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Abstract—The behavior of a software system often depends
on how that system is configured. Small configuration errors
can lead to hard-to-diagnose undesired behaviors. We present
a technique (and its tool implementation, called ConfDiagnoser)
to identify the root cause of a configuration error — a single
configuration option that can be changed to produce desired
behavior. Our technique uses static analysis, dynamic profiling,
and statistical analysis to link the undesired behavior to specific
configuration options. It differs from existing approaches in two
key aspects: it does not require users to provide a testing oracle
(to check whether the software functions correctly) and thus is
fully automated; and it can diagnose both crashing and non-
crashing errors.

We evaluated ConfDiagnoser on 5 non-crashing configuration
errors and 9 crashing configuration errors from 5 configurable
software systems written in Java. On average, the root cause was
ConfDiagnoser’s fifth-ranked suggestion; in 10 out of 14 errors,
the root cause was one of the top 3 suggestions; and more than
half of the time, the root cause was the first suggestion.

I. INTRODUCTION

Many software applications support configuration options
that allow users to customize their behavior. This flexibility has
a cost: when something goes wrong, diagnosing a configuration
error can be both time-consuming and frustrating. Technical
support contributes 17% of the total cost of ownership of
today’s software, and troubleshooting misconfigurations is a
large part of technical support [11].

Software misconfigurations may lead to incorrect output (i.e.,
non-crashing errors) or to unexpected termination (i.e., crashing
errors). Even when an application outputs an error message,
it is often cryptic or misleading [2], [8], [30], [31]. Users may
not even think of configuration as a cause of their problem.

A. Motivating Example

We next describe a real scenario in which we used Conf-
Diagnoser to solve a configuration problem. We received a “bug
report” against the Randoop automated test generation tool [16],
from a testing expert who had been using Randoop for quite
a while. The “bug report” indicated that Randoop terminated
normally but failed to generate tests for the NanoXML [15]
program.

Although the reported problem is deterministic and fully
reproducible, it is a silent, non-crashing failure and is challeng-
ing to diagnose. Differing from a crashing error, Randoop did
not exhibit a crashing point, dump a stack trace, output an error
message, or indicate suspicious program variables that may

Suspicious configuration option: maxsize

It affects the behavior of predicate:
"newSequence.size() > GenInputsAbstract.maxsize"
(line 312, class: randoop.ForwardGenerator)

This predicate evaluates to true:
3.3% of the time in normal runs (3830 observations)
32.5% of the time in the undesired run (2898 observations)

Fig. 1. The top-ranked configuration option in ConfDiagnoser’s error report
for the motivating example in Section I-A.

have incorrect values. Lacking such information makes many
techniques such as dynamic slicing [36], dynamic information
flow tracking [2], and failure trace analysis [18] inapplicable.
In addition, for this scenario, the person who reported the
bug had already minimized the bug report: if any part of the
configuration or input is removed, Randoop either crashes or no
longer exhibits this error. This further makes search-based fault
isolation techniques such as delta debugging [32] ineffective.

In fact, this bug report does not reveal a real bug in the
Randoop code. Its root cause is that the user failed to set one
configuration option. Despite the simplicity of the solution,
to the best of our knowledge, no previous configuration error
diagnosis technique [1], [2], [18], [25], [28], [33], [35] can be
directly applied.

Our technique (and its tool implementation ConfDiagnoser)
can diagnose and correct this problem. We first reproduced the
error in a ConfDiagnoser-instrumented Randoop version, then
ConfDiagnoser diagnosed the error’s root cause by analyzing
the recorded execution profile. ConfDiagnoser produced a
report (Figure 1) in the form of an ordered list of suspicious
configuration options that should be inspected. The error
report in Figure 1 suggests that a configuration option named
maxsize is the most likely one. The report also provides
relevant information to explain why: a program predicate
affected by maxsize behaves dramatically differently between
the recorded undesired execution and the correct executions
found in ConfDiagnoser’s database.

Figure 2 shows the relevant code snippet in Randoop. When
Randoop generates a new test (line 100, in the form of a method-
call sequence), Randoop compares its length with maxsize

(default value: 100). If the generated sequence’s length exceeds
this pre-defined limit, Randoop discards it to avoid length ex-
plosion in further test generation. Although maxsize’s default
value was carefully chosen by the Randoop developers and
works well for many programs (including those used to test



In class: randoop.main.GenInputsAbstract
//The maxsize configuration option. Default value: 100.

157. public static int maxsize = readFromCommandLine();

In class: randoop.ForwardGenerator
99. public ExecutableSequence step() {
100. ExecutableSequence eSeq = createNewUniqueSequence();
101. AbstractGenerator.currSeq = eSeq.sequence;
102. eSeq.execute(executionVisitor);
103. processSequence(eSeq);
104. if (eSeq.sequence.hasActiveFlags()) {
105. componentManager.addGeneratedSequence(eSeq.sequence);
106. }
107. return eSeq;
108. }

310. private ExecutableSequence createNewUniqueSequence() {
311. Sequence newSequence = ...; //create a sequence
312. if (newSequence.size() > GenInputsAbstract.maxsize) {
313. return null;
314. }
315. if (this.allSequences.contains(newSequence)) {
316. return null;
317. }
318. return new ExecutableSequence(newSequence);
319. }

Fig. 2. Simplified code excerpt from Randoop [16] corresponding to the
configuration problem reported in Figure 1.

Randoop during its development), the generated sequences for
NanoXML are much longer than usual and using maxsize’s
default value results in 32.5% of the generated sequences be-
ing discarded (including sequences that the user wishes to
retain). ConfDiagnoser captures such abnormal behavior from
Randoop’s silent failure, pinpoints the maxsize option, and
suggests the user to change its value. The problem is resolved if
the user changes maxsize to a larger value, for example 1000.

B. Diagnosing Configuration Errors

Correcting a configuration error can be divided into two
separate tasks: identifying which specific configuration option
is responsible for the unexpected behavior, and determining a
better value for the configuration option. This paper addresses
the former task: finding the root cause of a configuration error.

