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Abstract—Wireless networked control systems (WNCSs) have
received tremendous research interests recently due to their great
advantages in easy deployment, enhanced mobility, and reduced
maintenance cost. A key design challenge in such systems is to
develop efficient data link layer scheduling algorithms to achieve
a reliable end-to-end real-time communication. Previous research
has a common assumption that the network communication
schedule of WNCS, once constructed and distributed, stays
unchanged. Using this method, however, cannot handle dynamic
variations which are unavoidable in many WNCSs. In this paper,
we consider the data link layer scheduling problem in WNCSs,
where external disturbances occur sporadically. We employ a
rhythmic task model to respond to external disturbances and
introduce an effective approach to adjust the static schedule
for the WNCS when the disturbances happen. The approach
determines the time duration to apply a dynamic schedule and
generates the schedule for that time duration to minimize the
impact of network dynamics on existing network flows. The effec-
tiveness and efficiency of the proposed algorithm are validated by
extensive simulation. Results based on randomly generated task
sets indicate that the proposed approach outperforms existing
work both in terms of the number of feasible task sets (between
11% and 41% increase on average) and the number of feasible
periodic packets (between 122% and 128% increase on average).

I. INTRODUCTION

WNCSs have received significant attention over the past
several decades [12], [16], [21], [22], [23] because of their
wide applications such as telerobotics [8], aircraft control [30],
civil infrastructure monitoring [17], medication service [14]
and power management [11]. In a WNCS, sensors, gateways,
actuators and other relay nodes are geographically distributed
and connected over wireless network media. A task in a WNCS
is generally required to deliver measurements from a sensor to
the gateway and send control signals from the gateway to an
actuator within an end-to-end deadline. The performance of
WNCS should degrade gracefully in the presence of various
external disturbances, such as failure in critical civil infrastruc-
tures and malicious attacks.

Though many WNCSs rely on static data link layer
scheduling (typically based on Time Division Multiple Address
(TDMA), e.g., [13], [19], [24], [27], [29]) to achieve a deter-
ministic real-time communication, such approaches are unsuit-
able for handling unexpected disturbances. In response to ex-
ternal events, centralized link layer scheduling approaches [6],
[7], [9], [10], [25], [26] have been proposed, which can adapt to
network dynamics. However, the protocols in [9], [26] cannot
respond to on-line workload changes while [25] assumes that
only a predetermined number of link layer schedules are
stored in the system. The protocol in [10] ignores the real-
time requirement of network traffic. The algorithms in [6]
do not support systems containing multiple tasks ending at

different actuators. In addition, [6], [7] do not discuss how the
centralized scheduler knows the workload changes.

There are a few works on adapting to external events in
critical control systems such as the power grid and trans-
portation network. [20] proposed adjustment of sampling rates
to improve the performance of event-triggered system. Rate-
adaptive and rhythmic task models are introduced in [5]
and [18], respectively, which allow tasks to change periods
and relative deadlines in some control systems like automo-
tive systems. The task models allow the system to adapt to
environmental disturbances, and schedulability analyses under
Rate Monotonic (RM) and Earliest Deadline First (EDF)
algorithms are also provided in [18] and [5], respectively. The
proposed task models, however, cannot be applied to WNCSs
straightforwardly because their schedulability analyses do not
consider the end-to-end packet delivery in wireless networks.

In this paper, we consider a WNCS adopting a centralized
network architecture, which utilizes a static schedule when
there is no physical disturbance in the WNCS to conserve
system resource. Upon detecting an external disturbance, a
temporary dynamic schedule is generated and employed for
a relatively short time interval called dynamic scheduling
interval. Due to the limited bandwidth in the system, some
periodic packets may be dropped according to the dynamic
schedule, which can degrade the Quality of Service (QoS).
Therefore, it is critical to determine the dynamic scheduling
interval and generate a dynamic schedule for this time interval
to meet as many periodic packet deadlines as possible.

We introduce a data link layer scheduling problem to
determine a dynamic scheduling interval and the corresponding
dynamic schedule in order to minimize the number of dropped
packets. In formulating the problem, we consider various
practical constraints to make our work useful for real-world
applications. To solve the problem, we propose an on-line
approach to decide a dynamic scheduling interval and construct
a dynamic schedule with bounded time and schedule up-
date overheads. Our framework determines candidate dynamic
scheduling intervals, calls an algorithm to generate a dynamic
schedule for each candidate dynamic scheduling interval, and
selects a best dynamic schedule in terms of minimum number
of dropped packets. The effectiveness and efficiency of our
approach are validated through extensive simulation results.

The remainder of this paper is organized as follows.
Section II describes our system model. Section III presents a
motivational example and gives the problem formulation. We
present our overall framework in Section IV. Then, we describe
the heuristic called by our framework in Section V. We
summarize our simulation results in Section VI. Section VII
concludes the paper and discusses the future work.



II. SYSTEM MODEL

We adopt the system architecture of a typical WNCS in
our study, which consists of one gateway, multiple sensors,
actuators, and relay nodes. We assume that sensors and actu-
ators also have routing capability and they are connected to
the gateway wirelessly through one or multiple relay nodes.
All devices in the WNCS G = (V, E) collectively form the
node set V = {V0, V1, V2, · · · , Vg}, where Vg represents the
gateway. A direct link (Vi, Vj) in the edge set E represents a
reliable link from node Vi to node Vj .

The system runs a set of tasks T =
{τ0, τ1, τ2, · · · τn, τn+1}. τi (0 ≤ i ≤ n) is a unicast
task and τn+1 is a broadcast task. Task τn+1 runs on the
gateway and disseminates data link layer schedule updates
to all nodes in the network when necessary, by following
a predetermined broadcast graph [13]. A unicast task τi
(0 ≤ i ≤ n) follows a designated single routing path with Hi

hops. It periodically generates a packet which originates at a
sensor node, passes through the gateway and then delivers a
control message to an actuator.

In networked control systems, to achieve stability in the
presence of unexpected physical disturbances, extra work must
be done. Unexpected disturbances are detected by sensors and
sent to Vg via the associated tasks. The rhythmic task model
introduced by [18] has been shown to be an effective way to
handle such disturbances [20]. We adopt this model in this
work. Specifically, each unicast task has two states. In the
nominal state, τi has a constant period Pi and a constant
relative deadline Di. When physical disturbance occurs, τi
enters the rhythmic state with reduced periods and relative
deadlines for prompt response. In this work, we assume that
at most one unicast task can be in the rhythmic state at any
time during the system operation. To simplify the notation, we
refer to any task currently in the rhythmic state as rhythmic
task and denote it as τ0 while task τi (1 ≤ i ≤ n) is a periodic
task which is not currently in the rhythmic state. The rhythmic
task has a hard deadline when it is in the rhythmic state while
periodic tasks can tolerate occasional deadline misses.

When the rhythmic task τ0 is in the nominal state, it
has a constant period P0, and a constant relative deadline
D0. When τ0 is in the rhythmic state, we assume that it
follows the system model used in [20], i.e., its period and
relative deadline are reduced abruptly when disturbance is
detected and then return to their nominal values by following
some monotonically non-decreasing functions. We use vectors
P⃗0 = [P0,x, x = 1, . . . ,R]T and D⃗0 = [D0,x, x = 1, . . . ,R]T

to represent the periods and relative deadlines of τ0 when it
is in the rhythmic state. (To be more precise, P0,x is the time
duration between two consecutive releases but we still call it
period to simplify our notation.) From the moment τ0 enters
the rhythmic state, its period and relative deadline follow the
elements of P⃗0 and D⃗0 in sequence, respectively. When its
(R+1)-th instance is released, τ0 returns to the nominal state.

An instance of a task is referred to as a packet, i.e.,
packet χi,k corresponds to the k-th instance of τi. According
to different task types, we have rhythmic packets, periodic
packets, and broadcast packets. A periodic or broadcast packet
χi,k (1 ≤ i ≤ n+1) is associated with a release time ri,k and
a deadline di,k. A rhythmic packet χ0,k is associated with
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Fig. 1. Nominal (top) and actual (bottom) release times and deadlines of
rhythmic packets. An upper arrow represents a nominal and actual release
time while a down arrow represents a nominal and actual deadline.

its nominal release time r̄0,k, nominal deadline d̄0,k, actual
release time r0,k and actual deadline d0,k. Note that r̄0,k and
d̄0,k are the release time and deadline of χ0,k, respectively, if
τ0 never enters the rhythmic state. In contrast, r0,k and d0,k are
the release time and deadline of χ0,k, respectively, in reality,
regardless of whether τ0 is in the nominal or rhythmic state.
To simplify the discussion, we use release time (deadline) to
refer to actual release time (deadline) in the rest of the paper
unless we need to differentiate actual and nominal release
times (deadlines). In this work, we assume that d̄0,k ≤ r̄0,k+1

and d0,k ≤ r0,k+1 are satisfied.

