
Rhythmic Tasks: A New Task Model with Continually Varying Periods
for Cyber-Physical Systems

Junsung Kim, Karthik Lakshmanan, Ragunathan (Raj) Rajkumar
Electrical and Computer Engineering Department
Carnegie Mellon University, Pittsburgh, PA 15213
{junsungk, klakshma, raj}@ece.cmu.edu

Abstract—Traditional mechanical subsystems in automobiles
are being replaced by electronically controlled systems, often
with no mechanical backup. This trend towards “drive-by-
wire” systems is becoming increasingly popular. In these cyber-
physical systems, a critical task not meeting its timing deadline
can lead to a safety violation and damage to life and/or
property. Classical real-time scheduling techniques such as
RMS and EDF can be used to guarantee the schedulability of
periodic tasks. However, certain critical tasks like the engine
control task are activated by engine events such as pulses
generated by sensors at the engine crankshaft. The periods
of these engine tasks vary continually and even dramatically
depending on the engine speed. The conventional periodic task
model is inadequate for handling such tasks in cyber-physical
systems due to its pessimism when combined with common
schedulability analyses. In this paper, we define a new task
model called Rhythmic Tasks for tasks having periods that vary
due to external physical events. To the best of our knowledge,
this is the first model that considers continually varying periods
for fixed-priority scheduling in dynamic operating environ-
ments. We formally define the rhythmic task model and study
its scheduling properties. In the context of rhythmic engine
control tasks, we offer schedulability tests for determining the
maximum possible utilization under the steady state, which is
related to the physical engine speed. We also investigate the
range of possible engine acceleration and deceleration rates.
We show that excessive acceleration and deceleration can make
the system unschedulable. We provide algorithms to find the
appropriate ranges for acceleration and deceleration rates. We
use a specific case study of engine control to illustrate our
analysis.

Keywords-Real-time; Rhythmic-Task; Engine; Cyber-
Physical; Scheduling; Embedded-System;

I. INTRODUCTION

Cyber-Physical Systems (CPS) embed computing and
communication capabilities in all types of physical objects.
Embedded and real-time systems are now essential to control
the physical environment, to monitor the timing of dynamic
processes taking place in it, to efficiently coordinate CPS
operations and most importantly to ensure safety. This trend
will only continue and in fact is expected to accelerate [1].

Among many applications of CPS such as aerospace
systems, building and industrial infrastructure control, med-
ical devices, robotic systems and transportation vehicles,
automotive sub-systems such as engine control and chassis
control must operate in real-time. The embedded control
system in a car is also safety-critical and requires a high
level of confidence in system correctness. In such systems,
a critical task not meeting its timing deadline can lead to
system failure.

Specifically, the engine and transmission in a car to-
gether form the car’s powertrain, which is controlled by

Powertrain Control Module (PCM) software using closed-
loop control. At periodic intervals, software calculates the
engine speed and position, determines the next time to fire
a spark signal, and based on speed-change commands from
the driver, adjusts settings for fuel flow. The software then
senses the exhaust system to determine the effectiveness
of the combustion process as depicted in Figure 1. As the
engine runs faster, the fuel intake cycle gets shorter, and
the frequency of calculating the injected fuel volume goes
up. Incorrect fuel volumes or mistimed fuel injection can
even damage the engine. Therefore, control algorithms of
engine events require significant signal conditioning, and
place stringent response-time requirements. In order to meet
these requirements, a real-time operating system such as
OSEK [3] and AUTOSAR [4] is used.

Although real-time operating systems are widely used in
cars and PCM applications contain many periodic tasks,
the engine events activating the fuel injection task come
from reference pulses generated by sensors at the engine
crankshaft. That is, the periods of these tasks vary depending
on the speed of the crankshaft. As an analog variable, speed
is continuous and hence the period of the task also can
change both rapidly and continuously. Also, the execution
time of these tasks vary and the worst-case execution time
(WCET) arises when the engine speed increases to its
maximum [5]. It is known in the automotive community
that the engine control performance deteriorates with under-
sampling, i.e., tasks having a longer period than the required
minimum period for a given speed. In particular, the con-
troller task period is known to have a greater impact on
control performance than execution time.

In this paper, we will focus on Rate-Monotonic Schedul-
ing (RMS) [6], the optimal fixed-priority preemptive
scheduling policy, which automotive OS standards such as

Figure 1. Four-stroke cycle in gasoline engines [2]



OSEK and AUTOSAR support and other general-purpose
OSes like Linux also do. Under RMS, the shorter the period
of a task, the higher is its priority. A common assumption
of using RMS is that the task periods do not change during
run-time. A Utilization Bound (UB) test is often used to
check if the given tasks are schedulable, which means that
each of the given tasks meets its timing deadlines.

Conventional task models such as periodic tasks or ape-
riodic tasks are not adequate to handle engine tasks with
varying periods. Consider a periodic task with 60ms exe-
cution time and a 140ms period, along with an engine task
that has a period varying from 10ms to 120ms, which is
depicted in Figure 2. The UB test [6] gives 4ms as the
maximum computation time of the engine task to guarantee
the schedulability of the given two tasks, which is 46%
utilization in the worst case. However, the engine task at
lower speeds can have up to 60ms as its computation time,
yielding 93% utilization. This 47% difference comes from
the worst-case assumption for using a single offline UB test,
where the shortest period and no period change are taken
into account. In case we have more than one periodic task,
this analysis could require the addition of more hardware,
which is undesirable in a mass production industry such as
car manufacturing.

Contributions: In this paper, we define a new task model
called Rhythmic Tasks for characterizing and analyzing tasks
that have continually varying periods depending on external
physical events. We provide response-time analyses for
rhythmic tasks under three cases: constant engine speed,
accelerating engine speed and decelerating engine speed. We
provide guidelines to evaluate schedulable utilization levels
for the rhythmic task model by introducing harmonic points
and flexion points. An integrated rhythmic task analysis
framework with periodic tasks is also provided. We finally
provide a case study of the rhythmic task model for PCM
to show the applicability of the rhythmic task model to a
CPS. To the best of our knowledge, this is the first model
considering both continually varying periods and WCET for
cyber-physical systems.

Organization: The rest of this paper is organized as
follows. We summarize prior research related to our work
in Section II. In Section III, we define the rhythmic task
model. In Section IV, we provide an analysis of one rhythmic
task and one periodic task. In Section V, we provide an
integrated analysis framework for one rhythmic task with
multiple periodic tasks. In Section VI, a case study on an
automotive PCM is presented. Finally, in Section VII, we
provide our concluding remarks and discuss future work.