Our technique is designed to be used by system administra-
tors and end-users when they encounter an error that they do
not know how to fix. It uses three steps to link the undesired
behavior to specific root cause configuration options:
• Configuration Propagation Analysis. For each configura-

tion option, ConfDiagnoser uses a lightweight dependence
analysis, called thin slicing [20], to statically identify the
predicates it affects in the source code.

• Configuration Behavior Profiling. ConfDiagnoser selec-
tively instruments the program-to-diagnose so that it records
the run-time behaviors of affected predicates in an execution
profile. When the user encounters a suspected configuration
error, the user reproduces the error using the instrumented
version of the program.

• Configuration Deviation Analysis. ConfDiagnoser selects,
from a pre-built database, correct execution profiles that
are as similar as possible to the undesired one. Then, it
identifies the predicates whose dynamic behaviors deviate
the most between correct and undesired executions. The
behavioral differences in the recorded predicates provide
evidence for what predicates in a program might be be-

having abnormally and why. For each deviated predicate,
ConfDiagnoser further identifies its affecting configuration
options as the likely root causes. Finally, it outputs a ranked
list of suspicious configuration options and explanations.

An important component in ConfDiagnoser is the pre-built
database, which contains profiles from known correct execu-
tions. We envision that the software developers build this
database at release time. The database can be further enriched
by software users as more correct executions are accumulated.
In our experiments (Section IV), we built a database of 6–16
execution profiles by running examples from software user man-
uals, FAQs, discussion mailing list, forum posts, and published
papers. We found that even such a small database worked
remarkably well for error diagnosis.

Compared to previous approaches [2], [18], [25], [28], [32],
[36], ConfDiagnoser has several notable features:
• It is fully automated. ConfDiagnoser does not require a

user to specify when, why, or how the program fails. This
is different than many well-known automated debugging
techniques such as delta debugging [32], information flow
analysis [2], and dynamic slicing [36]. Our technique also
provides an explanation of why a configuration option is
suspicious.

• It can diagnose both non-crashing and crashing errors.
Most previous techniques [2], [18], [21], [28] focus exclu-
sively on configuration errors that cause a crash, an error
message, or a stack trace. By contrast, ConfDiagnoser di-
agnoses configuration problems that manifest themselves as
either visible or silent failures.

• It requires no OS-level support. Our technique requires
no alterations to the JVM or standard library. This dis-
tinguishes our work from competing techniques such as
OS-level configuration error troubleshooting [21], [28].

C. Evaluation

We evaluated ConfDiagnoser on 14 real configuration errors
(9 crashing errors and 5 non-crashing errors) from 5 projects.
On average, ConfDiagnoser’s 5th report was the root cause; in
10 out of 14 cases, the root cause was ConfDiagnoser’s top
3 reports; and in over half of all cases, the root cause was
ConfDiagnoser’s first report. Assuming the database of correct
execution profiles already exists, ConfDiagnoser takes less than
4 minutes on average to diagnose one error. ConfDiagnoser’s
accuracy and speed make it an attractive alternative to manual
debugging.

We compared ConfDiagnoser to a previous technique, called
ConfAnalyzer [18], which uses dynamic information flow anal-
ysis to reason about the root cause of a configuration error.
ConfDiagnoser produced better results for non-crashing errors
and similar results for crashing errors.

We also compared ConfDiagnoser to two techniques leverag-
ing existing fault localization techniques [10], [14] to diagnose
configuration errors. ConfDiagnoser substantially outperformed
both of them.

Finally, we evaluated two internal design choices of Conf-
Diagnoser. First, we show that using thin slicing [20] to
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Fig. 3. The workflow of our configuration error diagnosis technique. “Propagation Analysis” is described in Section II-B. The “Instrument” and “Run”
components correspond to the Configuration Behavior Profiling step in Section II-C. “Deviation Analysis” is described in Section II-D.

compute the affected predicates yielded more accurate diagnosis
than using full slicing [7]. Second, we show that varying the
execution profile selection strategy can result in substantially
different results. The similarity-based selection strategy used
in ConfDiagnoser outperformed the other two strategies.

D. Contributions

This paper makes the following contributions:
• Technique. We present a technique to diagnose software

configuration errors. Our technique uses static analysis, dy-
namic profiling, and statistical analysis to link the undesired
behavior to specific configuration options (Section II).

• Implementation. We implemented our technique in a tool,
called ConfDiagnoser, for Java software (Section III). It is
available at http://config-errors.googlecode.com.

• Evaluation. We applied ConfDiagnoser to diagnose 14
configuration errors in 5 configurable Java software projects.
The results show the usefulness of the proposed technique
(Section IV).

II. TECHNIQUE

We model a configuration as a set of key-value pairs, where
the keys are strings and the values have arbitrary type. This
abstraction is offered by the POSIX system environment, the
Java Properties API, and the Windows Registry.

A. Overview
Figure 3 sketches the high-level workflow of our technique.

Our technique takes as input a Java program and its config-
uration options. It first performs a propagation analysis to
identify the affected predicates for each configuration option
(Section II-B). After that, our technique selectively instruments
the program at the affected predicates. To diagnose an error, a
user runs the instrumented program with the error-revealing
input and configuration to obtain an execution profile (Sec-
tion II-C). Then, our technique analyzes the obtained execution
profile to identify the behaviorally-deviated predicates and their
root causes, and reports these to the user (Section II-D).

B. Configuration Propagation Analysis
For each configuration option, Configuration Propagation

Analysis statically determines its affected predicates. In our
context, a predicate is a Boolean expression in a conditional
or loop statement, whose evaluation result determines whether
to execute the following statement or not. A predicate’s
run-time outcome affects the program control flow. Conf-
Diagnoser focuses on identifying and monitoring configuration

option-affected control flow rather than the values, for two
reasons. First, control flow often propagates the majority of
configuration-related effects and determines a program’s exe-
cution path, while the value of a specific expression may be
largely input-dependent. Second, it simplifies reporting because
the outcome of a program predicate can only be either true
or false. Nevertheless, a program predicate is not the only ab-
straction our technique can use. Our experiments (Section IV)
empirically demonstrate that choosing other abstractions, such
as monitoring statement-level coverage or method-level invari-
ants, yields less accurate results.

