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Abstract—Wireless sensor-actuator networks are gaining
ground as the communication infrastructure for process monitor-
ing and control. Industrial applications demand a high degree of
reliability and real-time guarantees in communication. Because
wireless communication is susceptible to transmission failures
in industrial environments, industrial wireless standards such as
WirelessHART adopt reliable graph routing to handle transmis-
sion failures through retransmissions and route diversity. While
these mechanisms are critical for reliable communication, they
introduce substantial challenges in analyzing the schedulability
of real-time flows. This paper presents the first worst-case end-
to-end delay analysis for periodic real-time flows under reliable
graph routing. The proposed analysis can be used to quickly
assess the schedulability of real-time flows with stringent require-
ments on both reliability and latency. We have evaluated our
schedulability analysis against experimental results on a wireless
testbed of 69 nodes as well as simulations. Both experimental
results and simulations show that our delay bounds are safe and
enable effective schedulability tests under reliable graph routing.

I. INTRODUCTION

Wireless sensor-actuator networks (WSANs) are gaining
ground as the communication infrastructure for industrial
process monitoring and control systems. To support moni-
toring and control, a WSAN periodically delivers data from
sensors to a controller and then delivers its control input
data to the actuators through the multi-hop mesh network.
Wireless control in process industries demands a high degree
of reliability and real-time guarantees in communication [1].
Failures in wireless transmissions are prevalent in industrial
environments due to channel noise, power failure, physical
obstacle, multi-path fading, and interference from co-existing
wireless systems. As a widely adopted industrial wireless
standard, WirelessHART [2] introduces the reliable graph
routing approach to handle transmission failures through re-
transmissions and route diversity.

Reliable graph routing [2] employs the following mecha-
nisms to recover from transmission failures. A routing graph
is constructed as a directed list of paths between two devices,
thereby providing redundant routes for real-time flows between
sensors and actuators. For transmission between a receiver
and a sender, a time slot can be either dedicated (i.e., a
time slot when at most one transmission is scheduled to a
receiver) or shared (i.e., a time slot when multiple nodes

may contend to send to a common receiver). For each flow,
the network handles transmission failures by allocating a
dedicated time slot for each node on a path from the source,
followed by allocating a second dedicated slot on the same
path for a retransmission, and then by allocating a third
shared slot on a separate path for another retransmission [2].
While effective in achieving reliable communication, this
fault-tolerant mechanism introduces significant challenges in
worst-case delay analysis for real-time flows in a WSAN. A
WirelessHART network is managed by a centralized network
manager responsible for computing the routes and schedules
for all field devices. As wireless conditions can change quickly
in industrial environments, it must quickly assess the schedu-
lability of real-time flows. If some flows cannot be guaranteed
to meet their deadlines, the network manager can adapt to the
overload through online admission control and reconfiguration.
Fast online schedulability analysis is therefore important for
WirelessHART networks to adapt to dynamic environments.
In this paper, we propose the first worst-case end-to-end
delay analysis for periodic real-time flows under reliable graph
routing. Specifically, we consider periodic real-time flows
whose transmissions are scheduled based on fixed priority. In a
fixed priority scheduling policy, all transmissions of a flow are
scheduled based on the fixed priority of the flow. While delay
analyses for single or independent routes have been proposed
in the literature [3]-[6], an efficient delay analysis under reli-
able graph routing in a WSAN represents a challenging open
problem. Since a routing graph for a flow can consist of an
exponential (in number of nodes) number of routes between its
source and destination, determining an effective delay bound
for a flow by enumerating all of these paths is time consuming,
making it unsuitable for WSANs subject to frequent changes
to link and channel conditions in industrial environments. We
address this challenge and propose an efficient end-to-end
delay analysis without enumerating all the paths.
WirelessHART networks employ a multi-channel TDMA
(Time Division Multiple Access) protocol. In a WirelessHART
network, a flow may be delayed by higher priority flows due
to (1) channel contention (when all channels are assigned to
the higher priority flows in a time slot) or (2) transmission
conflicts (when a transmission of the lower priority flow and
a transmission of a higher priority flow involve a common



node). We use an efficient method based on depth-first search
to determine an upper bound of transmission conflict delay of
each flow without enumerating all the paths. We then observe
that, unlike single or independent routes, transmission conflict
may increase channel contention in graph routing. Through an
analysis of the worst-case scenario for channel contention in
the presence of transmission conflict, we determine the worst-
case end-to-end delay bounds of the flows. Moreover, we
propose a probabilistic end-to-end delay analysis that provides
tighter but probabilistic delay bounds for soft real-time flows
that do not require absolute delay guarantees.

We have evaluated our schedulability analysis against ex-
periments on a WirelessHART stack implemented on a 69-
node wireless testbed. We have also performed trace-driven
simulations on real network topologies. Both experiments and
simulations show that our delay bounds are safe in practice
and the probabilistic delay bounds represent safe upper bounds
with probability > 0.90. The worst-case and probabilistic
bounds can be used in different application scenarios depend-
ing on the level of predictability required. Our analysis hence
can be used for effective schedulability test and admission
control of real-time flows under reliable graph routing.

Section II reviews related work. Section III describes the
system model and graph routing mechanisms. Section IV
provides an overview of fixed priority scheduling for real-time
flows in a WSAN under graph routing. Section V presents
the delay analysis under reliable graph routing. Section VI
presents the probabilistic delay analysis. Section VII presents
the experimental results. Section VIII concludes the paper.

II. RELATED WORK

Real-time scheduling for wireless networks has been ex-
plored in many early [7] and recent works [8]-[17]. However,
these works do not focus on efficient worst-case delay analysis
in the network. Other works [4]—[6], [17], [18] have researched
delay analysis in wireless sensor networks. These works focus
on data collection through a routing tree [4], [5] and/or do not
consider multiple channels [5], [6]. In contrast, we consider a
WSAN based on multiple channels and reliable graph routing
of WirelessHART. Besides, our analysis is targeted for real-
time flows between sensors and actuators for process control
purposes, and is not limited to data collection towards a sink.