II. RELATED WORK

The periodic task model [6] has been extensively stud-
ied in the real-time systems literature. Extensions to this
model such as constrained-deadline sporadic tasks [7] and
arbitrary deadline tasks [8] have been explored in the past.
Although these task models represent tasks having different
relationships between their periods and deadlines, the task
parameters themselves are static and/or worst-case in nature.

In this work, we explore a model where certain tasks have
dynamically changing parameters, which are determined by
external or physical system attributes such as the engine
speed in a PCM.

The importance of task periods on the quality of engine
control has been demonstrated in [5]. As the engine speed
varies, the system must continuously change the engine
control task periods. Given vehicle dynamics [9], maintain-
ing a close relationship between the control task and the
engine speed is key for achieving high efficiency. Worst-
case execution time analysis of engine tasks was carried
out in [10]. At higher speeds, system designers tend to
adaptively reduce the task computation times to counteract
the shrinking task periods, and try to maintain approximately
constant system utilization. In this work, we develop the
rhythmic task model in detail to represent such types of
engine control tasks and study the resulting properties.

Some task models with dynamically changing parameters
have been studied in the past. For instance, the elastic task
model [11] treats tasks as springs with given elastic co-
efficients. More recently, the gravitational task model [12]
was introduced by representing tasks as bobs hanging on
a pendulum with the objective of preferably executing at a
target set point. Although these task models have dynam-
ically changing parameters, their usage is often motivated
by the need to provide quality of service or to maximize
system utility. Also, due to the fact that the elastic task model
uses dynamic-priority scheduling and the gravitational task
model is based on non-preemptive jobs, the previous work
is not appropriate for fixed-priority preemptive scheduling.
In this work, we consider a model where the changes in
task parameters are resulting from the physical nature of the
system, and changes in the operating environment drive task
requirements.

From a schedulability analysis perspective, the analyses
of minimum task periods and maximum worst-case exe-
cution time are well-known results for the periodic task
model [13, 14]. The acyclic task model [15] uses a task
model where a task comprises successive invocations but
with no constraints between the periods of successive in-
vocations. The utilization bound for acyclic tasks was also
derived. Our rhythmic task model is more restricted, is
motivated by cyber-physical requirements and should yield
better utilization. We provide some bounds and guidelines
to find schedulable regions for the generic rhythmic task
model. These results are also helpful to understand the
utilization bounds when only the task periods are given. We
study the properties of acceleration and deceleration, which
correspond to the maximum rate at which task periods can
be decreased and increased respectively. In this regard, the
closest work to ours is that of the mode change protocol [16].
However, we are interested in understanding the effect of a
series of continuous mode changes on the schedulability of
lower-priority tasks, as opposed to one single independent
system-level mode change.

Tasks with relationships between task periods and phys-



Table I
NOTATION FOR THE RHYTHMIC TASK MODEL

τ∗ Rhythmic task
vs State vector that represents physical environmental attributes

C(vs) Varying worst-case execution time of τ∗

T (vs) Continually varying period of τ∗

D(vs) Relative deadline of τ∗

u(vs) Utilization of τ∗

α Acceleration rate of τ∗

nα Maximum acceleration duration of τ∗

nβ Maximum deceleration duration of τ∗

ical attributes can be also found in other cyber-physical
subsystems besides the engine control task. For example,
in the context of autonomous driving [17], the sensor pro-
cessing tasks need to execute at a higher rate when the
vehicle is moving at a higher speed, since the vehicle would
cover a longer distance in a shorter time. Another good
example is building energy management [18] where fine-
grained management depending on varying environmental
parameters will save more energy. Also, most CPS with
control algorithms can likely obtain benefits from the rhyth-
mic task model because the quality of control is affected
significantly by sampling rates.

III. THE RHYTHMIC TASK MODEL

A. Definitions
A rhythmic task is a task with a (potentially) continually

varying period and varying WCET. The change in the period
value of a rhythmic task can depend on the current physical
attributes of the system. The physical attributes of the given
system are represented by a state vector, vs ∈ Rk, where k
is the number of dimensions that capture the current system
status. The WCET, period and deadline of a rhythmic task
are a function of vs and are denoted as C(vs), T (vs) and
D(vs) respectively. Hence, the utilization of a rhythmic task
is also a function of vs and it is represented as U(vs).

Let Ji denote the ith job of the rhythmic task and
T (vs, Ji) denote the period of Ji. We define the acceleration
α(vs) of the rhythmic task as 1−T (vs,Ji+1)

T (vs,Ji)
. If T (vs, Ji+1) <

T (vs, Ji), acceleration is positive and the engine speed is
increasing. The duration of acceleration is limited by nα(vs)
in terms of the number of job releases. In other words,
the rhythmic task can be positively accelerated by a factor
of α(vs) for nα(vs) job releases. When T (vs, Ji+1) >
T (vs, Ji), α(vs) becomes negative and represent the decel-
eration of the rhythmic task. To avoid ambiguity, we use
nβ(vs) when α(vs) is negative. For ease of readability,
we denote C(vs), T (vs), D(vs), U(vs), α(vs), nα(vs) and
nβ(vs) as C∗, T ∗, D∗, u∗, α, nα, and nβ respectively. A
summary of the notation is given in Table I.

B. System Assumptions
We consider a set of hard real-time tasks Γ =

{τ1, τ2, ..., τn}, where n is the number of tasks. The tasks
in Γ are classified into two subsets: Periodic Task Set, ΓP ,
and Rhythmic Task Set, ΓR. We assume that ΓR consists
of m tasks (m ≤ n). In other words, Γ = ΓP ∪ ΓR and
ΓP ∩ΓR = ∅. For the sake of convenience, if a task τi is in
ΓR, the task may be denoted as τ∗i . If a task τi is in ΓP , the

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.02

0.04

0.06

0.08

0.1

0.12

RPM

P
e
ri
o
d
 o

f 
a
 r

h
y
th

m
ic

 t
a

s
k
 (

s
e
c
o
n
d

)

Figure 2. The variation of period according to engine RPM

task will be represented as τi without the asterisk symbol
(∗).

A periodic task τi is specified as (Ci, Ti, Di), where Ci
is its WCET, Ti is its period, and Di is the deadline of each
of the task’s jobs relative to the release time of each job.
A rhythmic task τ∗i is denoted by (C∗i , T ∗i , D∗i ), where the
WCET, period, and deadline are functions of vs. In addition,
ui is the utilization of τi, defined as Ci

Ti
. In this paper, we

assume that Ti = Di and T ∗i = D∗i .
A rhythmic task τ∗i is classified into three categories

according to how C∗i varies. A rhythmic task in the first
category has a constant value of C∗i . We refer to a rhythmic
task with constant C∗i as a Constant Computation Rhythmic
Task (CCRT). In the second category, the utilization of a
rhythmic task is maintained constant, and C∗i varies accord-
ingly. We name a rhythmic task with a constant utilization u∗i
as a Constant Utilization Rhythmic Task (CURT). In the third
category, the WCET C∗i of a rhythmic task is defined by a
function C∗i = fi(vs), where f represents a general behavior
of rhythmic tasks. One example of rhythmic tasks in this
category is a task having a step function for C∗i to maintain
approximately constant utilization with discrete steps. We
refer to a task in this category as a General Computation-
time Rhythmic Task (GCRT).