Figure 1 shows the nominal release times, nominal dead-
lines, actual release times and actual deadlines of rhythmic
packets when τ0 is in the two different states. The top part
of the figure shows the nominal release times (deadlines) of
rhythmic packets while the bottom part of the figure shows
the actual release times (deadlines) of rhythmic packets. We
assume that τ0 is in the nominal state initially. It switches to
the rhythmic state at r0,m+1 (denoted as tn→r), and returns to
the nominal state at r0,m+R+1 (denoted as tr→n). That is, τ0
stays in the rhythmic state within interval [tn→r + 1, tr→n],
where tn→r and tr→n satisfy

tr→n = tn→r +
R∑
x=1

P0,x. (1)

The actual release time r0,k+1 is determined based on the state
of τ0 when r0,k is released, i.e.,

r0,k+1 =

{
r0,k + P0 if k ≤ m or k > m+R
r0,k + P0,k−m if m < k ≤ m+R

.

(2)
Similarly, d0,k+1 of χ0,k+1 is equal to

d0,k+1 =

{
r0,k+1 +D0 if k < m or k ≥ m+R
r0,k+1 +D0,k+1−m if m ≤ k < m+R

.

(3)

Following WirelessHART [27] and ISA100.11a [1], the two
prevalent international communication standards designed for
wireless sensing and control systems, we apply a TDMA data
link layer in our model. A node in the network follows a given
schedule to transmit or receive packets. Specifically, at the h-
th hop along the routing path of rhythmic or periodic task τi,
the sender sends packet χi,k to the receiver and receives an
acknowledgement packet from the receiver. In contrast, at the
h-th hop of broadcast task τn+1, the sender sends packet to
one or multiple receivers by following the broadcast graph. We
refer to the delivery of a packet at one hop as a transmission
and denote it by χi,k(h), h = 1, ...,Hi. A transmission must
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Fig. 2. An example WNCS with 4 tasks running on 8 Nodes.

TABLE I. PARAMETERS OF THE 4 TASKS IN THE EXAMPLE WNCS

Routing Relative Period Deadline

Task Path Period Deadline Vector Vector

τ0 V0 → V7 → V4 9 6 [3, 6]T [2, 5]T

τ1 V1 → V7 → V3 → V5 9 7 N/A N/A

τ2 V2 → V7 → V6 9 9 N/A N/A

τ3 V7 → ∗1 N/A N/A N/A N/A

be completed within one time slot. Similar to the definition
of packet, a transmission can be either rhythmic, periodic or
broadcast. Transmission χi,k(h) is associated with release time
ri,k(h), deadline di,k(h) and finish time fi,k(h). Finish time
f i,k(h) represents the time slot when χi,k completes the h-th
hop. For transmission χi,k(h) (h > 1), its release time ri,k(h)
is the finish time f i,k(h− 1) of χi,k(h− 1). For the reader’s
convenience, we summarize the set of frequently used symbols
and notations in Table II.

Figure 2 illustrates an example WNCS which contains 4
tasks, i.e., τ0, τ1, τ2 and τ3 running on 8 nodes, i.e., Vi,
i = 0, . . . , 7, where V0, V1, V2 are sensors, V4, V5, V6 are
actuators, V3 is a relay node and V7 is the gateway. Task τ0 is
the rhythmic task, tasks τ1 and τ2 are periodic tasks, and task
τ3 is a broadcast task. Each task τi has one packet χi,k which is
composed of a series of transmissions χi,k(h)’s. Their routing
paths, periods and relative deadlines are given in columns 2, 3
and 4 of Table I, respectively. In addition, τ0 has P⃗0 and D⃗0

equal to [3, 6]T and [2, 5]T , respectively.

Based on the presented system model, we shall elaborate
in the following of the paper how to perform effective on-line
data link layer schedule adjustment to accommodate rhythmic
task instances in the presence of physical disturbances.

III. PROBLEM FORMULATION

In this section, we first give a motivational example to show
the deficiency of using a static schedule in our system model.
We then describe the formulation of the on-line data link layer
scheduling problem in detail.

A. Motivation

Consider the example given in Figure 2. It contains one
rhythmic task τ0, two periodic tasks τ1 and τ2 and one
broadcast task τ3. The periodic tasks and rhythmic task are

1Task τ3 is a broadcast task, which has 2 hops. The first hop is from V7
to V0, V1, V2, V3, V4, V6, and the second hop is from V3 to V5.
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Fig. 3. The time slot assignment in static schedule S̄ ((a)) and two alternative
dynamic schedules ((b) and (c)) in the motivational example. (i, h) within a
slot indicates that this slot is assigned to the h-th hop of task τi.

synchronous and packets χ0,1, χ1,1 and χ2,1 are released at
time slot 0. The predetermined static schedule for the task
set is shown in Figure 3(a). Suppose at time slot tn→r(=9),
τ0 enters the rhythmic state, and employs P⃗0 = [3, 6]T and
D⃗0 = [2, 5]T as the vectors of periods and relative deadlines,
respectively. Hence, τ0 returns to the nominal state at time slot
tr→n = tn→r + P0,1 + P0,2 = 18. If we continue to use the
static schedule after tn→r, packet χ0,3 released at time slot
12 cannot meet its deadline at time slot 17 . Therefore, the
network cannot use the static schedule to properly respond to
the period and deadline changes of τ0 in its rhythmic state.

A possible way to make all rhythmic packets schedulable is
to calculate the minimal allowed period of τ0 while scheduling
rhythmic and period tasks under EDF. The network then can
employ a static schedule whose size is the least common
multiple of periods of the rhythmic task and periodic tasks.
In this schedule, τ0 always transmits packets with the minimal
allowed period. According to the schedulability analysis under
EDF in [3], the minimal allowed period of τ0 in our example
is 5, which is larger than the first period (=3) in P⃗0. Hence,
we cannot find a feasible static schedule for the given task set.

An alternative is to design a temporary dynamic schedule
for the network when τ0 is in its rhythmic state, and let the
system reuse the static schedule when τ0 returns to its nominal
state. One example dynamic schedule is shown in Figure 3
(b). It does not drop any packet, and compared to the static
schedule in Figure 3 (a), it introduces 7 slot assignment updates
(slot 12-18). In contrast, Figure 3 (c) gives another dynamic
schedule which also does not drop any packet but only needs to
update 3 slot assignments (slot 13, 17 and 18). This observation
motivates our work to determine the optimal dynamic schedule,
in which all rhythmic task instances can meet their deadlines
and the number of dropped periodic packets is minimized.

B. Problem Statement

At the highest level, the problem that we want to tackle is
finding a dynamic schedule that (i) can be used on-line when
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disturbance happens, (ii), finishes all the rhythmic packets by
their deadlines, (iii) drops minimum number of periodic pack-
ets, and (iv) incurs small overhead. Below, we first discuss the
execution model, then formulate the constraints and objective
for the problem, and finally define the problem formerly.

In our system model, the network starts by following a
static schedule S̄ assuming that τ0 has never entered the
rhythmic state. S̄ is designed off-line and can guarantee that all
rhythmic and periodic packets meet their nominal deadlines. A
static schedule is defined as S̄ = {(t, i, h)}, where t is the time
slot identifier, i is the task identifier and h is the hop index.
Given any time slot t, we have S̄[t] = (i, h). If no task uses
slot t, it is idle and we have S̄[t] = (−1,−1). The length L of
S̄ is the least common multiple of the task periods (assuming
τ0 is in the nominal state) and the schedule is followed in a
cyclic fashion, i.e., S̄[t] = S̄[t + L]. (S̄ can be constructed
using the approaches presented in [13] and [24], and further
discussion of this is out of the scope of this paper.)

When τ0 enters the rhythmic state, the workload of the
system is changed and a dynamic schedule S is thus needed
before the system resumes using S̄. S starts from start point tst
and ends at switch point tsw, where tst and tsw are the first and
last slots of S, respectively. Suppose that when χ0,m reaches
the gateway Vg at time slot f0,m(h), Vg determines that τ0
should switch from the nominal to rhythmic state at tn→r in
order to handle a detected disturbance. It then piggybacks the
information of S to a broadcast packet χn+1,k and propagates
S to all nodes in the network by following S̄. S̄ pre-allocates
slots to τn+1 with period P0 in order to ensure that S reaches
all nodes in the network since it is unpredictable when τ0
enters the rhythmic state and which nodes need to update the
schedule. Without loss of generality, the instance index k of
such a broadcast packet χn+1,k is set to the instance index m of
rhythmic packet χ0,m. Furthermore, we set deadline dn+1,m

of χn+1,m to tn→r such that the propagation of S can be
completed by tn→r. To guarantee that χn+1,m is broadcast
after the generation of S and reaches all nodes in the network
by dn+1,m, S̄ must satisfy

f0,m(h) + 1 < fn+1,m(1) (4)

and
fn+1,m(Hn+1) ≤ dn+1,m. (5)

Start point tst of S is set to the slot just after the finish time of
χn+1,m, i.e., fn+1,m(Hn+1)+1. From slot tsw+1, the system
resumes the use of S̄ and is ready to handle new disturbances
experienced by any tasks. Figure 4 summarizes the operations
of the system after the gateway receives packet χ0,m.