Real-time scheduling for WSANs based on WirelessHART
has received considerable attention in recent works [1], [3],
[19]-[23]. The works presented in [22] and [23] address
graph routing algorithm and localization, respectively, in Wire-
lessHART networks. None of these concerns delay analysis.
Our earlier work proposed delay analysis [3], [19]. As a first
step in establishing a delay analysis for WSANS, this earlier
effort is based on single-route routing instead of reliable graph
routing, which are important for reliable communication in
process control applications. We have also studied priority as-
signment policies in [20] and rate selection algorithms in [21]
for real-time flows. Our work in [1], [24] also considered
dynamic priority scheduling. However, none of our earlier
work considers delay analysis under reliable graph routing.

This paper presents the first delay analysis for WSANs
under reliable graph routing. Since industrial applications
impose stringent requirements on both real-time performance
and reliability in hash environments with frequent transmission
failures, the delay analysis represents an important contribu-
tion to real-time scheduling for real-world WSANSs. Efficient
delay analysis is particularly useful for online admission
control and adaptation (e.g., when network route, topology, or
channel condition change) so that the network manager can
quickly reassess the schedulability of the flows.

III. SYSTEM MODEL
A. Network Model

Because of the world-wide adoption of WirelessHART in
process monitoring and control, we consider a WSAN based
on the WirelessHART standard [2]. WirelessHART forms a
multi-hop mesh network consisting of a Gateway, a set of
field devices, and several access points. A centralized network
manager and the controllers are connected to the Gateway.
The network manager is responsible for managing the entire
network such as routing and transmission scheduling. The field
devices are wirelessly networked sensors and actuators. Access
points are wired to the Gateway to provide redundant paths
between the wireless network and the Gateway. The sensor
devices periodically deliver sample data to the controllers
(through the access points wired to the Gateway), and the con-
trol messages are then delivered to the actuators. The network
manager creates the routes and schedules of transmissions.

To achieve high reliability, WirelessHART employs a num-
ber of mechanisms to handle transmission failures. Transmis-
sions are scheduled based on a multi-channel TDMA protocol.
Each time slot is of fixed length (10 ms), and each transmission
needs one time slot. A transmission and its acknowledgement
(ACK) are scheduled in the same slot using the same channel.
For transmission between a receiver and its sender, a time
slot can be either dedicated or shared for the link between
the sender and the receiver, and the link is called a dedicated
link or a shared link, respectively. In a time slot, when a link
is used as a dedicated link, only one sender is allowed to
transmit to the receiver. In a time slot, a shared link associated
with a receiver indicates that multiple senders can attempt to
send to the common receiver in that slot. The network uses
the channels defined in IEEE 802.15.4, and adopts channel
hopping in every time slot. Any excessively noisy channel
is blacklisted not to be used. Each receiver uses a distinct
channel for reception in any time slot. As a result, there are
at most m successful transmissions in a time slot, where m
is the total number of channels. This design decision prevents
potential interference between concurrent transmissions in a
dedicated slot and trades network throughput for a higher
degree of predictability and reliability that is essential for
industrial applications.

WirelessHART supports two types of routing approaches:
source routing and graph routing. Source routing provides
a single route for each flow. The delay analysis for source
routing has been addressed in the literature [3]. The focus



of this paper is to develop new delay analysis for graph
routing that achieves a higher degree of reliability by providing
multiple paths for each flow. In graph routing, a routing graph
is a directed list of paths that connect two devices. Packets
from all sensor nodes are routed to the Gateway through
the uplink graph. For every actuator, there is a downlink
graph from the Gateway through which the Gateway delivers
control messages. The end-to-end communication between a
source (sensor) and destination (actuator) pair happens in two
phases. In the sensing phase, on one path from the source
to the Gateway in the uplink graph, the scheduler allocates
a dedicated slot for each device starting from the source,
followed by allocating a second dedicated slot on the same
path to handle a retransmission. The links on this path are
dedicated links. Then, to offset failure of both transmissions
along a primary link, the scheduler allocates a third shared slot
on a separate path to handle another retry. The links on these
paths are shared links. Then, in the control phase, using the
same way, the dedicated links and shared links are scheduled
in the downlink graph of the destination.

Each node is equipped with a half-duplex omnidirectional
radio transceiver that cannot both transmit and receive at the
same time and can receive from at most one sender at a time.
Two or more transmissions that involve a common node are
conflicting, and cannot be scheduled in the same dedicated
slot. However, for the case of shared slot, the transmissions
having the same receiver can be scheduled in the same slot.
The senders that attempt to transmit in a shared slot contend
for the channel using a CSMA/CA scheme.

B. Flow Model

A periodic end-to-end communication between a source
(sensor) and a destination (actuator) is called a flow. We con-
sider there are n real-time flows denoted by Fy, Fs, ---, I},
in the network. The source and the destination of flow F;
are denoted by s; and d;, respectively. The subgraph of the
uplink graph that s; uses to deliver sensor data to the Gateway
is denoted by UG;. The downlink graph for d; is denoted by
DG;. The graph consisting of UG; and DG; is the routing
graph of F, and is denoted by G;. The period and the deadline
of flow F; are denoted by 7; and D;, respectively. Time slots
are used as time units. We assume D; < T;, Vi.

Each flow F;, 1 <14 < n, has a fixed priority. Transmissions
of a flow are scheduled based on its priority. In practice, flows
may be prioritized based on deadlines, rates, or criticality.
We assume that the priorities are already assigned using any
algorithm, and that F, F5, ---, F), are ordered by priorities.
Flow F}, has higher priority than flow F; if and only if h < 1.