We assume the use of fixed-priority scheduling, specif-
ically RMS on a uniprocessor. Therefore, for RMS, the
priority of a rhythmic task τ∗ at time t will be determined
based on its period T ∗ depending on the instantaneous
system state vs at time t. In this paper, we assume that m = 1
and that the rhythmic task has the highest priority among all
the n tasks. Therefore, T ∗1 and C∗1 represent the period and
the WCET of the rhythmic task τ∗1 . Hence, the inequality,
∀vs, C1(vs) ≤ T1(vs) ≤ T2, also holds. In other words, the
only rhythmic task in the system always has the shortest
period and, by RMS, is assigned the highest priority of all
tasks. This paper defines the rhythmic task model and studies
the single rhythmic task scenario with many periodic tasks.
This work in itself is useful for general CPS applications.
However, there could be a need for multiple rhythmic tasks,
and analyzing such systems is key future work.

C. Application of Rhythmic-Task Definition
to Engine Control

The engine shown in Figure 1 has two revolutions every
engine cycle, and the speed of revolutions is affected by
four primary parameters (k = 4): RPM, number of active
cylinders, the amount of fuel injected into cylinders, and gear
ratio. Hence, vs := <RPM, Number of active cylinders, Fuel



𝑇2 𝑇1 𝑇1 

𝐶1
∗ 𝐶1

∗ 𝐶1
∗ 

The worst-case response time of 𝜏2 

𝐶2 𝐶2 𝐶2 

(a) Case I: The worst-case response time of τ2 is less than or equal to
its deadline.

𝑇1 𝑇1 𝑇2 

The worst-case response time of 𝜏2 

𝐶1
∗ 𝐶1

∗ 𝐶1
∗ 𝐶2 𝐶2 𝐶2 

(b) Case II: The
⌈
T2
T∗
1

⌉
-th instance of τ∗1 is executed at T2.

Figure 3. Two different cases to consider to prove Lemma 1

amount, Gear ratio>. The period of the rhythmic task driven
by the engine cycle is directly related to the duration of each
revolution. If the rhythmic task is triggered every revolution,
its period varies as illustrated in Figure 2. As can be seen,
the period of the rhythmic task can vary over a wide range.
Using the parameters of vs, the acceleration rate α and
the maximum acceleration duration nα can be determined.
Most modern cars are equipped with a rev limiter to prevent
engines from being redlined. We can treat this redline as the
maximum RPM for calculating α. By accelerating the engine
at a particular gear level till the engine hits the redline from
the minimum engine RPM, we can measure the acceleration
duration at that gear level. Using the acceleration duration
and the RPM changes, the acceleration rate α is determined.
The measured duration is converted to nα. Similarly, the
maximum deceleration duration nβ also can be determined.

D. Problem Formulation
Our objective is to determine whether a given taskset with

a rhythmic task τ∗1 running at the highest priority is schedu-
lable under (a) steady-state conditions (b) positive accelera-
tion, and (c) deceleration. We will provide a schedulability
test for each of these cases. For steady-state conditions, we
will propose an algorithm to determine schedulability given
the current (C∗1 , T ∗1 ) values along with the periodic tasks.
For accelerating and decelerating conditions, we will provide
a range of period change ratios for which schedulability
holds. These outcomes can be used by CPS developers
to determine when C∗1 needs to be decreased in order to
maintain schedulability.

IV. ONE RHYTHMIC TASK AND ONE PERIODIC TASK

We first consider a simple taskset Γ with one rhythmic
task τ∗1 and one periodic task τ2.

A. Steady-State Analysis
Lemma 1. Given one rhythmic task, represented by
(C∗1 , T

∗
1 ), and one periodic task, represented by (C2, T2),

both tasks are schedulable if the following inequality is
satisfied.

C∗1 ≤ max

T2 − C2⌈
T2

T∗
1

⌉ , T ∗1 −
C2⌊
T2

T∗
1

⌋
 (1)

Proof: In order to prove this statement, we should
find the maximum value of C∗1 , which does not cause τ2
to miss its deadline. By assumption (see Section III-B),
τ∗1 has higher priority than τ2. Hence, the two tasks are
schedulable if τ2 is schedulable. In order to obtain the
maximum schedulable value of C∗1 , we should consider two
different cases. The first case is when the response time of
τ2 is less than or equal to its relative deadline, which is
illustrated in Figure 3a. In this case, C∗1

⌈
T2

T∗
1

⌉
+ C2 ≤ T2

should be satisfied. Then, in this case, the maximum value
of C∗1 is given by

C∗1 =
T2 − C2⌈

T2

T∗
1

⌉ (2)

The second case is depicted in Figure 3b. Since τ∗1 can
preempt τ2, the

⌈
T2

T∗
1

⌉
-th instance of τ∗1 can overlap the

period of task τ2. Therefore, C∗1
⌊
T2

T∗
1

⌋
+ C2 ≤ T ∗1

⌊
T2

T∗
1

⌋
should hold. Hence, in this case, the maximum value of C∗1
is given by

C∗1 = T ∗1 −
C2⌊
T2

T∗
1

⌋ (3)

The maximum value of Equation (2) and Equation (3) will
provide the bound of C∗1 , given τ2. Therefore, if Inequality
(1) is satisfied, both tasks are schedulable.

Inequality (1) allows us to visualize the schedulability of
one rhythmic task and one periodic task. Given τ2: (6, 14),
a well-known worst-case task for the least-upper bound on
schedulable utilization as an example [6], Figure 4 plots the
maximum value of C∗1 as T ∗1 varies from 0 to 14. If (C∗1 , T

∗
1 )

lies under the curve in this figure, the taskset with τ2: (6, 14)
is schedulable.

Accordingly, we can see the utilization change of the
taskset. Figure 5 shows the variation in the total utilization
as T ∗1 changes. In this figure, we observe two types of
interesting points: local maxima and local minima. We call
local maxima as harmonic points, since the task periods are
“compatible” at these points, and local minima as flexion
points, since the slope changes from negative to positive
here. Let U(Γ) denote the total utilization and Ulub(Γ)
denote the least-upper bound on schedulable utilization of
the given taskset Γ having one rhythmic task and one
periodic task.