Based on the execution model discussed above, updated
slots must be piggybacked to a broadcast packet. Since the
payload size of a broadcast packet χn+1,k is bounded, only
the information about those slots whose assignments (i.e.,
task identifier and hop index) have been changed from S̄ is
piggybacked to χn+1,k. To help reduce the count of updated
slots, in this work, a slot set to idle in S is not treated as an
updated slot. (This treatment not only reduces the number of
updated slots but also will be exploited to reduce the search
space. More details on the latter will be given in Section IV-A.)
A slot t is an updated slot if and only if S[t] and S̄[t] are

t

f0,m(h) fn+1,m(1)

tst=fn+1,m(Hn+1)+1 tsw

Use S Use S&S

Generate a 

dynamic schedule S

Send broadcast 

packet χn+1,m 

tn->r tr->n

Use S

Fig. 4. Operations of the WNCS after the gateway Vg receives χ0,m.

different, and t is not set to idle in S, i.e.,

S[t] = (i, h) ̸= (−1,−1) and S̄[t] ̸= (i, h). (6)

During [tst, tsw], the WNCS follows the three rules below.

1) If t is an updated slot in S, S[t] = (i, k) (i.e., t =
f i,k(h)), and χi,k(h) is released but not finished earlier
than slot t, then the WNCS completes χi,k(h) at t.

2) If t is not an updated slot in S, S̄[t] = (i, k), and χi,k(h)
is released but not finished earlier than slot t, then the
WNCS completes χi,k(h) at t.

3) Otherwise, the WNCS remains idle at t.

By following the three rules, the WNCS actually executes the
combination of S̄ and S (denoted as S̄&S) during [tst, tsw].
We note that executing S̄&S does not influence the schedu-
lability of both the rhythmic and periodic tasks if they are
already schedulable in S, and summarize this in Theorem 1.

Theorem 1. If a transmission is finished at slot t in S, this
transmission can be finished earlier than or equal to t in S̄&S.

The proofs for all theorems and lemmas in this paper are
presented in the appendix.

Based on Theorem 1, we only need to focus on the
generation of S[tst, tsw] and let the WNCS follow S̄&S. If the
system is overloaded, some periodic packets can be dropped
to ensure the schedulability of rhythmic packets. However,
the performance of WNCS is thus degraded. Therefore, the
primary goal of on-line data link layer scheduling is to make
as many periodic packets meet their deadlines as possible, i.e.,

min S[tst, tsw].ρ, (7)

where S[tst, tsw].ρ is the number of periodic packets dropped
by S[tst, tsw]. This optimization objective is subject to a
number of constraints. First of all, each rhythmic packet χ0,k

must meet its deadline d0,k, i.e., χ0,k(H0) satisfies

Constraint 1. f0,k(H0) ≤ d0,k.

To ensure that S̄ can be resumed from tsw+1, switch point tsw
(i.e., the end time of S) is required to be larger than or equal to
tr→n. In this work, we assume that physical disturbances occur
sporadically [2], [28]. To respond to these events, τ0 needs to
enter the rhythmic state accordingly. We define tusw to be the
latest release time of a rhythmic packet (called switch point
upper bound) when τ0 re-enters the rhythmic state after tr→n.
To guarantee the performance of the WNCS, tsw is required
to be smaller than or equal to tusw. Thus, we have

Constraint 2. tr→n ≤ tsw ≤ tusw.

Since the size of the broadcast packet is limited, we set a
maximum allowed number of updated slots in S and denote
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it by ∆u. Let S[tst, tsw].δ be the actual number of updated
slots. Then, we have the following constraint

Constraint 3. S[tst, tsw].δ ≤ ∆u.

In all, our aim is to solve the following problem:

On-Line Scheduling with Bounded Overhead (OLSBO):
Given task set T , S̄, tn→r, tst, tusw, and ∆u, determine tsw
and S[tst, tsw] such that objective function (7) is achieved
and Constraint 1, 2, and 3 are satisfied.

Since the gateway starts to compute S[tst, tsw] at f0,m(h)+1
and the earliest slot reserved for χn+1,m in S̄ is fn+1,m(1),
the maximum allowed time for solving OLSBO, Tmax, is

Tmax = fn+1,m(1)− 1− f0,m(h). (8)

IV. OVERALL APPROACH

In this section, we present an on-line scheduling framework
to solve OLSBO. We first introduce a new constraint to reduce
the solution space of OLSBO in Section IV-A. We then discuss
how to decide the switch point candidates and their corre-
sponding transmission sets in Section IV-B and Section IV-C.
In Section IV-D, we describe our on-line scheduling framework
to construct the optimal dynamic schedule.

A. Reducing Solution Space

To reduce the solution space of OLSBO, we require that
slot t cannot be set to idle in S if t is assigned to the h-th hop
of τi in S̄ and χi,k(h) is released before t but finished after
t. Therefore, we add the following constraint to OLSBO.

Constraint 4. If S̄[t] = (i, h) ̸= (−1,−1), ri,k(h) < t and
f i,k(h) > t, then t cannot be set to idle, i.e., S[t] ̸= (−1,−1).

We use OLSBO+ to refer to the new problem with reduced
solution space. The following lemma shows the equivalence of
Problem OLSBO and OLSBO+ in finding feasible solutions.

Lemma 1. If S is a feasible solution to Problem OLSBO,
Problem OLSBO+ must also have one feasible solution S′

which satisfies S.ρ = S′.ρ and S.δ = S′.δ.

Based on Lemma 1, we have the following Theorem.

Theorem 2. If S is the optimal solution to Problem OLSBO,
then Problem OLSBO+ has an optimal solution S′ that satis-
fies S.ρ = S′.ρ and S.δ = S′.δ.

According to Theorem 2, solving Problem OLSBO is
equivalent to solving Problem OLSBO+. Therefore, in the rest
of paper, we focus on finding the optimal solution to Problem
OLSBO+, which has a much reduced solution space.

B. Determining Switch Point Candidates

Choosing the right tsw is important as it impacts not only
the schedulability of system but also the number of updated
slots in S. Theoretically, any slot within [tr→n, t

u
sw] can be

a switch point, but checking each slot is time consuming. To
tackle this challenge, we first identify the following sufficient
condition under which S̄ can be employed from tsw + 1.

Theorem 3. Given time slot tsw, let χ0,p∗+1 and χ0,q∗+1

be rhythmic packets having the earliest nominal and actual
release times later than or equal to tsw, respectively. (See the
example in Figure 1). S̄ can be employed from tsw+1 without
dropping any rhythmic packet if the following three conditions
are satisfied by S[tst, tsw].

Condition 1. tsw ≥ tr→n and r̄0,p∗+1 = r0,q∗+1.

Condition 2. All transmissions of rhythmic packet χ0,k re-
leased earlier than r0,q∗ (k < q∗) must be finished by d0,k.

Condition 3. Let S̄[th0 ] = (0, h0) and S̄[tH0 ] = (0,H0),
where th0

is the earliest slot serving τ0 after tsw in S̄[t] and
is reserved for the h0-th hop of τ0, and tH0 is the earliest
time slot reserved for the H0-th hop of τ0 after tsw in S̄[t].
If tH0 > d0,q∗ , all transmissions of χ0,q∗ are finished by
min{tsw, d0,q∗}. Otherwise, χ0,q∗(h0 − 1) is finished by tsw.

Our goal is then to select a tsw such that the conditions
in Theorem 3 are satisfied. Although it is easy to select a tsw
satisfying tsw ≥ tr→n, r̄0,p∗+1 = r0,q∗+1 in Condition 1 may
not always be satisfied. In this case, we explore different meth-
ods to realize r̄0,p∗+1 = r0,q∗+1 assuming tsw is determined.
The first method, referred to as earlier release method, is to
shorten the time interval between r0,q∗ and r0,q∗+1 by shifting
r0,q∗+1 backward to the closest nominal release time of τ0,
r̄0,p∗+1, which makes Condition 1 in Theorem 3 satisfied.
Implementing such a shift only needs all nodes in the WNCS
to follow S̄ from tsw+1. If d0,q∗ > r̄0,p∗+1, d0,q∗ is adjusted
to r̄0,p∗+1 such that the deadline d0,q∗ of χ0,q∗ is smaller than
or equal to the release time r0,q∗+1 of χ0,q∗+1. Therefore, the
deadline d0,q∗ of χ0,q∗ is calculated by

d0,q∗ = min{d0,q∗ , r̄0,p∗+1}. (9)

Since Theorem 3 assumes tsw ≥ r0,q∗ and the earlier release
method requires r0,q∗+1 ≥ r̄0,p∗+1, this method requires

r̄0,p∗ ≤ r0,q∗ < tsw ≤ r̄0,p∗+1 ≤ r0,q∗+1, (10)

as shown in Figure 1. If the other two conditions in Theorem 3
are still satisfied, then S̄ can be employed from tsw + 1.