IV. FIXED PRIORITY SCHEDULING

In this section, we provide an overview of the fixed pri-
ority transmission scheduling algorithm under reliable graph
routing for which our delay analysis is developed. Due to its
simplicity, fixed-priority scheduling is a commonly adopted
policy in practice for real-time CPU scheduling, Control-Area
Networks, and also for WirelessHART networks. In a fixed

priority scheduling policy, each flow has a fixed priority, and
its transmissions are scheduled based on this priority. The
schedule is created by resolving the transmission conflicts and
considering the limited number of channels. The complete
schedule is split into superframes. A superframe is a series
of time slots that repeat at a constant rate and represents the
communication pattern of a set of flows.

We first describe how transmissions are scheduled using
graph routing to account for failures. Figure 1(a) shows UGy,
(the subgraph of the uplink graph used by F},) for flow F},.
In the figure, the dedicated links used by F}, in the sensing
phase are shown in solid lines while the dotted lines indicate
the shared links used by Fj,. Considering that F, is not delayed
by any other flow, the time slots in which a link is activated are
shown beside the links (starting from slot 1). The first (starting
from the source node sj,) dedicated link s;, — w is scheduled
first at slot 1. Then to handle the transmission failure of slot
1, time slot 2 is also allocated for this link. Then, the next
dedicated link v — v is allocated time slots 3 and 4. Similarly,
the next dedicated link v — a is allocated time slots 5 and
6. Thus, if the first transmission (scheduled on slot 5) along
v — a succeeds (given at least one transmission along s, — u
and at least one transmission along u — v succeeded), then
the packet will reach the access point a in 5 time slots. If the
first transmission (scheduled on slot 5) along v — a fails but
the second one (scheduled on slot 6) along that link succeeds,
then the packet will reach the access point @ in 6 time slots.
For every link starting from the source, to handle failure of
both transmissions along the link, the scheduler again allocates
a third shared slot on a separate path to handle another retry.
There can be situations when the second transmission on a
dedicated link, say s, — u, succeeds but the ACK gets lost.
As a result, s, retransmits the packet along the shared link
sp — y on the third slot (as s is unaware of the successful
transmission on the dedicated link) while the packet at u is
transmitted through the subsequent links. Thus a packet can be
duplicated and delivered through multiple routes. We call this
problem ACK-lost problem. To handle ACK-lost problem, we
avoid conflicts among the duplicated packets while scheduling
on a routing graph, except the case that transmissions along the
shared links having the same receiver are allowed to schedule
in the same slot. Thus, the links on paths s, — y — 2z —
w — a are scheduled on slots 3, 4, 5, and 7. Then the links
on path u — = — a are scheduled on slots 5 and 7. Then
the links on path v — w — a are scheduled on slots 8 and 9.
Thus the packet can take at most 9 slots to reach the access
point (along s, = u = v — w — a).

Under fixed priority scheduling, the transmissions of the
flows are scheduled in the following way. Starting from the
highest priority flow F7j, the following procedure is repeated
for every flow F; in decreasing order of priority. For current
priority flow Fj, the network manager schedules its dedicated
links and shared links on UG; in its sensing phase on earliest
available time slots and on available channels. It then sched-
ules the dedicated links and shared links on DG; in the control
phase following the same way. A time slot is available if no
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(a) UGy, for Fy (b) UG; and UGy,
Fig. 1. Routing in the sensing phase of F; and F}, (the numbers beside each
link indicate the time slots allocated to the link.)

conflicting transmission is already scheduled in that slot except
the case that transmissions along the shared links having the
same receiver are allowed to schedule in the same slot. Thus a
packet is scheduled on multiple paths along the routing graph.
When there is no ACK-lost problem, a packet is delivered
through one path in the routing graph. Otherwise, a packet
can be duplicated and thus delivered through multiple paths.

Note that we do not propose any new algorithm for real-time
transmission scheduling or any new fault tolerance mechanism
for WirelessHART networks. Instead, the key contribution
of our work is an efficient analysis for deriving the worst
case delay bounds in a WSAN under graph routing, which
is applicable for any existing fixed-priority scheduling policy
for real-time flows in WSANs. The delay bound provided
by our analysis is applicable only to the packets that are
successfully delivered to the destination using existing graph
routing mechanisms in WirelessHART.

V. DELAY ANALYSIS UNDER RELIABLE GRAPH ROUTING

We first formulate the problem of worst-case delay analysis
for real-time flows in a WSAN. We then present the delay
analysis for any given fixed priority scheduling policy.

A. Problem Formulation

For each flow Fj, the sensor (s;) periodically generates data
at a period of T; which has to be delivered to the Gateway
(through an access point) in the sensing phase, and then the
control message has to be delivered to the actuator (d;) in the
control phase. The total communication delay in two phases
is called an end-to-end delay of F;. The flows are called
schedulable under a given fixed priority scheduling algorithm
A, if A is able to schedule the transmissions where no deadline
will be missed. A schedulability test S is sufficient if any set
of flows deemed schedulable by S is indeed schedulable. To
determine the schedulability of a set of flows, it is sufficient
to show that, for every flow, an upper bound of its worst case
end-to-end delay is no greater than its deadline. Our objective
is to determine an upper bound R; of the end-to-end delay
of each flow F;. The end-to-end delay analysis will determine
the flows to be schedulable if R; < D;, Vi. Note that we
derive upper bounds of communication delays in the network,
and do not consider the time needed by the controller.

Note that creating a complete schedule for all flows requires
an exponential time since the schedule has to be created up

to the hyper-period of the flows. Specially, when the periods
are not harmonic, the hyper-period can be extremely long
making it computationally very expensive to determine the
schedulability and the delays by creating a complete schedule.
In contrast, the purpose of our analysis is to determine the
schedulability of the flows very quickly in pseudo polynomial
time without the need to create a complete schedule. Efficient
delay analysis is particularly useful for online admission
control and adaptation (e.g., when network route, topology,
or channel condition change) so that the network manager
can quickly reassess the schedulability of the flows and
adjust workload or flow parameters (e.g., rates, priorities)
accordingly. It hence is highly desirable in process monitoring
and control applications that require real-time guarantees since
various network dynamics affect the schedulability of the flows
frequently requiring to reassess their schedulability.