Lemma 2. At T ∗1 = T2

i , where i ∈ Z+, harmonic points
occur, where U(Γ) is 1.

Proof: Substituting T2

i for T ∗1 in the right-hand side of
Equation (2) returns T2−C2

i since T2

T∗
1

becomes an integer
i. We also obtain the same value from the right-hand side
of Equation (3). Then, Inequality (1) is equivalent to C∗1 ≤
T2−C2

i . The utilization of two tasks is given by U(Γ) =
C∗

1

T∗
1

+ C2

T2
. By substituting T2−C2

i and T2

i for C∗1 and T ∗1
respectively, we obtain 1 as the total utilization.

Lemma 3. Flexion points, local minima of U(Γ), happen
at T ∗1 = C2

i(i−1) + T2

i , where i ≥ 2 and i ∈ Z+. C∗1 = T2−C2

i



0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

T
1

*

C
1*

Figure 4. Schedulable region of the taskset including τ∗1 and τ2 as (6,14)

also holds.

Proof: From Lemma 2, the harmonic points happen
when T ∗1 = T2

i , where i ∈ Z+. Let’s assume that the
flexion points occur when T ∗1 = T2

i + x, where x is the
value we want to find. The flexion points correspond to
the intersections of Equation (2) and Equation (3) as shown
in [6]. We can substitute T2

i + x for T ∗1 in both equations.
Suppose i ≥ 2. Then, because T2

i ≤
T2

i +x ≤ T2

i−1 ,
⌈
T2

T∗
1

⌉
=⌈

T2
T2
i +x

⌉
= i − 1 and

⌊
T2

T∗
1

⌋
=

⌊
T2

T2
i +x

⌋
= i. We substitute

these in both equations, and we obtain C∗1 = T2−C2

i−1 =

x+ T2

i −
C2

i . Solving for x, we get x = T2−C2

(i−1)i . When i ≥ 2

and i ∈ Z+, T ∗1 = T2

i + x = T2

i + T2−C2

(i−1)i = C2

i(i−1) + T2

i

Lemma 4. The minimum flexion point, Ulub, occurs at i = 2.

Proof: Substituting the results from Lemma 3 gives us
U(Γ) = T2−C2

C2
i−1 +T2

+ C2

T2
. Because T2 − C2 ≥ 0, Ulub can be

found when i has the smallest allowable value, which is 2.

We can see that the results from Lemma 3 and Lemma 4
are consistent with the curve shown in Figure 5. One inter-
esting observation of Lemma 3 is that only the parameters
of the periodic task affect the locations of the flexion points.
A similar property will be shown in Theorem 3.

Lemma 5. The flexion points of one rhythmic task and
one periodic task occur at C2 = T2

(√
i(i− 1)− (i− 1)

)
,

where i ∈ Z+ and i ≥ 2.

Proof: From the proof of Lemma 4, U(Γ) = T2−C2
C2
i−1 +T2

+

C2

T2
. Differentiating with respect to C2, we obtain ∂U(Γ)

∂C2
=

1
T2

+ i(i−1)T2

((i−1)T2+C2)2
. We solve the equation ∂U(Γ)

∂C2
= 0, and

the solution is given by C2 = T2

(√
i(i− 1)− (i− 1)

)
,

where the flexion points happen.

B. Acceleration Analysis

The positive acceleration of an engine is a significant
event from a schedulability perspective. Car manufacturers
always provide two types of information on engine speci-
fications, horse power and torque. The horse power of an
engine is related to the maximum speed analogous to the
steady-state discussed in Section IV-A, and the torque of an

0 2 4 6 8 10 12 14
0.8

0.85

0.9

0.95

1

T
1

*

U
ti
li
z
a

ti
o

n

Figure 5. Corresponding utilization value where there are one rhythmic
task and one periodic task, (6,14)

engine has a strong relationship with the acceleration of a
vehicle. The acceleration of a car is immediately followed by
the change of task periods controlling the engine. As shown
in [5], the quality of engine control decreases significantly if
the periods of engine tasks decrease. In this subsection, we
will discuss how much the engine can accelerate by finding
the maximum rate of period changes under the given taskset
Γ.

As shown in Figure 2, the duration for one revolution
becomes shorter as positive acceleration occurs. Suppose
that the ith revolution occurs at time t. Then, as the engine
accelerates, the (i + 1)th revolution will have a shorter
period. Let α denote the rate of period change, where
0 ≤ α ≤ 1 and α ∈ R. Let nα denote the maximum
positive acceleration duration in terms of the number of
job releases of the rhythmic task. Suppose that T ∗,i is the
period of the ith revolution of the rhythmic task τ∗. Then,
if the period of the rhythmic task reduces after the first job
release, we can express the period of the (i+1)th revolution
as T ∗,i+1 = T ∗,i (1− α) by using α, when i ≤ nα.
Otherwise, T ∗,i+1 = T ∗,i. Hence, we can define T ∗,i as
T ∗,i = T ∗1 (1− α)min(i,nα) for a non-negative integer i. We
will find if the given taskset is schedulable under the given
α and nα.

Suppose that there are two tasks, one rhythmic task τ∗1
and one periodic task τ2. Under the given (C∗1 , T

∗
1 ) at a

certain time, let nap denote the number of preemptions which
τ2 experiences while T ∗1 is decreasing. Then, if T ∗1 starts
decreasing at the first job release, nap is defined as nap =

max{n|
∑n−1
i=0 T

∗,i
1 ≤ T2 and n ∈ Z+}.

Given the definition of nap, the following inequality should
be satisfied. nap−1∑

i=0

T ∗,i1 ≤ T2 (4)

Let f∗C denote the function of T ∗,i1 which returns the com-
putation time of the rhythmic task, where f∗C has a different
type of function depending on which category among CCRT,
CURT and GCRT the rhythmic task is classified into. Then,
nap and α should meet one of the following two inequalities:

nap−1∑
i=0

{
f∗C

(
T ∗,i1

)}
+ C2 ≤ T2 (5)



𝜏1
∗ 

0 5 15 10 8.5 12 

𝜏2 𝜏1
∗ 𝜏1

∗ 𝜏1
∗ 

14 

𝜏2 meets its deadline. 𝜏1
∗’s new period starts 

Figure 6. The example scenario when a rhythmic task accelerates.

nap−2∑
i=0

{
f∗C

(
T ∗,i1

)}
+ C2 ≤

nap−2∑
i=0

T ∗,i1 (6)

where Inequality (5) refers to the case when the nap-th
instance of τ∗1 completes before T2 under the assumption that
the acceleration is started at the first instance. Inequality (6)
represents the case when the nap-th instance of τ∗1 overlaps
T2. These two cases are also explained in the proof of
Lemma 1. In order to decide if α is possible, it should be
substituted in Inequality (4). According to the α value, we
determine nap, which should be substituted in Inequality (5)
and Inequality (6) to check if one of those inequalities is
satisfied.