To identify the predicates affected by a configuration op-
tion, a straightforward way is to use program slicing [7] to
compute a forward slice from the initialization statement of a
configuration option. Unfortunately, traditional full slicing [7]
is impractical because it includes too much of the program.
This is due to conservatism (for example, in handling pointers)
and to following both data and control dependences. Figure 2
illustrates this problem. Traditional slicing concludes that the
predicates in lines 104, 312, and 315 are affected by the config-
uration option maxsize. However, the predicates in lines 104
and 315, though possibly affected by maxsize, are actually
irrelevant to maxsize’s value. That is, the value of maxsize
controls the length of a generated sequence rather than deciding
whether a sequence has an active flag (line 104) or a sequence
has been executed before (line 315).

To address this limitation, our technique uses thin slicing
[20], which includes only statements that are directly affected
by a configuration option. Different from traditional slicing [7],
thin slicing focuses on data flow from the seed (here, a seed is
the initialization statement of a configuration option), ignoring
control flow dependencies as well as uses of base pointers.
Thin slicing is attractive because it This property separates
pointer computations from the flow of configuration option
values and naturally connects a configuration option with its
directly affected statements. For example, in the code excerpt
of Figure 2, a forward thin slice computed for maxsize only
includes the predicate in line 312. Section IV empirically
demonstrates that thin slicing is a better choice than traditional
full slicing for our purposes.

C. Configuration Behavior Profiling
This step instruments the tested program offline by inserting

code to record how often each predicate evaluates to true at
run time.



Executing the instrumented program produces an execution
profile, which consists of a set of predicate profiles. Each
predicate profile is a 4-tuple consisting of a configuration
option, one of its affected predicates, the predicate’s execution
count, and how many times it evaluated to true. For example,
suppose the predicate on line 312 has been executed 100 times,
of which 30 times it evaluated to true. ConfDiagnoser creates
the following predicate profile:
〈maxsize, newSequence.size() > maxsize, 100, 30〉.

Such predicate profiles are by no means complete in record-
ing the whole execution. However, they capture sufficient
information to reason about the causal effects of configurations
and how a configuration option relates to software’s behavior,
as shown by our experiments (Section IV). Collecting these
profiles imposes only moderate performance impact.
D. Configuration Deviation Analysis

ConfDiagnoser starts error diagnosis after obtaining the exe-
cution profile from an undesired execution. It selects similar
profiles from known correct executions (Section II-D1), com-
pares each selected profile with the undesired one to identify
the most behaviorally-deviated predicates (Section II-D2), and
then determines the likely root cause options (Section II-D3).

1) Selecting Similar Execution Profiles for Comparison:
ConfDiagnoser’s database contains profiles from known correct
executions. These execution profiles can be dramatically dif-
ferent from another. To avoid reporting irrelevant differences
when determining how and why the observed execution profile
behaves differently from the correct ones, ConfDiagnoser first
compares the undesired profile with the correct profiles, then
selects a set of similar ones as the basis of diagnosis.

ConfDiagnoser first converts each execution profile e into
a n-dimensional vector ve =〈re1, re2, ..., ren〉, where n is the
number of predicates affected by configuration options and
each rei is a ratio representing how often the i-th predicate
profile evaluated to true at run time. If a predicate has never
been executed in an execution, ConfDiagnoser uses 0 as its
ratio.

ConfDiagnoser computes the similarity of two execution
profiles e and f by computing the cosine similarity from
information retrieval [29] of ve and vf .

Similarity(e, f) = cos sim(ve, vf ) =

∑n
i=1 rei × rfi√∑n

i=1 r
2
ei ×

√∑n
i=1 r

2
fi

This similarity metric compares two execution profiles based
on control flow taken (approximated by how often each pred-
icate evaluated to true). Its value ranges from 0 meaning
completely different predicate behavior, to 1 meaning the same
predicate behavior, and in-between values indicating interme-
diate similarity.

A crashing error sometimes happens soon after the pro-
gram is launched, so the resulting execution profile is much
smaller than most correct execution profiles. To avoid compar-
ing un-executed predicates, when diagnosing a crashing error,
ConfDiagnoser reduces each correct execution profile by only
retaining the predicates executed by the crashing profile, and
then uses the reduced profile for comparison.

Given an undesired execution profile, ConfDiagnoser selects
all execution profiles (or the reduced profiles for a crashing
error) from the database with a Similarity value above a
threshold (default value: 0.9, as used in our experiments).

2) Identifying Deviated Predicates: Our automated error
diagnosis approach compares an undesired execution profile
with a set of similar and correct execution profiles. The behav-
ioral differences in the recorded predicates provide evidence
for what parts of a program might be incorrect and why.

ConfDiagnoser characterizes the dynamic behavior of a predi-
cate by how often it was evaluated (i.e., the number of observed
executions), and how often it evaluated to true (i.e., the true ra-
tio). The true ratio is more important, but it is less dependable
the fewer times the predicate has been evaluated.

We define the following φ metric, which combines sensitivity
(informally, the need for multiple observations) and specificity
(informally, the true ratio) in a standard way by computing
their harmonic mean.

φ(e, p) =
2

1/trueRatio(e, p) + 1/totalExecNum(e, p)

In φ(e, p), trueRatio(e, p) is the ratio of executions of the
predicate p that evaluated to true in e, and totalExecNum(e, p)
is the the total number of executions of predicate p in e. To
smooth corner cases, if a predicate p is not executed in e,
i.e., totalExecNum(e, p) = 0, then φ(e, p) returns 0; and if
a predicate p’s true ratio is 0, i.e., trueRatio(e, p) = 0, then
φ(e, p) returns 1/totalExecNum(e, p).

The following Deviation metric compares a predicate p
across two execution profiles e and f . A larger Deviation
value indicates that the behavior is more different.