In transmission scheduling, a lower priority flow may be
delayed by higher priority flows due to (a) transmission
conflicts (when a transmission of the lower priority flow and
a transmission of a higher priority flow involve a common
node) and (b) channel contention (when all channels are
assigned to the transmissions of higher priority flows in a time
slot). For each case, we first separately analyze how reliable
graph routing in WSANSs affect it. We then incorporate each
component of the delays into one analysis that provides an
upper bound of a flow’s end-to-end delay under graph routing.

B. Transmission Conflict Delay under Graph Routing

First we analyze the delay that a flow can experience due
to transmission conflicts only under graph routing. Whenever
two transmissions conflict, the one that belongs to the lower
priority flow needs to be delayed. The term ‘delay’ used in
this subsection will refer to ‘only transmission conflict delay’.

First we determine the conflict delay that one higher priority
flow F} may cause on a lower priority flow F;. Under multi-
path graph routing, a transmission of F} along a link ¢;, and
a transmission of F; along a link ¢; may be conflicting in 4
ways as follows when these two links involve a common node:

1) Type 1: ¢y is a dedicated link and ¢; is a shared or

dedicated link.

2) Type 2: {} is a shared link and ¢; is a dedicated link.

3) Type 3: ¢} is a shared link and /¢; is a shared link, and

the receiver nodes of the two links are different.

4) Type 4: {}, is a shared link and ¢; is a shared link, and

the receiver nodes of the two links are the same. In this
case, the transmission of F; is not delayed.

In the first 3 cases the transmission of F; is delayed while
for Type 4 conflict it will not be delayed. Therefore, the total
delay caused by Fj on F; depends on how their dedicated
and shared links intersect in the routing graphs. Now we will
first determine an upperbound of the conflict delay that one
instance of a higher priority flow F} may cause on F;. In the
next discussion we limit our attention only to F}, and F;. Note
that we measure delay in terms of number of slots.

In the routing graph G; (consisting of UG, and DG;) of flow
F; which involves N; nodes, there can be O(N?) directed end-



to-end paths from its source s; to destination d; (calculated
as the number of paths in UG; in the sensing phase times the
number of paths in DG; in the control phase). If every node
in the routing graph has to make the first two tries along a
dedicated link and then to make a third retransmission along
a shared link, then this number of paths can be 2V, Thus if ¢
denotes the time complexity (which is pseudo polynomial) for
determining delay for a single path route, the complexity for
a flow F; becomes O(t * oN i). On the other hand, our method
has time complexity of O(¢) flow F; (as will be shown later).
Among these end-to-end paths, the one that experiences the
maximum conflict delay from Fj, is called the bottleneck path
with respect to Fj,. The conflict delay caused by F}, along
F;’s bottleneck path represents the upper bound of the conflict
delay that Fj, may cause on F;. Let A" be an upper bound
of conflict delay that one instance of F} may cause along
the bottleneck path of F;. We determine Al in an efficient
way without requiring to find the bottleneck path or without
enumerating all end-to-end paths in G; as described below.

Algorithm 1: Finding conflict delay on F; caused by Fj,

Procedure FindConflict(UG;, 7)
for each node u in UG; do
\ status(u):=undiscovered, )\f(u) = 0;
end
DFSearch(r);
return \?(r);
end Procedure
Procedure DFSearch(r)
status(r):=discovered, /* node r is now discovered */
for each v € children(r,UG;) do
‘ if status(v)=undiscovered; then DFSearch(v);
end
A (r) := max{\}(v)|v € children(r,UG;)};
z(r) := new conflict delay on F; by F}, observed at node r;
M (r) i= AR (r) + 2(r);
end Procedure

/* T is a node in UG; x/

/* start search at node 7 */
/* )\? in subtree rooted at r =/

Let us call the bottleneck path (with respect to Fj) in
UG; the bottleneck sensing path of F;. Let an upper bound
of conflict delay caused by F} on F;’s bottleneck sensing
path be A", A value of can be efficiently calculated
without enumerating all paths in UG; as explained below. Let
us consider a particular path p in UG;. The total number of
transmissions of (one instance of) Fj, that may have Type 1, 2,
or 3 conflict on p represents a value of conflict delay along p
caused by one instance of F},. To illustrate this, in Figure 1(b),
with flow F},, we also show UG; for flow F;. The figure shows
links s; — 2z, z — v, and v — a as dedicated links in UG;
while the corresponding shared links are s; — y, 2 — w, and
v — w, respectively. In Figure 1(b), F} has 9 transmissions
that may cause delay along p = s; -+ z — w — a of Fj.
(Note that this is the delay along p considering links s; — z,
z— v, z— w, and w — a of Fj. Link z — v is considered
because z — w is scheduled only after scheduling z — v.)
Now the path in UG; whose delay (calculated using the above
method) is maximum is the bottleneck sensing path, and its
delay represents A"**". Such a value of A/"*" is determined
quickly by exploring each link on UG; once based on a depth-
first search on UG;. The method is shown as Algorithm 1, and

)\?,sen

A% s determined by calling

AP = FindConflict(UG;, sy);

In Algorithm 1, we use children(u,UG;) to denote the
set of nodes to which node u transmits in UG; for flow F;.
(For example, in Figure 1(a), node s; has children u and y.)
The search starts at node s;. In this method, when the search
backtracks at a node u, we use A\?(u) to denote the maximum
conflict delay along a path among all the paths in the subtree
(induced by depth first search) rooted at u. The value of A\ (u)
is calculated by taking the maximum of the values from w’s
children and then by adding the new conflict delay that we
observe at node u, when the search finishes node u. Note that
we do not need to execute Algorithm 1 for every distinct F},
to determine )\?’Se". Instead, we need to execute Algorithm 1
only once for all i < i to determine \!**" for flow F}, making
our approach highly efficient.