As an example of a type of f∗C , we consider CCRT. As C∗1
does not change, Inequalities (5) and (6) become napC

∗
1 +

C2 ≤ T2 and (nap − 1)C∗1 +C2 ≤
∑nap−2

i=0 T ∗,i1 , respectively.
Acceleration Example: Suppose that there is one CCRT

rhythmic task τ∗1 and one periodic task τ2: (6, 14). Given
(2,5) as (C∗1 , T

∗
1 ), acceleration is possible when α is 0.3 and

nα is 1. As shown in Figure 6, the period of the rhythmic
task will become 3.5 at time 5, and τ2 meets its deadline
at time 14. However, any α greater than 0.3 will make the
taskset unschedulable. In this case, therefore, we can say
that the maximum possible α is 0.3 when nα = 1.

C. Deceleration Analysis

Engine deceleration happens generally when the amount
of fuel injected into the cylinders decreases. Engine deceler-
ation is also significant since it is related to shifting of gears.
This occurs very frequently in urban areas, and careless sys-
tem design could affect the system schedulability whenever
the gear shifting occurs. When the engine decelerates, the
engine task periods increase.

For the deceleration analysis, α becomes a negative value
to represent the rate of period increase. Under the given
(C∗1 , T

∗
1 ) at a certain time, let ndp denote the number of

preemptions which τ2 experiences while T ∗1 is increasing.
Then, if T ∗1 starts increasing at the first job release, ndp is
defined as ndp = max{n|

∑n−1
i=0 T

∗,i
1 ≤ T2 and n ∈ Z+}.

Given the definition of ndp, the following inequality should
be satisfied, and the period does not increase after the nβ-th
job of the rhythmic task if ndp > nβ .

ndp−1∑
i=0

T ∗,i1 ≤ T2 (7)

Then, ndp should meet one of the following two inequalities:
ndp−1∑
i=0

{
f∗C(T ∗,i1 )

}
+ C2 ≤ T2 (8)

Algorithm 1 Rhythm-Max-C(Γ)

Input: Γ: a given taskset including a rhythmic task
Output: The WCET of the rhythmic task

1: for i = 1 to n do
2: . Build a set of points to check
3: Si = {kTj |j = 1...i, k is an integer satisfying
4: kTj ≤ Ti}
5: . From Inequalities (11) and (12)
6: for For each element smi ∈ Si, do

7: Calculate Cm1,i =
smi −

∑i
j=2

⌈
smi
Tj

⌉
Cj⌈

sm
i
T1

⌉
8: Maintain the largest value of Cm1,i as C1,i

9: return min{C1,i, 1 ≤ i ≤ n}

ndp−2∑
i=0

{
f∗C(T ∗,i1 )

}
+ C2 ≤

ndp−2∑
i=0

T ∗,i1 (9)

The reason behind these two inequalities is already men-
tioned in Section IV-B. Based on α, we can find the value
of ndp which satisfies Inequalities (8) and (9) to check if
one of those inequalities is satisfied. This process applies
to both CURTs and GCRTs. For rhythmic tasks having
fixed C∗1 (CCRT defined in Section III-B), they will be
always schedulable because periods are sustainable as they
are increased [19].

V. ONE RHYTHMIC TASK AND MANY PERIODIC TASKS

In this section, we consider a taskset Γ with one rhythmic
task τ∗1 and n − 1 periodic tasks τ2, ..., τn. In Section IV,
we analyzed the case of having one rhythmic task and one
periodic task. The results from the previous section will be
extended to support several periodic tasks for constant speed,
positive acceleration, and deceleration cases. A real-world
example will be analyzed using this model in Section VI.

A. Steady-state Analysis

In order to determine the schedulability of Γ, we find the
maximum value of C∗1 which does not make any periodic
task miss its deadline. Let f∗Cmax(T ∗1 ) denote the function
which returns the maximum possible value of WCET for C∗1
which makes Γ schedulable when received T ∗1 as an input.

Theorem 1. f∗Cmax(T ∗1 ) is given by

min
∀τi∈Γ

max

T ∗1 −
∑i
j=2

⌈
Ti
Tj

⌉
Cj⌊

Ti
T∗
1

⌋ ,
Ti −

∑i
j=2

⌈
Ti
Tj

⌉
Cj⌈

Ti
T∗
1

⌉


(10)

Proof: In order to check if Γ is schedulable, the worst-
case response time of each periodic task τi should not
exceed its deadline. Under the assumption of critical instant
from [6], we should compare the worst-case response time
of each periodic task to its deadline [20]. Then, as described
in Lemma 1, two different cases should be considered.



0 1 2 3 4 5 6 7
0

2

4

6
(a) The maximum possible computation time

Period T
1

*

f C
m

a
x

*
(T

1*
)

0 1 2 3 4 5 6 7
0.9

0.95

1
(b) The corresponding utilization value to (a)

Period T
1

*

U
ti
liz

a
ti
o

n

Figure 7. An example for a rhythmic task with 3 periodic tasks: τ2: (1, 7),
τ3: (1, 10) and τ4: (1, 23)

The first case is that the execution time of the
⌈
Ti
T∗
1

⌉
-th

instance of the rhythmic task is long enough to overlap Ti,
where Ti is the deadline of the ith periodic task τi.⌊

Ti
T ∗1

⌋
C∗1 +

i∑
j=2

⌈
Ti
Tj

⌉
Cj ≤

⌊
Ti
T1

⌋
T1

As long as the following inequality is satisfied,

C∗1 ≤ T ∗1 −

∑i
j=2

⌈
Ti
Tj

⌉
Cj⌊

Ti
T∗
1

⌋ (11)

the given taskset is schedulable.

In the second case, the execution time of the
⌈
Ti
T∗
1

⌉
-th

instance of the rhythmic task does not overlap Ti. Hence,
the following inequality must be satisfied:⌈

Ti
T ∗1

⌉
C∗1 +

i∑
j=2

⌈
Ti
Tj

⌉
Cj ≤ Ti

Solving for C∗1 returns the following inequality.

C∗1 ≤
Ti −

∑i
j=2

⌈
Ti
Tj

⌉
Cj⌈

Ti
T∗
1

⌉ (12)

Use the maximum value from Inequalities (11) and (12) as
we are looking for the maximum allowable C∗1 . At this point,
we have n−1 candidates for C∗1 . Since no periodic task must
miss its deadline, we use the minimum value among those
candidates. Then, f∗Cmax(T ∗1 ) is given by Equation (10).