Deviation(p, e, f) = |φ(e, p)− φ(f, p)|

Often 1/trueRatio(e, p) � 1/totalExecNum(e, p), and
then the value of Deviation(p, e, f) depends primarily on p’s
true ratio difference between execution profiles e and f .

ConfDiagnoser computes the Deviation value for each pred-
icate p appearing in two execution profiles e and f , and ranks
them in decreasing order. The two execution profiles e and f
are for the same program, so they have exactly the same set
of predicates affected by configuration options.

3) Linking Predicates to Root Causes: ConfDiagnoser
links the behaviorally-deviated predicates to their root cause
configuration options by using the results of thin slicing
(computed by the Configuration Propagation Analysis step
in Section II-B). ConfDiagnoser identifies the affecting
configuration options for each deviated predicate, and treats
the configuration option affecting a higher-ranked deviated
predicate as the more likely root cause. If a predicate is
affected by multiple configuration options, ConfDiagnoser
prefers options whose initialization statements are closer to
the deviated predicate (in terms of breath-first search distance
in the dependence graph of thin slicing). This heuristic is
based on the intuition that statements closer to the predicate
seem more likely to be relevant to its behavior.

When multiple correct execution profiles are selected for
comparison, ConfDiagnoser first produces a ranked list of root



cause configuration options for each comparison pair, and then
outputs a final list by using majority voting over all ranking
lists. In the final ranking list, one configuration option ranks
higher than another if it ranks higher in more than half of the
ranking lists. Our implementation breaks possible cycles by
arbitrarily ranking the involved options, but this did not occur
in our experiments.

In the final output report (e.g., Figure 1), ConfDiagnoser
generates a brief explanation for each behaviorally-deviated
predicate by showing the difference between the predicate’s
true ratio during correct executions from the database and
during the undesired execution.

E. Discussion

This paper focuses specifically on configuration errors, as-
suming the application code is correct but the software is
inappropriately configured so that it does not behave as desired.
We next discuss some design issues in ConfDiagnoser.
Differences between program inputs and configuration op-
tions. We took the list of configuration options for each subject
program from its manual. Typically, the manual calls an input
a configuration option when it controls a program’s control
flow rather than producing result data. A configuration option
is often supplied via a command-line flag or configuration file.
Why not use profiles from unit test executions? Conf-
Diagnoser’s database stores correct profiles from complete
executions that start at the main method. ConfDiagnoser does
not use profiles from unit test executions, which check the
correctness of a single program component and produce an
incomplete execution profile that is not representative of the
whole program workflow.
Why not store profiles from failing executions in the
database? We envision the profile database is built by develop-
ers at release time. It is more natural and easier for a developer
to provide correct execution profiles, instead of anticipating
and enumerating the possible errors a user may encounter.
What if a similar execution profile is not available? Conf-
Diagnoser’s effectiveness largely depends on the availability
of similar execution profiles from the database. For a given
undesired execution profile, lacking a similar profile in Conf-
Diagnoser’s database may lead ConfDiagnoser to produce less
useful results. It also indicates inadequacy of the tests from
which the database was constructed. Future work should rem-
edy this problem. One possible approach is to synthesize
a new execution, either by generating a new input for the
program [34] or by mutating an existing execution [22].

III. IMPLEMENTATION

We implemented a tool, called ConfDiagnoser, on top of the
WALA framework [24]. Our tool analyzes Java bytecode. It
statically computes the affected predicates for each configura-
tion option, assigns a unique ID for each affected predicate, and
then performs offline instrumentation. The runtime behavior
of all affected predicates is recorded in a file.

For a Java program, ConfDiagnoser does not analyze the
standard JDK library and all the dependent libraries. We believe

Program (version) LOC #Config Options #Profiles
Randoop (1.3.2) 18587 57 12
Weka Decision Trees (3.6.7) 3810 14 12
JChord (2.1) 23391 79 6
Synoptic (trunk, 04/17/2012) 19153 37 6
Soot (2.5.0) 159273 49 16

Fig. 4. Subject programs. Column “LOC” is the number of lines of code,
as counted by CLOC [4]. Column “#Config Options” is the number of
configuration options. Column “#Profiles” is the number of execution profiles
in the pre-built database.

this approximation is reasonable, since a configuration option
set on client software usually does not affect the behaviors of
its dependent libraries.

IV. EVALUATION

Our evaluation answers the following research questions:
• How effective is ConfDiagnoser in error diagnosis? Conf-

Diagnoser’s effectiveness can be reflected by:
– the absolute ranking of the actual root cause in Conf-

Diagnoser’s output (Section IV-C1).
– the time cost of error diagnosis (Section IV-C2).
– comparison with a previous configuration error diagnosis

technique (Section IV-C3).
– comparison with two fault localization techniques (Sec-

tion IV-C4).
• What are the effects of using full slicing [7] rather than

thin slicing [20] to identify the affected predicates? What
are the effects of varying comparison execution profiles?
These are two internal design choices (Section IV-C5).

A. Subject Programs
We evaluated ConfDiagnoser on 5 Java programs shown in

Figure 4. Randoop [16] is an automated test generator for Java
programs. Weka [27] is a toolkit that implements machine
learning algorithms. Our evaluation uses only its decision
tree module. JChord [9] is a program analysis platform that
enables users to design, implement, and evaluate static and
dynamic program analyses for Java. Synoptic [23] mines a
finite state machine model representation of a system from
logs. Soot [19] is a Java optimization framework for analyzing
and transforming Java bytecode.