Similarly, let A" be the conflict delay along the bottle-
neck control path. The value of A" is determined using
Algorithm 1 on DG; starting the search at an access point a,
i.e., by calling

A" = FindConflict(DG;, a);

Thus, our method has time complexity of O(|G;| + t) =
O(t) (where t denotes the time complexity for determining
delay for a single path route and is pseudo polynomial) for a
flow F; where O(|G;]) is the time complexity of Algorithm 1
(considering its execution on both UG; and DG;), with |G|
indicating the total number of links and nodes in Gj;.

Lemma 1 provides a bound of A”.

Lemma 1: For a higher priority flow F}, and a lower priority
flow F;, AP < \sen g \leon,

Proof: Since the control phase of F; starts after its sensing
phase is complete, the bottleneck path between s; and d; con-
sists of its bottleneck sensing path and the bottleneck control
path. Hence, A\*" 4 \/*“° is an upper bound of conflict delay
caused by one instance of F}, along F;’s bottleneck path. M

Note that A? is an upper bound of delay that one instance
of F} can cause along F;’s bottleneck path. Now we will
upperbound the total delay caused by all instances of F},. In
considering the delay caused by multiple instances, we observe
that at the time when a transmission on a directed path p
in G; conflicts with some transmission of Fj,, the preceding
transmissions on p are already scheduled. These already sched-
uled transmissions on p are no more subject to delay by the
subsequent instances of F},. For example, in Figure 1(b) let
us consider the path s; - y - 2 - v > w — a in UG,
of F;. If some instance of F}, conflicts and causes delay on
F;’s transmission along v — w, the next instance of Fj, must
not delay F;’s transmissions along links s; — vy, y — =z,
and z — v on this path since these are already scheduled.
Thus only the transmissions that are not yet scheduled along
path p will be considered for conflict delay by the subsequent
instances of F},. These observations lead to Lemma 2, and
then to Theorem 3 to upperbound the total delay (due to
transmission conflict) caused on F; by all instances of F},.



Lemma 2: Let us consider any two instances of a higher
priority flow F} such that each causes conflict delay on a
directed path p in G; of a lower priority flow F; in a time
interval. Then, there is at most one common transmission on
p that can be delayed by both instances.

Proof: Let these two instances of Fj be denoted by
Fy 1 and F}, o, where Fj, 1 is released before Fj, 2. Suppose
to the contrary, both of these instances cause delay on two
transmissions, say 7; and 7., on directed path p of F;. Without
loss of generality, we assume that 7; precedes 7, on p. F}, 1
causes delay on 7, because 7, is ready to be scheduled. This
implies that 7; has already been scheduled. Hence, F}, » which
releases after I}, ; cannot cause any delay on 7;, thereby
contradicting our assumption. ]

By Lemma 2, for any two instances of F}, any directed
path in G; of F; has at most one transmission on which
both instances can cause delay. Let the link on G; that may
have maximum conflict delay of Type 1, 2, or 3 with Fj, be
called the bottleneck link of F; (with respect to F}). That
is, a transmission of F; along this link may face the highest
conflict with Fy,. Let 6! denote the maximum conflict delay
along the bottleneck link. (For example, considering only UG;
in Figure 1(b), we can see that 5? = 7, since a link of Fj can
have conflict with at most 7 transmissions of F},. Here, z — v
is F;’s bottleneck link.) In the worst case, the transmission
along the bottleneck link of F; (with respect to F}) can be
delayed by multiple instances of F},. Hence, the value of §”
plays a major role in determining the worst case delay caused
by Fj, on F; as shown in Theorem 3.

Theorem 3: In a time interval of t slots, the worst case
conflict delay caused by a higher priority flow F}, on a lower
priority flow Fj is upper bounded by

Al 4 ( HhJ - 1) " + min (5?,15 mod Th)

Proof: There are at most (Tih] instances of F}, in a time
interval of ¢ slots. We consider a particular directed path p
in G; of F;. Let the set of transmissions of Fj, which cause
conflict delay along p be denoted by I'. When one instance
Fy1 of Fj, causes conflict delay on p, a subset I'y of T’
causes delay on p. Now consider a second instance F}, o of
Fy,. For F}, 5, another subset I'y of I' causes delay on p.
When all subsets I'y, 'y, - - - ,F(TL’L] are mutually disjoint, by

the definition of A, the conflict delay caused by T' on p

is at most A”. Hence, the total conflict delay caused by all

'y, o, ,I‘(TL] in this case is at most A?. That is, the total
h

conflict delay on p caused by Fj, is at most A",

Now let us consider the case when the subsets
I'y,To,--- I(ﬁ] are not mutually disjoint, i.e., there is
at least one pair I';,I'; such that I'; N T # 0, where
1<5,k< (%] Let the total delay caused by all instances
of F}, on p in such case be A" + Z!, i.e., the delay is higher
than A by Z! time slots. The additional delay (beyond Al)
happens because the transmissions that are common between

I'; and I'; cause both instances of F}, to create delay along

p. By Lemma 2, for any two instances of Fj,, p has at most
one transmission on which both instances can cause delay. If
there is no transmission of p that is delayed by both the k-th
instance and the (k+1)-th instance of F},, then no transmission
of p is delayed by both the k-th instance and the g¢-th instance
of Fp, for any ¢ > (k+ 1), where 1 < k < (Tih] Thus,
Z!" is maximum when for each pair of consecutive instances
(say, the k-th instance and k + 1-th instance, for each k,
1<k< [Tih]) of F}, there is a transmission of p that is
delayed by both instances. Hence, at most (Tih] — 1 instances
contribute to this additional delay Zf, each instance causing
some additional delay on a transmission. Since one instance of
F, can cause delay on a transmission of p at most by 6 slots,
Zh < ([Tiﬂ —1)d%. Since the last instance may finish after the
considered time window of ¢ slots, the delay caused by it is at
most min(6”, ¢ mod T},) slots. Taking this into consideration,
ZP < (| 4-)=1)8] +min(6},t mod Ty). Thus, the total delay
caused on p by all instances of Fj, is at most

Ab 4zl < Al (HJ _1).6" + min(s!, £ mod Tp)
h
Since the above bound is true for any path in G; (of F), it
is true for the bottleneck path in G;. Since the conflict delay
along the bottleneck path represents the conflict delay caused
on F; by F}, the theorem follows. |
From Theorem 3, now an upper bound of the total delay
that flow F; can experience from all higher priority flows due
to transmission conflicts during a time interval of ¢ slots is
calculated as follows.