Theorem 2. The slope of f∗Cmax(T ∗1 ) is either 1 or 0.

Proof: We consider two different cases as the proof of
Theorem 1. In the first case, Inequality (11) indicates that
the slope of f∗Cmax(T ∗1 ) is 1. In the second case, due to

the fact that we consider the execution time of the
⌈
Ti
T∗
1

⌉
-

th instance of the rhythmic task, the right hand side of

Inequality (12) does not change as T ∗1 changes. Hence, the
slope of f∗Cmax(T ∗1 ) is 0 with respect to T ∗1 .

Based on Theorems 1 and 2, we have designed an
algorithm for finding the maximum possible value of WCET
in Algorithm 1. Figure 7 shows an outcome of Algorithm 1
for a rhythmic task with 3 periodic tasks: τ2: (1, 7), τ3:
(1, 10) and τ4: (1, 23). As shown, the slope of the curve in
Figure 7a is either 1 or 0, where the taskset is schedulable
if (C∗1 , T

∗
1 ) lies under the curve. Also, the minimum flexion

point in Figure 7b is at 4 which satisfies Theorem 3 when
T ∗1 = T2

2 + C2

2 .

Corollary 1. If a taskset is schedulable with (C∗1 , T
∗
1 ), the

taskset is schedulable with
(
C∗

1

k ,
T∗
1

k

)
, where k is a positive

integer.

Proof: Compute f∗Cmax . The parameters of (C∗1 , T
∗
1 )

make the system schedulable. Then,
(
C∗

1

k ,
T∗
1

k

)
will always

be below f∗Cmax from Theorem 2.

Theorem 3. The minimum flexion point lies in the range,
T2

2 + C2

2 ≤ T
∗
1 ≤ T2.

Proof: The worst-case utilization happens when 1 ≤
T2

T∗
1
≤ 2 from [6]. Hence, T2

2 ≤ T ∗1 ≤ T2. From [6], since
T2−C2

2 ≥ C∗1 holds good, T ∗1 + T2−C2

2 ≥ T2 is satisfied.
Then, by solving for T ∗1 , T2

2 + C2

2 ≤ T
∗
1 ≤ T2.

Theorem 3 is critical to find the least-upper bound utiliza-
tion of the given taskset regardless of the other tasks except
τ2, the second highest priority task. This theorem could also
be a hint to find the least-upper bound utilization when only
the task periods are given, a problem that appears to be
unsolved yet.

B. Acceleration Analysis

Let α denote the rate of period decrease of τ∗1 and nα
denote the maximum positive acceleration duration in terms
of the number of job releases of the rhythmic task. Then,
the following theorem is satisfied.

Theorem 4. Given a taskset Γ with one rhythmic task τ∗1
and n−1 periodic tasks, Γ is schedulable when the rhythmic
task is accelerating if the following inequality is satisfied
when nα = 1.

α ≤ 1− T ∗1
C∗1

(
UB(n)−

n∑
i=2

Ci
Ti

)
where UB(n) returns the utilization bound [6] of n tasks.

Proof: While the acceleration of a rhythmic task con-
tinues, the period of the ith instance affects the WCET of
(i + 1)th instance. Hence, C∗

1

T∗
1 (1−α) +

∑n
i=2

Ci
Ti
≤ UB(n)

is satisfied from [6] when nα is 1. Solving for α, α ≤
1− T∗

1

C∗
1

(
UB(n)−

∑n
i=2

Ci
Ti

)
holds.

The bound of Theorem 4 is not tight because it uses
the utilization bound [6]. A tighter bound can be found by
extending the results from Section IV. We need to extend
the definition of nap first. Let nap,i(t) denote the number of



Algorithm 2 Rhythmic-Acc-α(Γ, α, nα)

Input: Γ: a taskset including a rhythmic task, α: the ac-
celeration ratio and nα: the duration of rhythmic task
acceleration in terms of the number of job releases

Output: Schedulability of Γ
1: for i = 2 to n do
2: . Calculate the initial condition for each task τi
3: W 0

i = C∗1 +
∑i
j=2 Cj and W 1

i = 0
4: k = 0
5: while W k+1

i 6= W k
i do

6: . Pick the maximum number of preemptions for
each iteration

7: nap,i(W
k
i ) = Num-Preemptions(T ∗1 , α, nα,W

k
i )

8: E∗1 = Execution-Time(nap,i(W
k
i ), C∗1 , α, nα)

9: W k+1
i = Ci + E∗1 +

∑i−1
h=2

⌈
Wk+1
i

Th

⌉
Ch

10: Update necessary parameters
11: if W k

i ≤ Di then
12: Mark τi schedulable
13: if all tasks schedulable then
14: return TRUE
15: else
16: return FALSE

preemptions of the periodic task τi caused by the rhythmic
task τ∗1 during t units of time. Then, nap,i(t) is defined as
nap,i(t) = max{n|

∑n−1
j=0 T

∗,j
1 ≤ t, n ∈ Z+}. Therefore, the

following inequality should be satisfied.

∀i,
nap,i(Ti)−1∑

j=0

T ∗,j1 ≤ Ti, i ∈ {k|k ∈ Z+ and k ≥ 2} (13)

Then, by using the value found above, the response-time
test [21] has to be modified as

W k+1
i = Ci + C∗1 +

nap,i(W
k
i )∑

j=0

f∗C(T ∗,j1 ) +

i−1∑
h=2

⌈
W k+1
i

Th

⌉
Ch

(14)
where W 0

i = C∗1 +
∑i
j=2 Cj and the test terminates when

W k+1
i = W k

i .
Based on Inequality (13) and Equation (14), the general-

ized algorithm is given in Algorithm 2 which checks if a
taskset is schedulable under the given α and nα. Algorithm
3 is used for obtaining the number of preemptions caused by
the rhythmic task, and Algorithm 4 calculates the preemption
duration during the execution for CURT. The maximum
value can be found by using this function for the range of
α.

For analyzing engine deceleration, the definition of ndp
also needs to be extended, and a similar modified response-
time test can be used.