1) Configuration Errors: We collected 14 configuration er-
rors, listed in Figure 5. This paper evaluates all the configura-
tion errors we found; we did not select only errors on which
ConfDiagnoser works well. The misconfigured values include
enumerated types, numerical ranges, regular expressions, and
strings. The 5 non-crashing errors are collected from actual
bug reports, mailing list posts, and our own experience. The
9 crashing errors, taken from [18], were previously used to
evaluate the ConfAnalyzer tool. All 14 configuration errors are
minimal: if any part of the configuration or input is removed,
the software either crashes or no longer exhibits the undesired
behavior.
B. Evaluation Procedure

For each subject program, we constructed a profile database
by running existing (correct) examples from its user manual,
FAQs, discussion mailing list, forum posts, and published



Error ID. Root Cause #Options Program ConfDiagnoser ConfAnalyzer Coverage Invariant ConfDiagnoser
Program Configuration Option Output Analysis Analysis w/ Full Slicing

Rank #Profiles Rank Rank Rank Rank Rank
Non-crashing errors

1. Randoop maxsize 57 N 10 / 12 1 X 13 N 46
2. Weka m_numFolds 14 N 2 / 12 1 X 4 5 9
3. JChord chord.datarace.exclude.eqth 79 N 2 / 6 3 X 38 2 73
4. Synoptic partitionRegExp 37 N 2 / 6 1 X 1 N 6
5. Soot keep_line_number 49 N 6 / 16 2 X 46 N N

Average 47.2 23.6 3.6 / 10.4 1.6 23.6 20.4 15.7 31.7
Crashing errors

6. JChord chord.main.class 79 1 4 / 6 1 1 1 4 5
7. JChord chord.main.class 79 1 5 / 6 1 1 1 4 5
8. JChord chord.run.analyses 79 1 5 / 6 17 1 17 22 21
9. JChord chord.ctxt.kind 79 1 3 / 6 1 3 25 30 75

10. JChord chord.print.rels 79 1 2 / 6 15 1 20 25 24
11. JChord chord.print.classes 79 1 4 / 6 16 1 13 17 22
12. JChord chord.scope.kind 79 1 5 / 6 1 1 1 N 10
13. JChord chord.reflect.kind 79 1 6 / 6 1 3 5 9 11
14. JChord chord.class.path 79 1 4 / 6 8 N 21 26 6
Average 79 1 4.2 / 6 6.7 5.7 11.5 19.5 19.8
Fig. 6. Experimental results in diagnosing software configuration errors. Column “Root Cause Configuration Option” shows the actual root cause configuration
option. Column “#Options” shows the number of configuration options, taken from Figure 4. Column “Program Output” shows the rank of the root cause as
indicated by the program’s output, such as an error message. Column “ConfDiagnoser” shows the results of using our technique. Column “#Profiles” shows
the number of similar execution profiles selected from the pre-built database for comparison, and the number of executions in the database. For each technique,
Column “Rank” shows the absolute rank of the actual root cause in its output (lower is better). “X” means the technique is not applicable (i.e., requiring a
crashing point), and “N” means the technique does not identify the actual root cause. When computing the average rank, each “X” or “N” is treated as half of
the number of configuration options, because a user would need to examine on average half of the options to find the root cause. Column “ConfAnalyzer”
shows the results of using a previous technique [18] (Section IV-C3); the data in this column is taken from [18]. Columns “Coverage Analysis” and “Invariant
Analysis” show the results of using two fault localization techniques as described in Section IV-C4. Column “ConfDiagnoser w/ Full Slicing” shows the
results of using full slicing [7] to compute the affected predicates (Section IV-C5).

Error ID Program Description
Non-crashing errors
1 Randoop No tests generated
2 Weka Low accuracy of the decision tree
3 JChord No datarace reported for a racy program
4 Synoptic Generate an incorrect model
5 Soot Source code line number is missing
Crashing errors
6 JChord No main class is specified
7 JChord No main method in the specified class
8 JChord Running a nonexistent analysis
9 JChord Invalid context-sensitive analysis name
10 JChord Printing nonexistent relations
11 JChord Disassembling nonexistent classes
12 JChord Invalid scope kind
13 JChord Invalid reflection kind
14 JChord Wrong classpath

Fig. 5. The 14 configuration errors used in the evaluation.

papers [16], [18]. We spent 3 hours per program, on average,
and obtained 6–16 execution profiles. The average size of
the profile database is 35MB, and the largest one (Randoop’s
database) is 72MB.

We made a simple syntactic change to JChord, which affected
24 lines of code. This change does not modify JChord’s
semantics; rather, it just encapsulates scattered configuration
option initialization statements as static class fields, which
simplifies specifying the seed statement in performing slicing.

When diagnosing a configuration error, we first reproduced
the error on a ConfDiagnoser-instrumented program to obtain
the execution profile. Then, we ran ConfDiagnoser on the

obtained execution profile to identify its root causes.
Our experiments were run on a 2.67GHz Intel Core PC

with 4GB physical memory (2GB was allocated for the JVM),
running Windows 7.

C. Results

1) Accuracy in Diagnosing Configuration Errors: As shown
in Figure 6, ConfDiagnoser is highly effective in pinpointing
the root cause of misconfigurations. For all 5 non-crashing
errors and 5 of the 9 crashing errors, it lists the actual root
cause as one of the top 3 options.

a) Non-crashing configuration errors.: ConfDiagnoser is
particularly effective in diagnosing non-crashing configuration
errors, which are not supported by most other tools. The
average rank of the root cause in ConfDiagnoser’s output is
1.6. The primary reason is ConfDiagnoser’s ability to identify
the behaviorally-deviated predicates through execution profile
comparison. The top-ranked deviated predicates often provide
useful clues about what parts of a program might be abnormal
and why.