Z(A? T ( HJ — 1).557 + min (5{1, t mod Th>) (1)

h<i h
C. Channel Contention Delay under Graph Routing

In this section, we analyze the channel contention delay
caused by one higher priority flow F}, to a lower priority one
F; under reliable graph routing. First we analyze the delay
without considering channel hopping. Later, we will analyze
the effect of channel hopping.

Let E; and S, denote the total number of dedicated links
and total number of shared links of flow F}, respectively. Since
every dedicated link is scheduled on 2 dedicated slots, there
are 2E), + S, assignments of channels for flow Fj,.

Note that a packet is scheduled on multiple paths in its
routing graph for fault tolerance. While a natural approach
to analyzing channel contention delay of a flow under this
scenario is to consider it as a parallel task, we observe that
the scheduling on routing graphs experiences only a little
parallelism making it more closer to sequential task scheduling
due to the following two problems.

ACK-lost problem. Assuming no packet duplication, we
could schedule the link w — a for delivery through paths
s, — Yy — Z — w — a on slot 6, ignoring the fact that
link v — a is already scheduled on slot 6 because the packet
will be delivered through one path only (Figure 1(a)). But, in
presence of ACK-lost problem, to avoid conflict among the



duplicate packets (of the same packet), we cannot schedule
link w — a on slot 6. Thus v — a and w — a are scheduled
sequentially, on slot 6 and slot 7, respectively.
Impact of transmission conflict on channel contention de-
lay. Channel contention delay and transmission conflict delay
are often correlated. Specifically, channel contention delay can
increase when a flow experiences transmission conflict delay.
Let us consider links z — w and v — x (in G},) that can be
scheduled on slot 5 when there are no other higher priority
flow (Figure 1). In the presence of higher priority flows, if
any of transmissions z — w and v — x in F}, is delayed, for
example by 1 slot, due to transmission conflict with a higher
priority flow, while the other can happen at slot 5, then these
two transmissions have to be scheduled sequentially (instead
of scheduling in parallel). Therefore, even though scheduling
of Fj, has some parallelism, in the worst case in presence of
transmission conflict, it can cause channel contention delay
on its lower priority flows like a flow that happens like a
sequential task with execution requirements of 2F, + S}, slots.
Based on the above observations, the analysis for upper
bounding the channel contention delay reduces to that for
a set of flows where each flow F; has the worst-case time
requirement of e; slots through a single path route, where
e; = 2F; + 5;. Hence, we leverage our result in [3] whose
analysis was given for flows with single-path routes to find
the channel contention delay caused by Fj, on Fj. Using that
result, in any time interval of x slots, there are at most m — 1
higher priority flows each flow Fj among which can cause at
most I/ (z) delay on F; as expressed below

IZ-}L({,E, e;) = min <m —e; +1, {HIJ en + en+
Th

min (eh —1,max (@ = ep) mod Ty — (T, — Rh)>0)>>

where R, is the worst-case end-to-end delay of F},. The delay
caused by each other higher priority flow £}, on Fj is at most

Ty
Thus, considering a total of m channels, an upper bound Q;(z)
of the channel contention delay caused by all higher priority
flows on F; in any time interval of x slots is derived as follows.

1
Qi(x,e;) = | — | Zi(z,e;) + J,»h T, e; )J 2)
(.0 {m (z6.c) St

with Z;(z, e;) being the sum of the min(i — 1, m — 1) largest
values of the differences Iih(x,ei) — Jih(:r,ei) among the
higher priority flows Fj, h < 1.
Effect of Channel Hopping. To every transmission, the
scheduler assigns a channel offset between 0 and m — 1
instead of an actual channel, where m is the total number
of channels. All devices in the network maintain an identical
list of available channels. At any time slot ¢, a channel offset ¢
(ie., 1,2,--- ;m—1) maps to a channel that is different from
the channel used in slot ¢ — 1 as follows.

Jih(w, €;) = min (m—ei—i—l, {xJ en+min (x mod T}, eh))

channel = (¢ +t) mod m 3)

Both the sender and the receiver of the corresponding trans-
mission link switches to the new channel. As can be seen from
Equation 3, at every time slot any 2 different channel offsets
always map to 2 different channels. The scheduler assigns at
most one channel offset to a link at any time which maps to
different physical channels in different time slots, keeping the
total number of available channels at m always, and scheduling
each link on at most one channel at any time. Hence, channel
hopping does not have effect on channel contention delay.

D. End-to-End Delay Bound

Now both types of delays are incorporated together to
develop an upper bound of the end-to-end delay of every flow.
This is done for every flow in decreasing order of priority
starting with the highest priority flow. Theorem 4 provides an
upper bound R; of end-to-end delay for every flow F;.

Considering no delay from higher priority flows, let the
worst-case time requirement of Fj in the sensing phase be
denoted by Lj". For example, in Figure 1(a), Ly = 9 slots
(as described in Section IV). A similar scheduling is followed
in the control phase also. Similarly, considering no delay from
higher priority flows, let the worst-case time requirement of F},
in the control phase be denoted by L}*. Thus, considering no
delay from higher priority flows, the time requirement through
a critical path denoted by L;, of flow F; is

Li = L 4 L5 (4)

Theorem 4: Let x; be the minimum value of x > L; that
solves Equation 5 using a fixed-point algorithm.