C. Guidelines for CPS Application Developers

In this subsection, we will provide some guidelines that
help CPS application developers to apply the rhythmic

Algorithm 3 Num-Preemptions(T ∗1 , α, nα,W
k
i )

1: . The time duration of rhythmic task acceleration
2: dacc =

∑nα−1
j=0 {T ∗1 (1− α)j}

3: if dacc > W k
i then

4: nap,i(W
k
i ) = max{l|

∑l−1
j=0{T ∗1 (1− α)j} ≤W k

i ,
5: where l ∈ Z+}
6: else
7: nap,i(W

k
i ) = nα +

⌈
Wk
i −dacc

T∗
1 (1−α)nα−1

⌉
8: return nap,i(W

k
i )

Algorithm 4 Execution-Time(nap,i(W
k
i ), C∗1 , α, nα)

1: if nap,i(W k
i ) < nα then

2: E∗1 =
∑nap,i(W

k
i )

j=0 {C∗1 (1− α)j}
3: else
4: E∗1 =

∑nα−1
j=0 {C∗1 (1 − α)j} + (nap,i(W

k
i ) − nα) ×

C∗1 (1− α)nα−1

5: return E∗1

task analysis results and guarantee the schedulability of the
system. The developers should ensure that:

1) The application is categorized into one of the three
categories: CCRT, CURT and GCRT.

2) The computation time of a rhythmic task lies under
the schedulable region as depicted in Figures 4 and 7.
• The minimum flexion point of the total utilization

can be used. By not exceeding this bound, the
system schedulability is guaranteed. However, it
should be noted that this bound could be pes-
simistic.

• Algorithm 1 and Theorem 1 can be used together
to find the exact schedulable region.

3) The application can be in the form of modules for
different speeds. The application can have all the
modules or a subset of the modules depending upon
the execution time to meet the system schedulability.

4) The difference between the maximum allowable
worst-case execution time and the actual computation
time should be enough to tolerate the acceleration for
the values α, nα and nβ . Theses values are computed
by using Algorithm 2.

Once the parameters of the schedulable rhythmic task
(C∗, T ∗) are found, this information can be used for finding
other schedulable regions. For CCRT, the rhythmic task with
a longer period will be schedulable. For CURT, the rhythmic
task with (C

∗

k ,
T∗

k ), where k is a positive integer, will be also
schedulable.

VI. CASE STUDY OF THE RHYTHMIC TASK MODEL

In this section, we provide a case study to show how
to apply the rhythmic task model to an existing CPS. Our
model is applicable to a generic CPS having tasks with



10 20 30 40 50 60 70 80 90 100 110 120
0

10

20

30

40

50

60

70

80

T
1

*
(ms)

C
1*
(m

s
)

 

 

C
1

*
 from Algorithm 1

The proposed C
1

*

Figure 8. The maximum possible computation time for a rhythmic task
that has varying period from 7.5ms to 120ms with 9 periodic tasks

varying periods. In this paper, we investigate the automotive
PCM from Section I.

Figure 9 illustrates a process for injecting and delivering
fuel to each cylinder at every revolution [22]. Since the
depicted task is triggered by timing signals from engine
events, increasing/decreasing the duration of revolution will
change the period of the given task. Suppose the RPM varies
from 500 to 9000, so the period of the corresponding task
varies from 7.5ms to 120ms. The operations illustrated in
Figure 9 are also executed. The execution path is composed
of a service routine, sensor reads, air calculation, fuel cal-
culation and fuel delivery. We model this task as a rhythmic
task. Each block has its own WCET: Service Routine and
Fuel Delivery: 4ms, Sensor Reads: 6ms, Air Calculation:
10ms and Fuel Calculation: 22ms. In addition, a typical
Engine Control Module (ECM) has other features [23] such
as monitoring the processor that runs the control algorithms,
reporting the current status to a diagnosis module, and man-
aging sensors which measure the amount of fuel injected.
We picked nine tasks to show the typical behaviors of the
ECM representing the periodic engine operations [23] and
study the impact of having a rhythmic task. Specifically,
we use the following periodic tasks: τ2:(5ms, 120ms),
τ3:(20ms, 120ms), τ4:(5ms, 180ms), τ5:(6ms, 200ms),
τ6:(8ms, 240ms), τ7:(10ms, 240ms), τ8:(3ms, 300ms),
τ9:(1ms, 360ms) and τ10:(7ms, 400ms).

The solid line in Figure 8 shows the maximum possible
computation time of the rhythmic task using Algorithm 1.
As mentioned earlier, if the value of (C∗1 , T

∗
1 ) is below the

given solid curve, the taskset is schedulable. This offers
design-time guidelines to determine the feasible WCET of
the engine control task. The dotted line is a recommendation
for when a particular software block from Figure 9 can be
executed. The Service Routine and Fuel Delivery functions
will be executed by every job of the rhythmic task regardless
of the value of T ∗1 . The Sensor Reads function will be
executed in addition to Service Routine and Fuel Delivery
if T ∗1 is greater than 17ms. Since the WCET of Sensor

Timing 
Signal 

Service 
Routine 

Sensor 
Reads 

Air 
Calc. 

Fuel 
Calc. 

Fuel 
Delivery 

22ms 10ms 6ms 2ms 2ms 

Figure 9. Flow diagram for the start of injection in PCM software

10 20 30 40 50 60 70 80 90 100 110 120

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

T
1

*
(ms)

U
ti
liz

a
ti
o
n

 

 

The ideal utilization

The utilization for PCM

Figure 10. The corresponding utilization value to Figure 8 for a rhythmic
task that has varying period from 7.5ms to 120ms with 9 periodic tasks

Reads is 6ms, it can make the system unschedulable if T ∗1
is smaller than 17ms. In this case, however, instead of not
running the whole instructions of Sensor Reads, the previous
sensor values can be used for the operation. Similarly, the
function Air Calculation will be executed if T ∗1 is greater
than 34.7ms; Fuel Calculation will be executed if T ∗1 is
greater than 73ms. These recommendations correspond to
making the rhythmic task a GCRT with a discrete step
function.

Figure 10 illustrates the corresponding utilization based
on the WCET given in Figure 8. It shows the maximum al-
lowable utilization of the rhythmic task, where the minimum
flexion point is at T ∗1 = 92.5ms, where T2

2 + C2

2 ≤ T ∗1 =
92.5ms ≤ T2, which is computed using Algorithm 1 and
Theorem 3. An alternative way of determining the engine
control task behavior is to use this information to ensure that
the total utilization does not exceed this bound. The dotted
line in Figure 10 is the utilization curve corresponding to
our recommendation above.

Figure 11 depicts the bound for Acceleration α consid-
ering the maximum allowable rate of period change with
different acceleration durations. These curves are generated
by using Algorithms 2, 3 and 4, where Algorithm 4 is
modified such that it can handle GCRT. The plots use the
recommended WCET corresponding to the dotted line from
Figure 8. As shown in the figures, the acceleration bound
plays a negative role. For example, we cannot accelerate
the engine at all when T ∗1 is 17ms or 34.7ms because the
processor is fully utilized already. This can be avoided by
delaying the timing of changing the execution mode from
17ms/34.7ms to later values. The effect of the acceleration
duration is also shown in Figures 11a and 11b. Figure 11a is
when the maximum acceleration duration nα is 3, and nα is
5 in Figure 11b. When the acceleration duration is longer, the
acceleration bound becomes significantly low. This happens
because a longer acceleration duration increases the number
of preemptions of periodic tasks.