We use the non-crashing error in Weka as an example to
illustrate this point. Weka’s decision tree implementation is
highly tuned, achieving 70–90% accuracy on its included exam-
ples. However, its accuracy drops to 62% on a different dataset
we experimented on. We used ConfDiagnoser to diagnose this
problem by first building a database by running Weka on its
examples, and then obtaining the undesired execution profile by
running it on our dataset. As a result, ConfDiagnoser outputs
the following report (only the top option is shown):



Suspicious configuration option: m_numFolds

It affects the behavior of predicate:
"numFold < numInstances() % numFolds"
(line 1354, class: weka.core.Instances)

This predicate evaluates to true:
20% of the time in normal runs (4 observations)
70% of the time in the undesired run (10 observations)

The above report reveals an important fact about the low
accuracy. The predicate numFold < numInstances() %

numFolds controls the depth of a decision tree. Its true ratio is
substantially higher in the undesired execution than in normal
executions. A higher true ratio leads to a deeper tree that is
more likely to overfit the training data and yield low accu-
racy on the testing data. To resolve this problem, we changed
m_numFolds value from 2 to 3 to reduce the tree depth, and
gained a 5% performance increase.

b) Crashing configuration errors.: Crashing errors are
often easy for a user to diagnose. This is because a crashing
error often produces a stack trace or error message with valuable
diagnosis clues. In fact, for the crashing errors selected by the
ConfAnalyzer authors, the user is always led to the root cause
by the program output, without the need for further analysis.
For error #6, JChord throws a NoClassDefFoundError when
loading a user-specified class. This error reminds the user that
a non-existent class might be provided. For error #7, JChord
outputs an error message of “Could not find main class [...] or
main method in that class” that explicitly informs the user that
the configuration option to specify a main class might be wrong.
For errors #8–13, JChord outputs the relevant configuration
option in its error message. For error #14, JChord throws a
ClassNotFoundException (for the main class) that reminds
the user to check the classpath setting.

ConfDiagnoser is more effective in diagnosing non-crashing
errors (average rank: 1.6) than crashing errors (average rank:
6.7). Most of the crashing errors occur soon after the program
is launched, so ConfDiagnoser lacks enough predicate behavior
observations. Many predicates are only executed once, so their
Deviation scores (Section II-D2) turn out to be the same; and
the BFS-distance-based heuristic to resolve ties (Section II-D3)
only works half the time.

2) Performance of ConfDiagnoser: We measured Conf-
Diagnoser’s performance in two ways: the time cost in di-
agnosing an error and the overhead introduced in reproducing
an error in a ConfDiagnoser-instrumented program.

As shown in Figure 7, the performance of ConfDiagnoser is
reasonable. On average, it uses less than 4 minutes to diagnose
each configuration error (including the time to compute thin
slices and the time to recommend suspicious configuration
options). Computing thin slices for all configuration options
is expensive. However, this step is one-time effort per pro-
gram and the computed slices can be cached to share across
diagnoses.

The performance overhead to reproduce the buggy behavior
varies among applications. The current tool implementation
imposes a substantial slowdown when reproducing errors 3, 9,
10, and 11 in a ConfDiagnoser-instrumented version. This is

Error ID. Run-time ConfDiagnoser time (seconds)
Program Slowdown (×) Thin Slicing Error Diagnosis
Non-crashing errors
1. Randoop 1.1 50 < 1
2. Weka 1.2 43 < 1
3. JChord 13.2 147 82
4. Synoptic 3.6 24 < 1
5. Soot 3.1 95 21
Mean 2.9 72 21
Crashing errors
6. JChord 2.4 147 79
7. JChord 1.4 147 75
8. JChord 1.5 147 17
9. JChord 28.5 147 30
10. JChord 13.7 147 13
11. JChord 65.1 147 10
12. JChord 1.6 147 83
13. JChord 1.9 147 8
14. JChord 1.4 147 80
Mean 4.3 147 44

Fig. 7. ConfDiagnoser’s performance. The run-time slowdown column shows
the cost of reproducing the error in an instrumented version of the subject
program, and the mean is the geometric mean. The ConfDiagnoser time has
been divided into two parts — computing thin slices and diagnosing an error
— and the mean is the arithmetic mean.

due to ConfDiagnoser’s naive, inefficient instrumentation code,
which we have made no effort to optimize. Even so, an error
can be reproduced in less than 4 minutes on average, with a
worst case of 13 minutes.

3) Comparison with a Previous Technique: We compared
ConfDiagnoser with ConfAnalyzer, a dynamic information
flow-based technique [18]. We chose ConfAnalyzer because
it is the most recent technique and also one of the most pre-
cise configuration error diagnosis techniques in the literature.
ConfAnalyzer tracks the flow of labeled objects through the
program dynamically, and treats a configuration option as a
root cause if its value may flow to a crashing point. ConfAna-
lyzer works well for most of the crashing errors (all of which
are from the ConfAnalyzer paper [18]), though as described
above these are easy to diagnose even without tool support.
However, ConfAnalyzer cannot diagnose non-crashing errors.

The experimental results of ConfAnalyzer are shown in
Figure 6 (column “ConfAnalyzer”). For the 9 crashing errors,
ConfDiagnoser produced better results for 3 of them, the same
results for another 3, and worse results for the remaining 3.

ConfAnalyzer performs best on the easiest crashing errors:
those having short execution paths, when an error exhibits al-
most immediately after the software is launched. In such cases,
only a small number of configuration options are initialized
and few of them can flow to the crashing point. ConfDiagnoser
fails to produce a good diagnosis for these errors, because it can
not identify the statistically-behaviorally-deviated predicates
based on the limited observation of program behaviors.

ConfAnalyzer outputs less accurate or no results for errors
where the root cause option value flows into containers or
system calls (e.g., error #14 in Figure 6). ConfDiagnoser
can reason (to some extent) about the consequence of such a
misconfiguration based on the observed predicate behaviors.



4) Comparison with Two Fault Localization Techniques:
Another possible way to diagnose a configuration error is to
leverage existing fault localization techniques, by treating the
undesired execution as a failing run and all correct executions
(in the database) as passing runs. We next compare Conf-
Diagnoser with two state-of-the-art techniques:
• Statement-level Coverage Analysis. This technique treats

statements covered by the undesired execution profile as po-
tentially buggy, and statements covered the correct execution
profiles as correct. Then, it leverages a well-known fault
localization technique, Tarantula [10], to rank the likelihood
of each statement being buggy, and queries the results of
thin slicing to identify its affecting configuration options as
the root causes. The results are essentially the same for a
variant of coverage analysis: using thin slicing to compute
all affected statements, and only monitoring the coverage
of such affected statements.