Another method is to shorten the nominal release time
interval between r̄0,p∗ and r̄0,p∗+1 and shift r̄0,p∗+1 to r0,q∗+1

for r̄0,p∗+1 > r0,q∗+1. Such a shift also makes Condition 1
satisfied. However, this method needs to adjust the clocks of all
nodes in the WNCS to follow S̄ from tsw+1, which may not be
suitable for on-line use. There are also other possible methods
to make r̄0,p∗+1 equal to r0,q∗+1. For example, we can either
reduce the periods P0,x’s or evenly shorten the constant period
P0 to make r0,q+1 equal to r̄0,p+1. These methods result in
high computational overhead within [tst, tsw], which not only
increase the number of updated slots in S but also make it
hard to find a feasible S. Hence, in this work, we will only
focus on the earlier release method.

Since tusw is set to the release time of a specific future
rhythmic packet in Section III-B and r0,q∗+1 is shifted to
r̄0,p∗+1 by using the earlier release method, tusw is also set
to the nominal release time of a future rhythmic packet. Thus,
we can calculate tusw as follows:

tusw = tr→n + (α− 1) · P0, (11)

where α ∈ N+ is called switch point scaling factor. Given
tusw, any time slot within [tr→n, t

u
sw] can be a switch point
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candidate. According to the following lemma, we only need
to check whether the nominal release times of rhythmic packets
can be the switch point.

Lemma 2. Suppose S[tst, t
∗] (t∗ ∈ [r0,q∗ + 1, r̄0,p∗+1 −

1]) satisfies the conditions in Theorem 3 when r0,q∗+1 is
shifted to r̄0,p∗+1 and d0,q∗ is set to min{d0,q∗ , r̄0,p∗+1}.
Let S[tst, r̄0,p∗+1] be the schedule generated by concate-
nating S[tst, t

∗] and S̄[t∗ + 1, r̄0,p∗+1]. Then S[tst, r̄0,p∗+1]
satisfies (i) the conditions in Theorem 3, (ii) S[tst, t∗].ρ =
S[tst, r̄0,p∗+1].ρ and (iii) S[tst, t∗].δ = S[tst, r̄0,p∗+1].δ.

Based on Lemma 2, if no feasible schedule exists when
using r̄0,p∗+1 as the switch point regardless of which slot in
[tr→n, t

u
sw] being used as the switch point, then no feasible

schedule exists for whatever slot in [tr→n, t
u
sw] used as the

switch point. Therefore, we only consider each nominal release
time r̄0,p+1 within [tr→n, t

u
sw] as a switch point candidate

(denoted as tcsw). We refer to the set of all these switch point
candidates as the switch point candidate set Γ(tusw), where
Γ(tusw) = {tcsw|tcsw = r̄0,p+1,∀r̄0,p+1 ∈ [tr→n, t

u
sw]}.

C. Constructing Transmission Set

After generating Γ(tusw), the gateway needs to determine
which transmissions should be scheduled by S for each switch
point candidate tcsw. In the rest of this paper, we only consider
transmissions that have not finished before tst since only such
transmissions need to be scheduled by S. Let Ψ(tcsw) be the
transmission set containing all transmissions to be finished
in [tst, t

c
sw] by S. The following lemma determines which

rhythmic transmissions belong to Ψ(tcsw).

Lemma 3. Suppose tsw is set to tcsw and d0,q∗ of χ0,q∗

is adjusted to min{d0,q∗ , tcsw}, where χ0,q∗ is the latest
transmission released earlier than tcsw. A rhythmic transmis-
sion χ0,k(h) belongs to Ψ(tcsw) if and only if r0,k < tcsw.
If S[tst, tcsw] ensures any rhythmic transmission χ0,k(h) in
Ψ(tcsw) finished by min{tcsw, d0,k}, S[tst, tcsw] satisfies all
conditions of Theorem 3.

In order for the system to resume the use of S̄ from tcsw+1,
a periodic transmission χi,k(h) should be included in Ψ(tcsw)
if it is scheduled to be finished within [tst, t

c
sw] by S̄. A

transmission χi,k(h) (h̃ ≤ h ≤ ĥ) in Ψ(tcsw) is associated with
release time ri,k(h), deadline di,k(h) and finish time fi,k(h).
Here, h̃ is the first hop of χi,k(h) to reserve a slot in S and
ĥ is the last hop of χi,k(h) to reserve a slot in S. The release
time ri,k(h) and deadline di,k(h) of χi,k(h) are calculated by

ri,k(h) =


ri,k if h = h̃ = 1

tst − 1 if h = h̃ > 1

fi,k(h− 1) if h̃+ 1 ≤ h ≤ ĥ

(12)

and
di,k(h) = min{tcsw, di,k} − (ĥ− h), (13)

respectively while the finish time fi,k(h) is to be determined.

D. On-Line Scheduling Framework

Given Γ(tusw) and Ψ(tcsw) for each switch point candidate
tcsw, we are now ready to solve OLSBO+. We design an on-
line scheduling (OLS) framework. Every time τ0 enters the
rhythmic state at tn→r, OLS generates a primary dynamic

schedule and a backup dynamic schedule for each switch point
candidate tcsw. The primary schedule considers all transmis-
sions in Ψ(tcsw). It aims at finishing all rhythmic packets on
time while meeting as many deadlines of periodic packets as
possible. In contrast, a backup schedule only assigns time slots
to rhythmic transmissions and drops all periodic transmissions.
It serves as the baseline dynamic schedule in case no primary
schedule is found. If the number of updated slots in a generated
(either primary or backup) dynamic schedule is smaller than or
equal to ∆u, this schedule is accepted by OLS and stored in the
schedule set S. Finally, OLS selects the best dynamic schedule
in terms of fewest number of dropped periodic packets first and
fewest number of updated slots second.

OLS determines the dynamic schedule for each switch
point candidate in the increasing order of these time points. To
speed up the generation of dynamic schedules for the current
switch point candidate t̄csw, OLS reuses partial slot assignments
generated for a previous switch point candidate tcsw. Specif-
ically, every time a backup or primary schedule S[tst, t

c
sw]

is generated, we identify a time slot trb (tst ≤ trb ≤ tcsw,
called reusable slot) such that schedule Srb = S[tst, t

r
b ] (called

reusable schedule) can be reused when generating primary or
backup dynamic schedules for later switch point candidates.
Reusable slot trb is calculated as follows:

trb = min{ri,k|∀χi,k(h) ∈ Ψ(tcsw), di,k > tcsw}, (14)

and thus Srb only schedules transmissions whose deadlines are
earlier than or equal to tcsw.

Changing switch point from tcsw to t̄csw does not directly
help reduce the number of dropped periodic packets or the
number of updated slots by S[tst, t

r
b ] since [tst, t

r
b ] can only

be used by transmissions whose deadlines are smaller than or
equal to tcsw according to the definition of trb . Thus, when OLS
generates S[tst, t̄csw], it only needs to decide S[trb+1, t̄csw], and
then concatenate Srb and S[trb + 1, t̄csw] to derive S[tst, t̄csw].
We use b = 0 to indicate that tr0 and Sr0 are used to generate
a primary schedule, and use b = 1 to show that tr1 and Sr1 are
for generating a backup schedule.

The high-level description of OLS framework is given
in Algorithm 1. Every time τ0 enters the rhythmic state at
tn→r, OLS initializes a set of variables (Lines 2-3). Here,
S is the schedule set that contains all schedule candidates.
Sr0 , Sr1 and tr0, tr1 are reusable primary/backup schedules and
reusable primary/backup time slots, respectively. Then, OLS
constructs switch point candidate set Γ(tusw), where switch
point candidates in Γ(tusw) are sorted in the increasing order
of their values. For each switch point candidate, OLS first
generates a backup schedule (Line 10) and then generates a
primary schedule (Line 13). S[tst, tcsw] is generated by using a
slot assignment algorithm such as dynamic programming (DP),
EDF and their variations. (More details on DP will be given in
Section V). While the generated S[tst, tcsw] updates more than
∆u updated slots and still schedules transmissions of at least
one periodic packets (Line 15), OLS keeps selecting a periodic
packet to drop (Line 16) in order to satisfy Constraint 3. This
process is repeated until each tcsw ∈ Γ(tusw) has been checked.
Finally, Vg selects S∗[tst, tsw] from S (Line 26) such that

S∗[tst, tsw].ρ ≤ S[tst, t
c
sw].ρ,∀S[tst, tcsw] ∈ S. (15)
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Algorithm 1 On-Line Scheduling (OLS)
1: Upon τ0 entering the rhythmic state:
2: S = ∅;
3: tr0 = tst − 1, tr1 = tst − 1, Sr

0 = ∅, Sr
1 = ∅;

4: Select r̄0,p+1’s as tcsw’s and construct Γ(tusw);
5: for (∀tcsw ∈ Γ(tusw)) do
6: Construct Ψ(tcsw); //Use Lemma 3 and S̄ to determine which

rhythmic and periodic transmissions belong to Ψ(tcsw), respec-
tively

7: b = 1;
8: while (b ≥ 0) do
9: if (b == 1) then

10: Generate a backup schedule S[tst, tcsw] based on Ψ(tcsw),
reusable slot tr0 and reusable schedule Sr

0 ;
11: end if
12: if (b == 0) then
13: Generate a primary schedule S[tst, t

c
sw] based on

Ψ(tcsw), reusable slot tr1 and reusable schedule Sr
1 ;

14: end if
15: while (S[tst, tcsw].δ > ∆u and S[tst, t

c
sw] schedules trans-

missions of at least one periodic packets) do
16: Drop all transmissions χi,k(h)’s of periodic packet χi,k

whose slot reservation in S[tst, t
c
sw] causes the maxi-

mum number of updated slots;
17: Set associated updated slots to idle in S[tst, t

c
sw];

18: end while
19: if (S[tst, tcsw].δ ≤ ∆u ) then
20: S = S ∪ {S[tst, tcsw]};
21: Calculate trb and record S[tst, t

r
b ] as Sr

b , where Sr
b ⊆

S[tst, t
c
sw] is satisfied;

22: end if
23: b = b− 1;
24: end while
25: end for
26: return S∗[tst, tsw] ∈ S where S∗[tst, tsw].ρ ≤ S[tst, tsw].ρ

among all S[tst, tsw]’s in S;

Ties are broken in favour of the minimum number of updated
slots first and the earliest switch point candidate second. When
Tmax is reached, OLS is interrupted and the gateway Vg just
returns the best dynamic schedule found till now.