Then the end-to-end delay bound R; of flow F; is the
minimum value of ¢ > z that solves Equation 6 using a
fixed-point algorithm.

t= x:+Z(A§}+( H}LJ —1).6,?+min (6f,tmod Th>>

(6)
Proof: According to Equation 2, x; is calculated consid-
ering Ry, (i.e., the end-to-end delay bound of Fj, considering
both channel contention delay and conflict delay) of each
higher priority flow F},. According to Equation 2, Q;(z, L;)
is the channel contention delay caused by all higher priority
flows on F; in any time interval of z slots. Hence x is the
bound of the end-to-end delay of F; when it suffers only
from channel contention delay caused by higher priority flows
(and no conflict delay). Equation 1 provides the bound of
transmission conflict delay of F;. Hence, adding this value
to 7 must be an upper bound of F;’s end-to-end delay under
both channel contention and transmission conflict. [ ]
Thus we can determine R; for every flow F; in decreasing
order of priority starting with the highest priority flow using
Theorem 4. In solving Equations 5 and 6, if x or ¢ exceeds
D;, then F; is decided to be ‘“unschedulable”.

Time complexity. Since both x in Equation 5 and ¢ in
Equation 6 can reach a value of at most D, using a fixed



point algorithm, the worst-case time required to determine
R; can be O(D;). Given n flows with a maximum deadline
of Dpax, the required time for the delay analysis of all the
flows is n# O(Dpmax) Which implies a pseudo polynomial time
complexity. Note that this time is usually much less than that
required for computing all superframes, as the latter would
take the least common multiple of all periods which can be
extremely large when the periods are non-harmonic. Moreover,
as discussed in Subsection V-B, our delay analysis does not
require the enumeration of all the possible paths through a
routing graph. Therefore, the proposed analysis is an efficient
approach for determining the schedulability of real-time flows
in process monitoring and control applications.

VI. A PROBABILISTIC END-TO-END DELAY ANALYSIS

Graph routing provides a very conservative approach to
scheduling transmissions in a WirelessHART network. In the
scheduling used in the previous sections, there is a synchro-
nization at the access points in the sense that the scheduling
in the downlink graph of a flow (the control phase) is started
after all links in its uplink subgraph are scheduled. However,
there is high probability that a packet will be delivered
through the dedicated path only because each link on the
path is dedicated and scheduled twice. Therefore, whenever
the gateway receives a sensor packet through the dedicated
link, the corresponding control message can be calculated
and delivered through the downlink graph’s dedicated link in
the next available slot avoiding synchronization at the access
points. The corresponding retry on the shared slot can be
scheduled only after all links on the uplink subgraph of the
flow are scheduled. The advantage of such a scheduling policy
is that the actual end-to-end delay in most cases will be
substantially shorter since a packet follows the dedicated links
in most cases. Under this scheduling, we can determine a
probabilistic delay bound that is tighter than the bound derived
in the last section but represents a bound with high probability.
These bounds rely on statistical independence among the links.

Considering the dedicated route has E; links, and pj as
the probability of a successful transmission along link k, the
probability of being successful upon 2 transmissions through
link % is 1— (1 — py,)?. Therefore, the probability that a packet
will be delivered through the dedicated links is

E;
[I(1--r?) ™
k=1

Let, in G;, the path consisting of all dedicated links be
called dedicated path. Let A’ f denote the total number of
transmissions of (one instance of) F}, that share a node on the
dedicated path of F;. Similarly, let ¢’ Zh denote the maximum
conflict delay caused by one instance of £}, on the bottleneck
link on F;’s dedicated path (i.e., a link on F;’s dedicated
path can share a node with at most ¢’ f transmissions of F},).
Corollary 1 now follows from Theorem 4.

Corollary 1: Let ] be the minimum value of z > 2FE; that
solves Equation 8 using a fixed-point algorithm.

Fig. 2. Testbed topology (access points are blue colored)

Then the minimum value of ¢ > z} that solves Equation 9
is the worst-case end-to-end delay bound of flow F; with a

E;
probability of at least ] (1 —(1- pk)2).
k=1

t= x;*+h§<:i (A’H( H}LJ —1) 8" +min (5’?, t mod Th>>

9)

Proof: By Equation 2, Q;(z, 2E;) represents the channel
contention delay on the dedicated path of F;. Following Theo-
rem 4, the minimum value of ¢ > z that solves Equation 9 is

the worst case delay bound for the dedicated route. The proof
E;
follows since a packet has [] (1 —(1- pk)2) probability of

k=1
being delivered through the dedicated route. [ ]

VII. EXPERIMENT
A. Testbed Experiment

1) Implementation: We evaluate our delay analysis on an
indoor wireless testbed deployed in two buildings at Washing-
ton University [25]. The testbed consists of 69 TelosB motes,
each equipped with Chipcon CC2420 radios compliant with
the IEEE 802.15.4 standard. We implement a WirelessHART
protocol stack on TinyOS 2.1.2 [26] and TelosB. Our protocol
stack consists of a multi-channel TDMA MAC protocol with
channel hopping and a routing layer supporting both source
routing and graph routing. The uplink and downlink graphs
are generated using the graph routing algorithms presented
in [22]. Time is divided into 10 ms slots and clocks are
synchronized across the entire network using the Flooding
Time Synchronization Protocol (FTSP) [27]. The details of
our protocol stack implementation are available in [28].

2) Experimental Setup: The senders scheduled in a shared
slot follow CSMA/CA mechanism for transmission within that
slot of the TDMA schedule. We setup the parameters of the
CSMA/CA mechanism in a shared slot as follows to ensure
that a node that acquires the channel has sufficient time to
complete the transmission within that slot (a slot consists of
10ms). There are 2 backoff intervals and 3 backoff values:
initialBackoff, minimumBackoff, and congestionBackoff. In the
beginning of a shared slot, a node first makes an initial backoff
to avoid capturing a channel from the other nodes who also
are scheduled in that shared slot. The first backoff interval is
random in the range [minimumBackoff, initialBackoff]. Once
this backoff interval elapses, a node performs CCA. If the
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channel is free it transmits. If the channel is busy, a node will
pick another backoff period randomly from the range [min-
imumBackoff, congestionBackoff]. After the second backoff
interval elapses, it will immediately transmit if the channel
is free (checked upon CCA). If the channel is sensed busy,
the node immediately stops, and no further attempt is made
to transmit in that slot. We set initialBackoff = 2240 us,
minimumBackoff = 320 us, and congestionBackoff = 960 us.