• Method-level Invariant Analysis. This technique stores
invariants detected by Daikon [5] from correct executions in
the database. It treats a method as having suspicious behav-
ior if its observed invariants from the undesired execution
are different from the invariants stored in the database [14].
This technique ranks a method’s suspiciousness by the num-
ber of different invariants, and queries the results of thin
slicing to identify its affecting configuration options as the
root causes.

In Coverage Analysis, the statement-level granularity is too
fine-grained. Many statements have exactly the same coverage
in the failing/passing executions, and thus have the same sus-
piciousness score as computed by Tarantula [10]. Furthermore,
Tarantula only records whether a statement has been executed
or not but does not record how a statement is executed (e.g.,
how often a predicate evaluates to true). The combination of
these two factors causes the low accuracy.

In Invariant Analysis, the method-level granularity is too
coarse-grained. Invariant detection techniques like Daikon [5]
only check program states at method entries and exits to infer
likely pre- and post-conditions, and thus are less sensitive to
control flow details within a method (e.g., a predicate’s true
ratio). In our study, Invariant Analysis failed to diagnose 3
errors. For Synoptic, it failed to infer invariants. For Soot
and Randoop, it reported the same invariants over undesired
and correct executions, for the method containing behaviorally-
deviated predicates.

This experiment suggests that we cannot treat configuration
options as just another regular program input, and then directly
apply existing fault localization techniques [10], [14] to find the
error causes. The primary reason is that, unlike a program input,
a configuration option is often used to control a program’s
control rather than produce result data. Thus, focusing on the
behaviors of relevant predicates as our tool does may be a
good choice.

5) Evaluation of Two Design Choices in ConfDiagnoser:
We investigate the effects of:
• using traditional full slicing [7] rather than thin slic-

ing [20] in the Configuration Propagation Analysis step

Error ID. Rank of the Actual Root Cause
Program All Profiles Random Selection Similarity-Based
Non-crashing errors
1. Randoop 1 2 1
2. Weka 7 6 1
3. JChord 16 19 3
4. Synoptic 1 1 1
5. Soot 13 13 2
Average 7.6 8.2 1.6
Crashing errors
6. JChord 1 1 1
7. JChord 1 1 1
8. JChord 17 17 17
9. JChord 1 1 1
10. JChord 15 15 15
11. JChord 16 16 16
12. JChord 25 25 1
13. JChord 1 1 1
14. JChord 9 9 8
Average 9.4 9.4 6.7

Fig. 8. Comparison with different execution profile selection strategies
(Section IV-C5). The last column “Similarity-based” is the selection strategy
used in ConfDiagnoser, and the data in that column is taken from Figure 6.

(Section II-B) to compute the affected predicates. Figure 6
(Column “Full Slicing”) shows the results.

• varying the comparison execution profiles from the pre-built
database. In particular, we compare the similarity-based
selection strategy used in ConfDiagnoser (Section II-D1)
with two alternatives: selecting all available profiles in
the database, and randomly selecting the same number of
profiles as ConfDiagnoser uses from the database. Figure 8
shows the results. For random selection, we performed the
experiment 10 times and report the average.

As shown in Figure 6 (Column “Full Slicing”), Conf-
Diagnoser achieves substantially less accurate results when
using full slicing. The primary reason is that full slicing in-
cludes too many irrelevant statements that are only indirectly
affected by a configuration option value but not pertinent to the
task of error diagnosis. In many cases, monitoring the control
flow of such indirectly-affected predicates and then linking
their behaviors to configuration options leads to low accuracy.
Furthermore, performing full slicing is much more expensive
than thin slicing; in our experiments, the full slicing algorithm
ran out of memory on Soot.

As shown in Figure 8, varying the selection strategy for
correct traces can affect the results, depending on the applica-
tion being analyzed. Using all available execution profiles or
randomly selecting execution profiles is less effective, because
they make ConfDiagnoser report many irrelevant differences
between an undesired execution and a dramatically different
execution. When diagnosing a crashing error, ConfDiagnoser
is less sensitive to the comparison execution profiles. This
is because crashing profiles are often much smaller, execut-
ing fewer predicates before reaching the crashing points; and
ConfDiagnoser reduces each correct execution profile before
diagnosis (Section II-D1). Thus, many irrelevant differences
have already been removed.



Because the trace selection strategy improved the accuracy
of ConfDiagnoser, we tried applying it to Coverage Analysis
and Invariant Analysis as well. That is, we supplied those
analyses not with the full database of good runs, but with the
runs most similar to the bad run. This approach degraded
the accuracy of the other tools beyond the results shown in
Figure 6, even though it helped ConfDiagnoser. The reason is
that the suspiciousness of a statement or method is inversely
proportional to the number of correct execution profiles that
cover it. When using fewer correct execution profiles, more
statements or methods have the same suspiciousness scores.

D. Experimental Discussion
Limitations. The experiments indicate several limitations of
our technique. First, we only focus on named configuration
options with a common key-value semantic, and our imple-
mentation and experiments are restricted to Java. Second, we
evaluated ConfDiagnoser on configuration errors involving just
one mis-configured option. Third, our implementation cur-
rently does not support debugging non-deterministic errors.
For non-deterministic errors, ConfDiagnoser could potentially
leverage a deterministic replay system that can capture an unde-
sired non-deterministic execution and faithfully reproduce it for
later analysis. Fourth, ConfDiagnoser’s effectiveness largely
depends on the availability of a similar but correct execution
profile. Using an arbitrary execution profile (as we demon-
strated in Section IV-C5 by random selection) may significantly
affect the results.
Threats to Validity. There are three major threats to validity
in our evaluation. First, the 5 programs and the configuration
errors may not be representative. Thus, we can not claim
the results can be generalized to an arbitrary program. For
example, we did not evaluate ConfDiagnoser to diagnose mis-
configurations that cause poor performance. Second, in this
paper, we focus specifically on configuration errors, assuming
the application code is correct. Furthermore, in our experi-
ments, all 14 errors have been minimized (as end-users often
do when reporting an error). ConfDiagnoser might produce
different error diagnosis results on buggy application code with
non-minimized inputs. A user who did not know whether a
program was misbehaving due to a bug in the code or an
incorrect configuration option would need to apply multiple
debugging techniques. We have not yet formulated guidance
regarding when the user should give up on ConfDiagnoser and
assume the error is not related to a configuration option. Third,
we only compared two dependence analyses (thin slicing and
full slicing), three abstraction granularities (at the predicate
level, statement level [10], and method level [5]), and three
other tools (ConfAnalyzer, Coverage Analysis, and Invariant
Analysis) in our evaluation. Using other dependence analyses,
abstraction levels, or tools might achieve different results.
Experimental Conclusions. We have three chief findings: (1)
ConfDiagnoser is effective in diagnosing both crashing and
non-crashing configuration errors with a small profile database.
(2) ConfDiagnoser produces more accurate diagnosis than ap-
proaches leveraging existing fault localization techniques [10],