VII. CONCLUSION AND FUTURE WORK

In automotive systems, safety-critical mechanical systems
are being replaced by electronically controlled systems. A
critical task not meeting its deadline can be catastrophic.
In order to meet these stringent requirements, real-time
scheduling techniques such as Rate Monotonic Scheduling



10 20 30 40 50 60 70 80 90 100 110 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T
1

*
(ms)

A
c
c
e
le

ra
ti
o
n
 α

(a) Maximum acceleration duration nα: 3

10 20 30 40 50 60 70 80 90 100 110 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T
1

*
(ms)

A
c
c
e
le

ra
ti
o
n
 α

(b) Maximum acceleration duration nα: 5
Figure 11. Plots of acceleration values for a rhythmic task that has varying period from 7.5ms to 120ms with 9 periodic tasks

(RMS) are used to guarantee the schedulability of the
periodic tasks. However, the parameters of certain critical
control tasks in cyber-physical systems depend on physical
attributes of the system such as the speed of the engine in
a car. The periods of these engine tasks vary dramatically
depending on the engine speed. Conventional periodic task
analysis is too conservative for handling such tasks. In this
paper, we have defined a new task model called Rhythmic
Tasks for modeling tasks having continually varying periods
depending on external physical events. To the best of our
knowledge, this is the first model considering continually
varying periods. We provide response-time analysis tech-
niques for rhythmic tasks under constant engine speed, ac-
celerating engine speed and decelerating engine speed along
with schedulability tests. We have also provided guidelines
to find schedulable utilization levels for the rhythmic task
model. We apply our analyses and guidelines to a case-study
desired from a real environment. The case study shows how
the rhythmic task model is applicable to an existing CPS.

Dealing with multiple rhythmic tasks is an important
and needed extension for cyber-physical systems. For ex-
ample, the periods of planning and perception tasks in an
autonomous vehicle [17] are functions of the vehicle speed,
and the rates of their period changes depend on various
environmental factors.

Future applications of rhythmic tasks include fault-
tolerance support and autonomous vehicles. Rhythmic tasks
can be replicated for fault-tolerance, and our techniques need
to be extended. This rhythmic task model can also be used
in autonomous vehicle systems. For example, perception al-
gorithms for vision-based obstacle detection can be analyzed
using the rhythmic task model.

ACKNOWLEDGMENT

The authors would like to thank Arvind Kandhalu and Dr.
Shinpei Kato for their valuable comments and discussions
that improved the paper.

REFERENCES

[1] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. Cyber-physical systems:
the next computing revolution. In Proceedings of the 47th Design
Automation Conference, DAC ’10, pages 731–736, New York, NY,
USA, 2010. ACM.

[2] Four stroke engine. http://www.ustudy.in/node/3268 as of Feb 2012.
[3] ETAS. RTA-OSEK. http://www.etas.com/en/products/rta osek.php as

of Feb 2012, January 2007.
[4] AUTOSAR Administration. AUTOSAR technical overview, 2008.

[5] Z. Gu, S. Wang, J.C. Kim, and K.G. Shin. Integrated modeling
and analysis of automotive embedded control systems with Real-
Time scheduling. Technical Report 2004-01-0279, SAE International,
Warrendale, PA, March 2004.

[6] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. J. ACM, 20:46–61, 1973.

[7] A. MOK. Fundamental design problems of distributed systems for the
real-time environment. Ph.D. thesis, Dept. of Electrical Engineering
and Computer Science, MIT, Cambridge, Mass., May 1983.

[8] J. Lehoczky. Fixed priority scheduling of periodic task sets with arbi-
trary deadlines. In Real-Time Systems Symposium, 1990. Proceedings.,
11th, pages 201 –209, dec 1990.

[9] T.D. Gillespie. Fundamentals of Vehicle Dynamics. Society of
Automotive Engineers, 1992.

[10] C. Li and Z. Jianwu. WCET analysis for gasoline engine control. In
Mechatronics and Automation, 2005 IEEE International Conference,
volume 4, pages 2090–2095 Vol. 4, 2005.

[11] G. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni. Elastic scheduling
for flexible workload management. IEEE Transactions on Computers,
page 289–302, 2002.

[12] R. Guerra and G. Fohler. A gravitational task model for target sensi-
tive real-time applications. In ECRTS08-20th Euromicro Conference
on Real-Time Systems, 2008.

[13] H. Wei, K. Lin, W. Lu, and W. Shih. Generalized rate monotonic
schedulability bounds using relative period ratios. Information Pro-
cessing Letters, 107(5):142 – 148, 2008.

[14] L. George and J. Hermant. A norm approach for the partitioned edf
scheduling of sporadic task systems. Real-Time Systems, Euromicro
Conference on, 0:161–169, 2009.

[15] T.F. Abdelzaher, V. Sharma, and C. Lu. A utilization bound for
aperiodic tasks and priority driven scheduling. Computers, IEEE
Transactions on, 53(3):334 – 350, mar 2004.

[16] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham. Mode
change protocols for priority-driven preemptive scheduling. Real-Time
Systems, 1(3):243–264, December 1989.

[17] C. Urmson et al. Autonomous driving in urban environments: Boss
and the urban challenge. In The DARPA Urban Challenge. 2009.

[18] A. Rowe, M. Berges, and R. Rajkumar. Contactless sensing of
appliance state transitions through variations in electromagnetic fields.
In Proceedings of the 2nd ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Building, BuildSys ’10, pages 19–24,
New York, NY, USA, 2010. ACM.

[19] A. Burns and S. Baruah. Sustainability in real-time scheduling.
Journal of Computing Science and Engineering, 2(1):74–97, 2008.

[20] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A.J. Wellings.
Applying new scheduling theory to static priority pre-emptive
scheduling. Software Engineering Journal, 8(5):284–292, 1993.

[21] M. Joseph and P. Pandya. Finding response times in a real-time
system. The Computer Journal, 29(5):390, 1986.

[22] X. Hu, J.G. D’Ambrosio, B.T. Murray, and D. Tang. Codesign
of architectures for automotive powertrain modules. Micro, IEEE,
14(4):17–25, 1994.

[23] K. Tindell and A. Burns. Guaranteeing message latencies on control
area network (CAN). In Proceedings of the 1st International CAN
Conference. Citeseer, 1994.


