b). Although the leave-one-lecture-out setting elim-
inates the lexicon overlap to some extent, the responses in
different lectures still might be the same because differ-
ent lectures may cover similar topics. For example, lectures
4, 5, 6, and 7 are all about “the structure of crystalline
solids” and therefore the term “unit cells” often appears
in students’ responses in all four lectures. To solve this is-
sue, we group the 23 lectures into 8 topics, and each topic
corresponds to one of the chapters of the textbook (Callis-
ter and Rethwisch 2010). Then, we perform the leave-one-
topic-out evaluation, as shown in Table 5. The model with
rubric features performs better than the baseline in terms
of Kappa and QWKappa (although not statistically signif-
icant). Again, adding the rubric features improves the base-
line significantly. Note that, the relative gain4 by adding
rubric features over the baseline is larger (12% vs. 19% for
QWKappa) than H2.a.

Third, the rubric features transfer better to different
courses (H2.c). In practice, we will deploy our model to dif-
ferent courses, and thus it is better to evaluate it on different
courses beyond topics. Therefore, we train all the models
with the data Spring 2011 and test them with Spring 2010 to
simulate this situation. We did not perform the experiment
vice versa, because the Spring 2010 data is much smaller.
Strictly speaking, it is not an ideal evaluation data set be-
cause the Spring 2010 and Spring 2011 courses were taught
by the same instructor using the same textbook. However,
they were in different semesters and thus have different stu-
dents. This is the best data we can have so far. We will ad-
dress this issue in the future when we collect and annotate
more data for other courses. The results are shown in Ta-
ble 5. The model with only rubric features performs better
than the baseline as does adding the rubric features to the
baseline5. Interestingly, the rubric features alone now yield
the best performance in terms of accuracy and Kappa.

To sum up, in general, the new rubric-based features
transfer better to different lectures, topics, and courses than
the baseline features. More importantly, it shows relatively
stronger performance than the baseline for the setting from
different lectures to different courses.

H3

Another interesting question is whether relationships be-
tween reflection quality and student learning gain will be
the same using human and automatically-predicted quality
scores. In this experiment we thus repeat the analysis in
Menekse et al. (2011) described above, but now using au-
tomatically predicted scores instead of human-coded scores.
The model is trained under the same setting used in H2.c.
Then we do the Pearson correlation test between the total
sum of predicted quality scores and the learning gain. The
results are shown in Table 6. The model with all the fea-

4If the performances of two models are X and Y, the relative
gain of Y over X is defined as (Y −X)/X .

5No significance tests since it is a held-out experiment.

Feature Accuracy Kappa QWKappa
H1 Baseline .693 .567 .794
10-fold CV Rubric .645* .503* .759*

ALL .755* .661* .859*
H2.a Baseline .657 .499 .745
CrossLecture Rubric .645 .494 .741

All .731* .622* .834*

H2.b Baseline .634 .463 .699
CrossTopic Rubric .630 .473 .730

All .729* .621* .835*

H2.c Baseline .315 .119 .361
CrossCourse Rubric .472 .292 .439

All .352 .151 .515

Table 5: H2. H2.a and H2.b use Spring 2011 only, including
23 lectures in H2.a and 8 topics in H2.b. For H2.c, Spring
2011 is the training set and Spring 2010 is the testing set.
‘*’ means significantly different from Baseline (p < 0.05).

Pearson Correlation p
Human coded 0.473* 0.013
Baseline 0.341 0.082
Rubric 0.294 0.137
All 0.394* 0.042

Table 6: H3. ‘*’ means the correlation is statistically signifi-
cant (p < 0.05).

tures (which yielded the best QWkappa for H2.c) is the only
prediction model that yields a statistically significant posi-
tive correlation. Therefore, H3 partially holds. The predicted
quality of student responses still shows a positive learning
gain using the model with all the features. It also suggests
that in a real application, it is better to include both the base-
line features and the rubric features.

Conclusion and Future Work

In this work, we presented an approach to automatically pre-
dict the quality of a student reflective response that was mo-
tivated by a future goal of providing automatic feedback to
students. In particular, we designed a new set of features de-
rived from a quality coding rubric developed by domain ex-
perts, which we used in conjunction with baseline NLP fea-
tures. Both intrinsic and extrinsic evaluations demonstrate
the effectiveness of our approach.

In the future, we plan to try better ways to operational-
ize the rubric, for example, training our own model for the
specificity decision point, using semi-supervised approach
to extract the keyword features, and making use of other
external resources such as textbooks. With the deployment
of our mobile application, we are able to collect and anno-
tate more data and revisit the third hypothesis with new and
different courses. In addition, by incorporating our predic-
tion model into our mobile application and using its output
to generate feedback, we can see whether providing auto-
matic feedback improves the quality of reflection or not, and
whether students gain more with such feedback.
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