V. DYNAMIC SCHEDULE GENERATION

In this section, we propose our DP based heuristic to
assign time slots to Ψ(tcsw). The heuristic is called in Lines 10
and 13 of Algorithm 1 to generate a dynamic schedule with the
minimum number of dropped periodic packets subject to the
bounded update overhead. In Section V-A, we present an exact
DP based algorithm given a switch point candidate tcsw. Since
DP needs to check an exponential number of schedules to
search for a solution, it is very time consuming and unsuitable
for on-line use. Thus, we introduce a heuristic in Section V-B,
which is constrained to check a limited number of schedules.

A. Exact Dynamic Programming Algorithm

We first present an exact DP based algorithm (eDP) given a
switch point candidate tcsw. The key idea of eDP is to construct
S[tst, t] by determining the assignment of time slot t given
S[tst, t − 1]. We refer to S[tst, t − 1] as a parent schedule
of S[tst, t] and S[tst, t] a child schedule of S[tst, t − 1].
The maintenance of schedule S[tst, t] not only influences the
efficiency of solution search but also impacts the number of
dropped periodic packets within [tst, t]. Specifically, there are

five issues to be addressed: (i) which schedules should be kept
if multiple S[tst, t]’s are found for slot t; (ii) which trans-
mission can use slot t; (iii) how to guarantee that any found
schedule S[tst, t] satisfies S[tst, t].δ ≤ ∆u (Constraint 3); (iv)
how to ensure that no rhythmic packet misses its deadline in
S[tst, t] (Constraint 1); (v) Constraint 4 is satisfied in any
found schedule S[tst, t]. We will present the design of eDP
to address the aforementioned issues.

Based on a found schedule S[tst, t], we say that S[tst, t]
finishes transmission subset ψf (t) if and only if each transmis-
sion in ψf (t) is finished by t according to S[tst, t]. According
to ψf (t) and timing parameters of transmissions in Ψ(t), we
can derive which transmissions miss deadlines by t in S[tst, t].
We say that S[tst, t] drops transmission subset ψd(t) if and
only if each transmission in ψd(t) misses deadlines by t in
S[tst, t]. By combining ψf (t) and ψd(t), we get transmission
subset ψ(t) = ψf (t) ∪ ψd(t). We say that S[tst, t] serves
ψ(t) if and only if each transmission in ψ(t) is either finished
or misses its deadline by t according to S[tst, t]. If multiple
schedules serve the same transmission subset, such schedules
are defined to be equivalent schedules as follows.

Definition 1. If S[tst, t] and S′[tst, t] serve the same trans-
mission subset ψ(t), S[tst, t] is S′[tst, t]’s equivalent schedule
(denoted as S[tst, t] ≡ S′[tst, t]).

Since various ψf (t)’s can be finished within [tst, t], different
ψ(t)’s can be served by different S[tst, t]’s correspondingly.

Our eDP approach follows the general process below to
keep schedules for t. (Note that ∆u[tst, t] represents the upper
bound on the number of updated time slots for S[tst, t].)
For each time slot t, each possible value of ∆u[tst, t] and
each possible transmission subset ψ(t), we find and maintain
S[tst, t] in terms of the minimum number of dropped periodic
packets among all equivalent schedules serving ψ(t). By using
the maintained schedules S[tst, t]’s as parent schedules, we
generate child schedules S[tst, t+1]’s. This process is repeated
until we find S∗[tst, t

c
sw] (i) resulting in the minimum number

of dropped periodic packets among all equivalent schedules
serving Ψ(tcsw) and (ii) satisfying S∗[tst, t

c
sw].δ ≤ ∆u. We

provide a more formal description of the eDP approach below.

Let opt(ψf (t),∆u[tst, t]), denoting the eDP procedure,
return S[tst, t].ρ, where (i) S[tst, t] finishes ψf (t), (ii) S[tst, t]
drops the fewest number of periodic packets among all equiv-
alent schedules serving ψ(t) = ψf (t) ∪ ψd(t), and (iii)
S[tst, t].δ ≤ ∆u[tst, t]. We say that opt(ψf (t),∆u[tst, t])
minimizes S[tst, t].ρ. We aim to determine

opt(ψf (tcsw),∆
u), (16)

where Ψ(tcsw) = ψf (tcsw) ∪ ψd(tcsw). The return value of
opt(ψf (t),∆u[tst, t]) is determined not only by the time slot
assignment on t but also by the selection of S[tst, t− 1].

Function opt(ψf (t),∆u[tst, t]) can be represented by re-
cursive expressions discussed below. We first define function
ϕ(S[t] = (i, h), ψf (t)), which returns the number of periodic
packets with transmissions missing the deadlines at t due to
S[t] = (i, h) while S[tst, t] finishes ψf (t). We consider two
cases, (i) t = tst and (ii) tst < t ≤ tcsw. Case (i) is the initial
case of opt(ψf (tst),∆

u[tst, tst]), and is only determined by
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S[tst] since there is no parent schedule at tst. In case (ii), if t
is set to idle, we have (i, h) = (−1,−1). Then,

opt(ψf (t),∆u[tst, t])|(−1,−1) = opt(ψf (t− 1),∆u[tst, t])+

ϕ(S[t] = (−1,−1), ψf (t)) and ψf (t− 1) = ψf (t), (17)

where function opt(ψf (t),∆u[tst, t])|(−1,−1) designates the
case of opt(ψf (t),∆u[tst, t]) when t is set to idle.

We then define ready transmission of time slot t, which
can potentially use t given S[tst, t− 1].

Definition 2. Given S[tst, t − 1], transmission χ∗
i,k(h) ∈

Ψ(tcsw) is a ready transmission of slot t if (i) it is not finished
by t − 1 and (ii) ri,k(h) < t ≤ di,k(h). Transmission subset
ψr(t) of Ψ(tcsw) is a ready transmission subset of t if (i) any
transmission in ψr(t) is a ready transmission of t and (ii)
ψr(t) contains all ready transmissions of t.

According to Definition 2, only a ready transmission can be
assigned to t given S[tst, t − 1]. If t is assigned to a ready
transmission χ∗

i,k(h), we have

opt(ψf (t),∆u[tst, t])|(i,h) = opt(ψf (t)−{χ∗
i,k(h)},∆u[tst, t]

−S[t]|(i,h).δ) + ϕ(S[t] = (i, h), ψf (t)), (18)

where function opt(ψf (t),∆u[tst, t])|(i,h) designates the case
of opt(ψf (t),∆u[tst, t]) when χ∗

i,k(h) is assigned to t.
S[t]|(i,h).δ returns 0 if S̄[t] = (i, h) and 1 otherwise. The
boundary condition when t = tst for equations (17) and (18)
can be set as follows

opt(ψf (tst − 1),∆u[tst, tst − 1]) = 0. (19)

By combining equations (17) and (18), we have

opt(ψf (t),∆u[tst, t]) = min{opt(ψf (t),∆u[tst, t])|(−1,−1),

min
χ∗
i,k(h)∈ψf (t)∩ψr(t)

{opt(ψf (t),∆u[tst, t])|(i,h)}}, tst ≤ t ≤ tcsw,

(20)
where ψf (t)∩ψr(t) contains all ready transmissions in ψf (t).
In order to satisfy Constraint 3, we set

opt(ψf (t),∆u[tst, t]) = +∞, if ∆u[tst, t] < 0. (21)

To ensure any generated schedule S[tst, t] in eDP satisfying
Constraints 1 and 4, we introduce two new definitions: the
urgent time slot and favourite time slot.

Definition 3. A time slot t is an urgent time slot of χ∗
0,k(h) if

ready transmission χ∗
0,k(h) ∈ ψr(t) satisfies d∗0,k(h) = t.