We use IEEE 802.15.4 channels 15, 16, 19, and 20 in
our experiments. For each link in the testbed, we measured
its packet reception ratio (PRR) by counting the number of
received packets among 250 packets transmitted on the link.
Following common practice of industrial deployment, we only
consider links with PRR higher than 90% on every channel
to determine the testbed topology. Figure 2 is a topology of
the testbed showing the node positions on the two buildings’
floor plan. We use two nodes (colored in blue in the figure) as
access points, which are physically connected to a root server
(Gateway). The Network Manager runs on this root server.
The other motes work as field devices.

We experiment by generating 30 flows on our testbed. The
period of each flow is randomly selected from the range of
[10% 25,10 % 2'%ms. The relative deadline of each flow equals
to its period. All flows are schedulable based on our delay
analyses. Priorities of the flows are assigned based on the
Deadline Monotonic (DM) policy. DM assigns priorities to
flows according to their relative deadlines; the flow with the
shortest deadline being assigned the highest priority.

3) Results: We run our experiments long enough so that
each superframe is run for at least 20 cycles. We evaluate our
proposed approaches in terms of reliability and delay. We use
delivery ratio to measure reliability. The delivery ratio of a
flow is defined as the fraction of the packets generated by
the flow that are successfully delivered to destination. Since
there exists no prior work on delay analysis under reliable
graph routing, we compare our analytical delay bounds with
the maximum delay observed in experiments on the testbed.

Figure 3 shows our results. Figure 3(a) shows the delivery
ratios of all 30 flows. There are 2 flows each with a delivery
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ratio of 0.90, and 4 flows each with a delivery ratio of 0.95,
while every other flow has a delivery ratio of 1. This result
demonstrates the effectiveness of graph routing in achieving
reliable communication over WSANSs. Figure 3(b) plots the
maximum end-to-end delay observed in our experiments and
the end-to-end delay bounds derived through our delay anal-
ysis. As the figure shows, our analytical delay bounds are no
less than the experimental maximum delays, demonstrating
that our delay analysis provides safe upper bounds of the
actual delays. The ratio of the analytical delay bound to the
maximum delay observed in experiments is at most 2.79.
Note that the experiments may not have experienced the worst
case scenarios and hence the maximum delays observed in
experiments may not represent the actual worst case delays.

B. Simulations

For a more extensive evaluation, we now use the same
testbed topology and evaluate the results in simulations. We
generate flows by randomly selecting sources and destinations,
and simulate their schedules in these topologies. Two nodes
in the topology are selected as access points. The uplink and
downlink graphs are generated using the same graph routing
algorithms as the one we used in testbed experiment. The
periods of the flows are randomly generated in the range
[10 % 25,10 * 2'3]ms. The deadlines are equal to periods.
Priorities of the flows are assigned based on the DM policy. In
all cases, we use 12 channels for scheduling. We evaluate our
analysis in terms of Acceptance ratio defined as the fraction
of the total number of test cases that are deemed schedulable.

1) Worst Case Delay Analysis: Since there exists no prior
work on delay analysis under reliable graph routing, we
analyze the effectiveness of our analysis by simulating the
complete schedule of transmissions of all flows released within
the hyper-period. In all figures in this subsection, “Simulation”
indicates the fraction of test cases that have no deadline
misses in the simulations, and represents conservative upper
bounds of acceptance ratios because we did not simulate all
possible arrival patterns of the flows; “Analytical” indicates
the acceptance ratio based on our delay analysis.

Figure 4 shows the acceptance ratios for 1000 test cases
under varying number of flows. For 20 flows, 986 test cases
are schedulable through simulations while our analysis has de-
termined 818 cases as schedulable showing an acceptance ratio
of 0.818. The ratios decrease with the increase in the number
of flows. The gap between the analytical acceptance ratio and
that based on simulations stems from the pessimism of our
analysis which provides safe upper bounds. Next we evaluate
the probabilistic delay analysis in reducing pessimism.
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2) Probabilistic Delay Analysis: Again the testbed topol-
ogy is used in our simulations for the probabilistic delay
analysis, and the measured PRR of each link is used as the
probability of a successful transmission along the link.

For a test case of 30 flows, we simulate the schedule in
1000 runs where a link’s failure or success is determined prob-
abilistically based on its PRR. Figure 5(a) shows the fraction
(labeled “Observed”) of the packets that are delivered through
dedicated routes. In the figure “Expected” indicates the ex-
pected fraction of the packets to be delivered through dedicated
routes which is the analytical probability calculated based on
the measured PRR using Equation 7. The results show that
more than 90% of the packets are delivered through their
dedicated routes, and this value is close to what the analytical
probability in Equation 7 indicates. Thus the probabilistic
bound delay bound corresponds to a 90 percentile delay bound.
Figure 5(b) shows the acceptance ratios under the probabilistic
delay bound. It shows the probabilistic analysis can accept
at least 80% of the test cases that are schedulable according
to simulations for up to 35 flows. The results suggest that
our probabilistic analysis can effectively reduce the pessimism
of analytical delay bounds, and hence represents an effective
alternative for delay analysis of soft real-time flows for which
probabilistic delay bounds are sufficient. For example, this
analysis may be used for non-critical applications.

VIII. CONCLUSION

Industrial wireless sensor-actuator networks must support
reliable and real-time communication in hash environments.
Industrial wireless standards such as WirelessHART adopt a
reliable graph routing approach to handle transmission failures
through retransmissions and route diversity. These mechanisms
introduce substantial challenges in analyzing the schedulability
of real-time flows. We have presented the first worst-case delay
analysis under reliable graph routing. We have also proposed
a probabilistic delay analysis that provides delay bounds with
high probability. Experiments based on a wireless testbed of 69
nodes and simulations show that our analytical delay bounds
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are safe, and can be used as an effective schedulabity test for
real-time flows under reliable graph routing.
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