[14]. (3) Thin slicing and selection of similar comparison traces
permit ConfDiagnoser to produce more accurate diagnosis than
other approaches.

V. RELATED WORK

This section discusses closely-related work on software
configuration error diagnosis, automated debugging, and
configuration-aware software analysis techniques.
Software Configuration Error Diagnosis. Software configu-
ration error diagnosis is recognized as an important research
problem [1], [2], [12], [18], [25], [28]. Chronus [28] relies
on a user-provided testing oracle to check the behavior of the
system, and uses virtual machine checkpoint and binary search
to find the point in time where the program behavior switched
from correct to incorrect. AutoBash [21] fixes a misconfigu-
ration by using OS-level speculative execution to try possible
configurations, examine their effects, and roll them back when
necessary. PeerPressure [25] uses statistical methods to com-
pare configuration states in the Windows Registry on different
machines. When a registry entry value on a machine exhibiting
erroneous behavior differs from the value usually chosen by
other machines, PeerPressure flags the value as a potential
error. More recently, ConfAid [2] uses dynamic taint analysis
to diagnose configuration problems by monitoring causality
within the program binary as it executes. ConfAnalyzer [18]
uses dynamic information flow analysis to precompute possible
configuration error diagnoses for every possible crashing point
in a program.

Our technique is significantly different from the other ap-
proaches. First, most previous approaches focus exclusively
on configuration errors that lead to a crash or assertion fail-
ure [1], [2], [18], [28]. By contrast, our technique can diagnose
both crashing and non-crashing errors. Second, several ap-
proaches [2], [28] assume the existence of a testing oracle that
can check whether the software functions correctly. However,
such oracles are often absent in practice or may not apply to
the specific configuration problem. A typical software user
should not be expected, to invest the substantial time and effort
to create an oracle. By contrast, our technique eliminates this
assumption. Third, approaches like PeerPressure [25] benefit
from the known schema of the Windows Registry, but cannot
detect configuration errors that lie outside the registry. Our
technique of analyzing the affected predicate behavior is more
general.
Automated Debugging Techniques. Program slicing [7] and
taint analysis [3] are two well-known techniques to determine
which statements and inputs could affect a particular variable.
Despite their effectiveness in diagnosing a crashing configura-
tion error by performing backward reachability analysis from
the crashing point [2], [18], these two techniques cannot be
directly applied to diagnose a non-crashing error.

Delta debugging [32] is a general algorithm to isolate soft-
ware error causes. It reduces differences between a working
state and a broken state to isolate a set of failure-inducing
changes. When using delta debugging, the user must provide
a single nearby working state and a testing oracle to check



whether an intermediate program state behaves correctly —
both of which are difficult tasks. Furthermore, as a minimiza-
tion technique, delta debugging is not applicable to data (i.e.,
configuration option values) that are missing nor ones that
are incorrect. By contrast, ConfDiagnoser eliminates these
assumptions by comparing the undesired execution profile with
correct execution profiles, and then identifying the root cause
configuration options to account for the behavioral difference.

Statistical algorithms have been applied to the automated
debugging domain. The CBI project [13] analyzes executions
collected from deployed software to isolate software failure
causes. Significantly different than ConfDiagnoser, CBI corre-
lates a predicate’s evaluation result (either true or false) rather
than its true ratio and execution frequency with the observed be-
haviors. In addition, CBI identifies likely buggy statements as
its final output, while ConfDiagnoser identifies the behaviorally-
deviated program predicates and links the undesired behavior
to specific configuration options.
Configuration-Aware Software Analysis and Testing. Empir-
ical studies show that configuration errors are pervasive, costly,
and time-consuming to diagnose [8], [31]. To alleviate this
problem, researchers have designed various software analysis
techniques to understand and test the behavior of a configurable
software system [6], [17]. Compared to ConfDiagnoser, those
techniques can be used to find new errors in a configurable
software system earlier, but cannot identify the root cause of
a revealed configuration error. By contrast, our technique is
designed to diagnose an exhibited error.

VI. CONCLUSION AND FUTURE WORK

This paper presented a practical technique (and its tool imple-
mentation, called ConfDiagnoser) for diagnosing configuration
errors. Our experimental results show that ConfDiagnoser is
effective in diagnosing both crashing and non-crashing con-
figuration errors, and it does so with a small profile database.
The source code of ConfDiagnoser is publicly available at
http://config-errors.googlecode.com.

Future work should address the following topics:
User study. We plan a user study to evaluate Conf-

Diagnoser’s usefulness to system administrators and end-users.
A challenge will be finding study participants who are familiar
with our subject programs.

Fixing configuration errors. After a configuration error is
localized, fixing it is often non-trivial. Thus, we plan to apply
automated error patching [30] and software self-adaptation
techniques [26] to fix configuration errors.

Improving configuration error reporting. A high-quality
error report allows software developers to understand and cor-
rect the problems they receive. Unfortunately, the quality of
error reports often decreases as software becomes more com-
plex and configurable. We plan to develop new error reporting
mechanisms to make configuration errors more diagnosable.
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