An urgent time slot t of χ∗
0,k(h) must be assigned to rhythmic

transmission χ∗
0,k(h) since no rhythmic packet can be dropped

according to Constraint 1. Hence, we have

ϕ(S[t] = (i′, h′), ψf (t)) = +∞, if t is an urgent time
slot of χ∗

0,k(h) and (i′, k′, h′) ̸=(0, k, h), (22)

Definition 4. A time slot t is a favourite time slot of χ∗
i,k(h)

if ready transmission χ∗
i,k(h) ∈ ψr(t) satisfies S̄[t] = (i, h).

A favourite time slot t of χ∗
i,k(h) cannot be set to idle

according to Constraint 4. Therefore, we have

ϕ(S[t] = (−1,−1),ψf (t)) = +∞, if t is a favourite time
slot of χ∗

i,k(h). (23)

We claim the optimality of eDP in the following theorem.

Theorem 4. Assume tcsw is used as the switch point. The eDP
procedure based on (16), (19), (20), (21), (22) and (23) finds
a schedule if and only if there exists a solution satisfying
all constraints of Problem OLSBO+. In addition, the found
solution minimizes the objective function in (7).

Therefore, OLS-eDP can generate a dynamic schedule
if and only if there exists a feasible schedule for Prob-
lem OLSBO+, and the found solution minimizes objec-
tive function (7) by always setting trb to tst according to
Theorem 4. To avoid repeatedly calling recursive function
opt(t, ψ(t),∆u[tst, t]), we design an iterative version of
eDP to solve function (16). The time complexity of eDP is
O(n

2tcsw+2−1
n2−1 ). If there are κ switch point candidates in Γ(tusw),

OLS-eDP needs O(κ· n
2tcsw+2−1
n2−1 ) time to find the best dynamic

schedule S∗[tst, tsw]. The pseudo code of the iterative version
of eDP is given in the appendix.

B. Modified Dynamic Programming Algorithm

Although DP is optimal in solving Problem OLSBO+ for
a given switch point candidate, it is time consuming and
unsuitable for on-line use. This is because it constructs an
exponential number of child schedules for time slot t and uses
all of them as parent schedules for time slot t+1. To make the
search process more efficient, we modifies DP by reducing the
solution space. The heuristic, referred to as mDP, limits the
maximum allowed number of maintained child schedules β to
a positive integer value at each slot t. Specifically, at time slot
t, at most β child schedules that drop the fewest number of
packets are maintained and used as parent schedules at t+ 1.
The value of β in a benchmark is determined off-line by using
the following 2 steps for a specific benchmark.

1) Evaluate OLS-mDP using different values of β.
2) Choose the optimal value of β which results in the

minimum number of dropped periodic packets.

The time complexity of mDP is O(tcsw ·n2 ·β2). If there are κ
switch point candidates in Γ(tusw), OLS-mDP needs O(κ · tcsw ·
n2 · β2) time to find the best dynamic schedule S∗[tst, tsw].
For a specific task set, β is set to a value based on the previous
numbers of dropped packets on-line.

VI. PERFORMANCE EVALUATION

In this section, we present performance evaluation of our
OLS-mDP approach using randomly generated task sets and
network topology. We first calibrate the maximum allowed
number of maintained schedules (β) and switch point upper
bound (tusw) in OLS-mDP. We then compare its performance
with another efficient approach under different workloads.

A. Simulation Setup

We evaluate the performance of OLS-mDP using 20 groups
of task sets with different sizes and utilization levels in a
wireless network. The network topology is shown in Figure 9
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Fig. 5. Number of dropped periodic packets under OLS-mDP with different β values.

in the appendix. Each group, labelled as “(n+2)-u”, has 100
task sets. Each task set in group “(n+2)-u” contains n periodic
tasks, 1 rhythmic task, 1 broadcast task and has utilization level
of u, i.e., u =

∑n+1
i=0

Hi

Pi
. We select (n+2) to be 6, 11, 16 and

21 while assigning utilization levels to be 50%, 60%, 70%,
80% and 90%. The routing path of each rhythmic or periodic
task is pre-selected randomly and is composed of a chain of
4 to 13 hops from a sensor to an actuator. We use UUnifast
algorithm [4] to generate the initial period of each task since
UUnifast provides better control on how to assign periods to
tasks than a random assignment. Following the WirelessHART
protocol, we then adjust the generated task period to the value
closest to 2a (a ≤ 11) in order to limit the size of S̄. Each task
set is generated with the guarantee that its utilization level is
always equal to the specified utilization level.

We compare OLS-mDP with another time slot assignment
approach which also uses the framework of OLS but employs
a modified EDF algorithm to generate dynamic schedules
(called OLS-mEDF). For each tcsw in Γ(tusw), OLS-mEDF
first uses On-Line Distributed Algorithm (OLDA) 2 to test the
schedulability of Ψ(tcsw). If Ψ(tcsw) is found unschedulable,
some periodic packets are dropped to ensure the schedulability
of Ψ(tcsw) by following packet drop policy MLET presented
in [15]. OLS-mEDF then applies EDF on Ψ(tcsw) to generate
a backup dynamic schedule and a primary dynamic schedule
for each tcsw. A backup schedule can be used when eventually
Tmax is reached and no primary schedule is found by OLS-
mDP. OLS-mEDF is very efficient in generating dynamic
schedules since EDF is optimal on a uniprocessor [3].

We implement OLS-mDP and OLS-mEDF in C++ and
collect simulation data on a Sun Ultra 20 (x86-64) workstation
with Red Hat Enterprise Linux 6.5. We compare the perfor-
mance of both approaches using two metrics. The first metric
is the number of feasible task sets and the second metric is the
average drop rate for the same feasible task sets identified by
both approaches. The average drop rate is the ratio between the
number of dropped periodic packets and the number of active
periodic packets in S̄[tst, t

c
sw]. A periodic packet is active

during [tst, t
c
sw] if and only if at least one of its transmissions is

finished within [tst, t
c
sw] according to S̄. It is possible that both

approaches may not employ the same switch point for the same
feasible task set. To ensure the fairness of comparison, we use
the larger one out of the two switch points when calculating the
numbers of dropped and active periodic packets. Both metrics
indicate the effectiveness of an approach to generate a dynamic

2OLDA [15] is an on-line algorithm which combines local-deadline assign-
ment with schedulability analysis in a distributed real-time system.

schedule in response to external disturbances.

B. Parameter Selection for OLS-mDP

Since the performance of OLS-mDP depends on β (the
maximum allowed number of maintained child schedules in
OLS-mDP) and tusw (the upper bound on tsw), we first calibrate
these parameters to fully exploit the potential of OLS-mDP in
reducing the number of dropped periodic packets. Note that ∆u

(the maximum allowed number of updated slots by S[tst, tsw])
is determined by the deployed wireless protocol, which will be
discussed in Section VI-C. As a starting point, we test OLS-
mDP using different values (10, 20, 30, . . . , 100) for β while
assigning ∆u and tusw both to +∞. The numbers of dropped
packets for groups of 6-task, 11-task, 16-task and 21-task sets
are shown in Figure 5. Our results show that increasing β
can reduce the number of dropped periodic packets initially.
The number of dropped packets then fluctuates as β further
increases, and eventually rises abruptly when β increases to
a certain extent. In our simulation, we observe that 90, 50,
50 and 40 are the best values of β for OLS-mDP to drop the
fewest number of packets for groups of 6-task, 11-task, 16-task
and 21-task sets, respectively.

Next, we choose the value of tusw for OLS-mDP. The
goal is to keep it as small as possible without performance
degradation. A small tusw reduces the computational overhead
of running OLS-mDP on the gateway. Recall that we express
tusw as tusw = tr→n + (α− 1) · P0 in (11). By fixing β to the
values selected above, we measured the numbers of dropped
packets under OLS-mDP for different α values, 1 ≤ α ≤ 3, for
all groups of task sets. The results are summarized in Figure 6.
We observe that increasing α from 1 to 2 and from 2 to 3
reduce the dropped packet count by 16% and 1% on average
(56% and 9% at most), respectively. Without sacrificing the
performance of OLS-mDP, we set α to 2.

C. Performance Comparison: OLS-mDP vs. OLS-mEDF

If WirelessHART protocol is employed in response to
physical disturbances, no task set can be solved. This is
because rhythmic packets will be dropped for each task set
when rhythmic task enters the rhythmic state. Thus, we only
compared the performance of OLS-mDP with OLS-mEDF in
terms of number of feasible task sets and number of dropped
packets. We set β and α of OLS-mDP to the values selected
above for different groups of task sets. To ensure the fairness
of comparison, we also set α to 2 for OLS-mEDF. Following
WirelessHART standard, We assume that the payload size of a
packet in our experiments is 90 bytes. We use 3 bytes (24 bits)
to represent one updated slot, where 13, 7 and 4 bits are used
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Fig. 6. Number of dropped packets in different
task sets under OLS-mDP with different α values.
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Fig. 7. Number of task sets solved by OLS-mDP
and OLS-mEDF with ∆u equal to 30.
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Fig. 8. Comparison of average drop rates of
periodic packets in the same feasible task sets.

for slot identifier, task identifier and hop index, respectively.
Therefore, one broadcast packet can accommodate information
of at most 30 updated slots, i.e., ∆u = 30.

Figure 7 shows the number of task sets solved by OLS-
mDP and OLS-mEDF. One can readily see that OLS-mDP
finds 41% (108%) more task sets on average (at most) than
OLS-mEDF. Out of 2000 task sets, 431 task sets are solved
by both OLS-mDP and OLS-mEDF. The average drop rates
of periodic packets for these task sets are shown in Figure 8.
One can observe that OLS-mEDF drops 122% (321%) more
packets on average (at most) than OLS-mDP. Since mEDF
ignores Constraint 3, i.e., S[tst, tsw].δ ≤ ∆u, OLS-mEDF
either drops too many periodic packets to reduce the number
of updated slots (Lines 15-18 of Algorithm 1) or even fails to
find a dynamic schedule satisfying this constraint.

We also compared OLS-mDP with OLS-mEDF when set-
ting ∆u to 60, which represents the case where the wireless
protocol provides a higher bandwidth and a larger payload
size. The results show that OLS-mDP can solve 11% (31%)
more task sets on average (at most) than OLS-mEDF. For
the 1765 task sets solved by both approaches, OLS-mEDF
drops 128% (263%) more packets on average (at most) than
OLS-mDP. Therefore, OLS-mDP performs better than OLS-
mEDF in terms of both the number of feasible task sets and
the number of dropped periodic packets.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduce a data link layer scheduling
problem to minimize the impact of physical disturbances on
existing network flows in a WNCS. We propose an efficient
framework which uses an effective heuristic to perform on-
line schedule design. Our approach constructs a dynamic
schedule for this time interval with bounded time and sched-
ule adjustment overheads. Our simulation results validate the
effectiveness of our approach. As future work, we will extend
our system model to support multiple communication channels
and allow multiple rhythmic tasks to enter the rhythmic state
simultaneously. We will explore more efficient algorithms
to generate the dynamic schedule. Moreover, we plan to
implement our approach in a WNCS testbed and evaluate its
performance in real-world applications.
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APPENDIX

Proof for Theorem 1: Suppose S[t] = (i, k). If t is an
updated slot, and χi,k(h) is released but not finished earlier
than t, then χi,k(h) is still finished at t by following Rule 1.
If t is an updated slot, and χi,k(h) is finished earlier than slot
t, then the finish time of χi,k(h) is earlier than f i,k(h) in S
by following Rule 3. If χi,k(h) is not released at slot t, then
S[t] should not be set to (i, k), which is a contradiction to the
condition S[t] = (i, k).

If t is not an updated slot, S̄[t] = (i, k) is satisfied. Similar
to the proof in the above case, we can prove that χi,k(h) is still
finished earlier than or equal to f i,k(h) by employing rules 2
and 3. Hence, the theorem is proved. �

Proof for Lemma 1: We first prove that if Problem OLSBO
has a feasible solution S, we can find at least one feasible solu-
tion to Problem OLSBO+. If S does not violate Constraint 4,
it is also a feasible solution to Problem OLSBO+. Otherwise,
we show below that we can modify S to find a feasible solution
to Problem OLSBO+.

Suppose that the assignment of slot t in S violates Con-
straint 4, i.e., S[t] = (−1,−1), S̄[t] = (i, h), ri,k(h) < t
and f i,k(h) > t. Thus, we can find a slot t′ that is after
t and assigned to χi,k(h) in S, i.e., S[t′] = (i, h) and
t′ = f i,k(h) > t. We can swap the assignments of t and
t′ such that S[t] = (i, h) and S[t′] = (−1,−1). Such a swap
does not violate the precedence requirement of transmissions
because f i,k(h− 1) = ri,k(h) < t and χi,k(h− 1) is finished
earlier than t. By repeatedly applying the swapping scheme,
all slot assignments violating Constraint 4 can be adjusted
in a similar way, and the resulting schedule S′ is a feasible
solution to Problem OLSBO+.

Next, we prove that S.ρ = S′.ρ and S.δ = S′.δ are
satisfied. Since the WNCS finishes χi,k(h) earlier by using
the swap, no more packets are dropped due to this swap. In
addition, t and t′ are not updated slots because S̄[t] = (i, h) is
satisfied and t′ becomes idle after the swap. Thus, the lemma
is proved. �

Proof for Theorem 2: According to Lemma 1, OLSBO+ has
a feasible solution S′ satisfying S.ρ = S′.ρ and S.δ = S′.δ.
If we can prove the claim that S′ is an optimal solution to
OLSBO+, the theorem is proved. Now we prove the claim by
contradiction.

Suppose we can find an optimal solution S′′ to OLSBO+

that satisfies S′′.ρ < S′.ρ. Since S′′.ρ < S′.ρ = S.ρ, S can not
be an optimal solution to Problem OLSBO. This contradicts
the condition that S is the optimal solution to OLSBO. �

Proof for Theorem 3: If Condition 1 is satisfied, the actual
packet release patterns after r0,q∗+1 become exactly the same
as the nominal packet release patterns. Thus, switching to S̄ at
r0,q∗+1 will not cause any rhythmic packet loss after r0,q∗+1.
When Condition 2 is satisfied, all rhythmic packets released
before r0,q∗ meet their deadlines. By satisfying Condition 3,
χ0,q∗ is guaranteed to always finish by its deadline d0,q∗ .
Specifically, if tH0 > d0,q∗ , all transmissions of χ0,q∗ are fin-
ished by min{tsw, d0,q∗}. Hence, χ0,q∗ can meet its deadline
d0,q∗ . If there is any time slots reserved for transmissions of
τ0 in S̄[tsw + 1, r̄0,p∗+1], the WNCS just keeps them idle.
In the case tH0 ≤ d0,q∗ , χ0,q∗(h0 − 1) is finished by tsw in
S. Thus, χ0,q∗(h0), . . . , χ0,q∗(H0) can be completed by d0,q∗
by following S̄. If transmission χ0,q∗(h) (h ≥ h0) has been
completed by tsw and S̄[th] = (0, h) (tsw < th ≤ tH0) is
satisfied, the WNCS just keeps idle at slot th. Hence, S̄ can
be employed from tsw + 1 without dropping any rhythmic
packet. �

Proof for Lemma 2: With tsw = r̄0,p∗+1 > t∗ ≥ tr→n

and the shift of r0,q∗+1 to r̄0,p∗+1, Condition 1 is satisfied.
Since concatenating S[tst, t∗] and S̄[t∗ + 1, r̄0,p∗+1] does not
change the time slot assignment in [tst, r0,q∗ ], S[tst, r̄0,p∗+1]
guarantees that all rhythmic packets released earlier than r0,q∗
meet their deadlines, i.e., Condition 2 is satisfied. Since the
WNCS reuses S̄ from t∗+1, no slot after r̄0,p∗+1 can be used
by transmissions of χ0,q∗ . Thus, S[tst, r̄0,p∗+1] guarantees that
all transmissions of χ0,q∗ are finished by min{r̄0,p∗+1, d0,q∗}.
In addition, when setting tsw to r̄0,p∗+1, we have tH0 >
min{r̄0,p∗+1, d0,q∗} according to the definition of tH0 in
Theorem 3. Hence, S[tst, r̄0,p∗+1] also satisfies Condition 3.
Furthermore, since there is neither packet drop nor updated
slot in S̄[t∗ + 1, r̄0,p∗+1], S[tst, t∗].ρ = S[tst, r̄0,p∗+1].ρ and
S[tst, t

∗].δ = S[tst, r̄0,p∗+1].δ are satisfied. �

Proof for Lemma 3: First, condition 1 is satisfied because of
the definition of tcsw. Next, we consider two possible cases of
rhythmic packet χ0,k, (i) r0,k < r0,q∗ and (ii) r0,k = r0,q∗ . In
case (i), all transmissions of χ0,k satisfy d0,k, i.e., Condition 2
is satisfied. In case (ii), with the shift of r0,q∗+1 backward
to r̄0,p∗+1, d0,q∗ is updated to min{d0,q∗ , tcsw}. Since tH0

>
min{d0,q∗ , tcsw} is satisfied according to the definition of tH0

in Theorem 3 and all transmissions of χ0,q∗ are finished by
min{tcsw, d0,q∗}, Condition 3 is satisfied. �

Proof for Theorem 4: We prove the “if” part first by
contradiction. We assume that eDP cannot find a solution.
Thus, we have

opt(ψf (t),∆u[tst, t]) = +∞, (24)

at a specific slot t for any transmission subset ψf (t) finished by
any S[tst, t] given any ∆u[tst, t]. Suppose solution S[tst, tcsw]
satisfies all constraints of Problem OLSBO+. Thus, there exists
a specific S[tst, t] satisfying

opt(ψf (t),∆u[tst, t]) ̸= +∞, (25)
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TABLE II. SUMMARY OF USED NOTATIONS (UNLESS SPECIFIED, TASK IDENTIFIER i SATISFIES 0 ≤ i ≤ n+ 1 IN THIS TABLE.)

Parameter Definition Parameter Definition

Vi, 0 ≤ i ≤ g Gateway, sensors, actuators and relay nodes χi,k Rhythmic, periodic and broadcast packet χi,k

τi, 0 ≤ i ≤ n Unicast task χi,k(h) The h-th transmission of χi,k

τn+1 Broadcast task χ∗
i,k(h), 0 ≤ i ≤ n Ready transmission

τ0 Rhythmic task ri,k , di,k Release time and deadline of χi,k

τi, 1 ≤ i ≤ n Periodic task r̄0,k , d̄0,k Nominal release time and nominal deadline of χ0,k

Hi Hop number of τi ri,k(h), di,k(h) Release time and deadline of

Pi, Di Period and relative deadline 0 ≤ i ≤ n rhythmic or periodic transmission χi,k(h)

0 ≤ i ≤ n of rhythmic or periodic task τi f i,k(h) Finish time of χi,k(h)

P⃗0, D⃗0 Period and relative deadline vectors of τ0 Γ(tusw) Set of switch point candidates

tst, tsw , Start point, switch point, switch point Slot when τ0 leaves the nominal state

tcsw , tusw candidate and switch point upper bound tn→r , tr→n and the rhythmic state, respectively

S̄, S Static schedule and dynamic schedule Set of transmissions to be scheduled within

S[tst, t] Dynamic schedule within [tst, t] Ψ(tsw), Ψ(tcsw) [tst, tsw] and [tst, tcsw], respectively

S̄[t], S[t] Assignment of slot t in S̄ and S, respectively The maximum allowed numbers of updated

S[tst, t].ρ Number of periodic packets dropped by S[tst, t] ∆u, ∆u[tst, t] slots for S[tst, tsw] and S[tst, t], respectively

S̄&S Combination of S̄ and S S[tst, t].δ Number of updated slots due to S[tst, t]

γ Maximum allowed number of updated slots in DP and mDP Transmission subsets finished, dropped and

Maximum allowed number of maintained child ψf (t), ψd(t), ψ(t) served by S[tst, t], respectively,

β, α schedules in DP/mDP and switch point scaling factor ψr(t) Ready transmission subset of t

at each slot t within [tst, t
c
sw]. Hence, (24) and (25) contradict

with each other. Algorithm eDP should be able to find a
feasible solution.

We next prove the “only if” part. If eDP finds a schedule
S[tst, t

c
sw] by solving equations (16), (19), (20), (21), (22)

and (23), then there is no rhythmic packet missing deadlines,
i.e., Constraint 1 is satisfied. Otherwise, the condition of (22)
is satisfied and no solution can be found by eDP. The selec-
tion of switch point candidates in Line 4 of Algorithm 1
guarantees that Constraint 2 of Problem OLSBO+ is satisfied.
Equations (21) and (23) ensure that Constraints 3 and 4 are
satisfied, respectively.

Finally, we prove that the found solution by eDP minimizes
objective function (7) among all equivalent schedules serving
Ψ(tcsw) by induction. We consider opt(ψf (tst),∆

u[tst, tst])
as the base case. According to equations (17), (18), (19)
and (20), we have

opt(∅,∆u[tst, tst]) = ϕ(S[tst] = (−1,−1), ∅) if ψf (tst) = ∅,
(26)

and

opt({χi,k(h)},∆u[tst, tst]) = ϕ(S[tst] = (i, h), {χi,k(h)})
if ψf (tst) = {χi,k(h)|χi,k(h) ∈ ψr(tst)}. (27)

Hence, opt(ψf (tst),∆u[tst, tst]) minimizes S[tst, tst].ρ.

Assume that opt(ψf (t − 1),∆u[tst, t − 1]) minimizes
S[tst, t − 1].ρ. We need to prove that opt(ψf (t),∆u[tst, t])
minimizes S[tst, t].ρ. According to the assumption,
opt(ψf (t − 1),∆u[tst, t]) minimizes S[tst, t − 1].ρ,
where S[tst, t − 1] finishes ψf (t − 1) = ψf (t).
Similarly, opt(ψf (t) − {χ∗

i,k(h)},∆u[tst, t] − S[t]|(i,h).δ)
minimizes S′[tst, t − 1].ρ, where S′[tst, t − 1] finishes
ψf (t − 1) = ψf (t) − {χ∗

i,k(h)}. According to equation (20),
opt(ψf (t),∆u[tst, t]) considers all possible assignments of
slot t and therefore minimizes S[tst, t].ρ since S[tst, t − 1].ρ

and S′[tst, t − 1].ρ are minimized. Hence, the found solution
by eDP minimizes objective function (7). �

Algorithm 2 summarizes DP based algorithm. The inputs
to DP are transmission set Ψ(tcsw), start time tst, reusable time
slot trb , switch point candidate tcsw, static schedule S̄, reusable
schedule Srb , number of periodic tasks, n, the maximum
allowed number of maintained schedules for each slot, β, and
the maximum allowed number of updated slots γ. In eDP, β
and γ are set to +∞ and ∆u, respectively. However, β is set
to a positive integer value in mDP. The algorithm starts with
initializing set of parent schedules, Sp, to be {Srb} (Line 2).
The main loop of Algorithm DP (Lines 3-36) generates child
schedules S[tst, t]’s based on each parent schedule S[tst, t−1]
for each slot t starting from trb +1 to tcsw. When generating a
dynamic schedule, DP first determines the state of t, i.e., if t is
an urgent and favourite time slot of some ready transmissions
according to Definitions 3 and 4, respectively (Lines 5-6).
Based on the state of t, DP determines the assignment of t
and gets a child schedule S[tst, t] (Lines 7-20). Every time
a new child schedule S[tst, t] for slot t is generated, DP
determines which child schedules should be reserved in set
of child schedules, Sc (Lines 21-31). After DP has obtained
Sc, it only reserves the first β child schedules at most in Sc

and put them to Sp in Line 35. Such a process is repeated
for each time slot t from trb to tcsw. After the main loop, DP
returns S∗[tst, t

c
sw] dropping the fewest number of periodic

packets among all schedules in Sp (Line 37).

Figure 9 shows our experiment setup where 36 nodes
are deployed in a 6 × 6 square mesh grid. Both sensors
and actuators can serve as relay nodes. The wireless network
topology is a connected graph, i.e., the gateway V35 can reach
all nodes in the network. Each routing path from a sensor to the
gateway or from the gateway to an actuator is predetermined.
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Algorithm 2 DP(Ψ(tcsw), tst, t
r
b , t

c
sw, S̄, Srb , n, β, γ)

1: Sp = {Sr
b };

2: Sc = ∅;
3: for (t = trb + 1; t ≤ tcsw; t++) do
4: for (∀S[tst, t− 1] ∈ Sp) do
5: Determine if t is an urgent time slot using Definition 3;
6: Determine if t is a favourite time slot using Definition 4;
7: for (i = −1; i ≤ n; i++) do
8: if t is an urgent time slot and i ̸= 0 then
9: continue; //t can only be assigned to a rhythmic trans-

mission to satisfy Constraint 1 of Problem OLSBO+

10: end if
11: if t is a favourite time slot of χ∗

i,k(h) and i == −1
then

12: continue; //t cannot be set to idle to satisfy Con-
straint 4 of Problem OLSBO+

13: end if
14: if t == −1 then
15: S[t] = (−1,−1);
16: else
17: Get a ready transmission of χi,k(h) using Defini-

tion 2;
18: S[t] = (i, h);
19: end if
20: S[tst, t] = S[tst, t− 1] ∪ S[t];
21: Calculate S[tst, t].ρ and S[tst, t].δ;
22: if (S[tst, t].ρ > γ) then
23: Skip S[tst, t] to satisfy Constraint 3 of Problem

OLSBO+;
24: end if
25: if (∃S′[tst, t] ∈ Sc such that S′[tst, t] ≡ S[tst, t] and

S[tst, t].δ ≥ S′[tst, t].δ and S[tst, t].ρ ≥ S′[tst, t].ρ)
then

26: Skip S[tst, t];
27: else
28: Insert S[tst, t] to Sc and maintain schedules in Sc by

sorting them in the non-increasing order of num of
dropped packets first and num of updated slots second;

29: end if
30: if (∃S′[tst, t] ∈ Sc such that S′[tst, t] ≡ S[tst, t] and

S[tst, t].δ ≤ S′[tst, t].δ and S[tst, t].ρ ≤ S′[tst, t].ρ)
then

31: Sc = Sc − {S′[tst, t]};
32: end if
33: end for
34: end for
35: The first β child schedules in Sc are stored in Sp;
36: end for
37: return S∗[tst, tsw] ∈ S where S∗[tst, tsw].ρ ≤ S[tst, tsw].ρ

among all S[tst, tsw]’s in S;

V14 V22 V12 V26 V33 V1

V6 V20 V23 V17 V8 V29

V15 V34 V0 V2 V10

V28 V30 V19 V9 V24 V32

V16 V18 V11 V21 V25 V27

V7 V4 V5 V3 V31 V13

V35

Fig. 9. Wireless network topology used in the simulation. It is composed of
one gateway (V35), 17 sensors (V0 − V16) and 18 actuators (V17 − V34). A
chain of solid or dashed direct links represents a routing path from a sensor
to the gateway or from the gateway to an actuator, respectively.
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