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Abstract—Control systems using sensors and wireless networks
are becoming more prevalent, due to its ease of deployment:
no wires and longer battery life. However, network delays and
packet losses can degrade control system performance, which
leads us to find the optimal network configuration to minimize
that impact. Another main difficulty of having wireless networks
for control systems is caused by interference and noise that
produce time-varying fault patterns, which motivates us to do
network reconfiguration at run time. To solve these two issues, we
propose a network reconfiguration framework with offline and
online components that considers time-correlated link failures.
We are conducting a case study to wirelessly control a non-
linear primary heat exchanger system in a small modular nuclear
reactor of a nuclear power plant.

I. INTRODUCTION

Wireless control systems (WCS) are composed of con-
trollers, sensors and actuators connected via a wireless net-
work. WCSs controlled over multi-hop wireless sensor net-
work has received significant attention in recent years [4], [6],
[81, [12]. Given that the control room is usually geographically
distant from the sensors and actuators, wireless networks are
good for place-and-play deployment due to the lack of wires
(electrical or networking). However, wireless network delays
from the control room to sensors/actuators, and packet losses
can induce serious errors in the control system, which is very
undesirable (e.g., in a nuclear power plant, there could be
loss of efficiency or danger of a meltdown). These network
impacts, such as packet loss and network delay, have been
called network-induced imperfections [13] and categorized into
five types: (a) time delays, (b) packet losses and disorder,
(c) time-varying packet transmission/sampling periods, (d)
competition of multiple nodes accessing networks and (e) data
quantization. The first two types gain the most attentions,
which are also our focus in this paper.

In practice [4], the control sampling period (i.e., the interval
where the control loop makes decisions) in cyber-physical
systems (CPS) is 2" seconds, where —2 < n < 9 (250 ms
to 8 minutes). For the network delay, there are two cases: (1)
network worst-case delay is less than the control sampling
period; (2) The worst-case delay is more than the control
sampling period. For the former, the delivery ratio (DR,
defined as the ratio of arrived messages to sent messages)
is the key effect on control system performance. The higher
the DR, the better the control system performance. To achieve

978-1-5090-5269-1/17/$31.00 (©2017 IEEE

Daniel Cole, Jason G. Pickel

Mechanical Eng and Materials Science Department

University of Pittsburgh

high DR, the network configuration can be set to “as reliable
as possible,” that is, a high level of redundancy, which requires
more nodes, and thus induces more delay for messages to be
delivered to the control room.

However, when the worst-case delay is larger than the
control sampling period, there is a trade-off between network
delay and DR for control system performance. Although
the network-induced imperfection problem has been studied
from the control perspective [7], [9], minimizing the network-
induced imperfections has not been studied from the network
perspective. The trade-off between losses (requiring more
redundant nodes) and delays (calling for fewer nodes) can
be achieved through an optimization to find the network
configuration with minimum imperfections, solved off-line.

However, control system environments typically changes
with time and space [1], [3], such as obstacles, moving
people/objects, and electromagnetic and radio frequency inter-
ference (EMI/RFI). Some interference can make the network
inaccessible and disconnected for a limited amount of time
(e.g., a factory robot, blocks the wireless transmission), and
the control system cannot get measurements during that time,
which in turn severely impacts the control system perfor-
mance. Therefore, we propose an online network reconfigu-
ration to guarantee the control system performance.

Integration and co-design of network and control system
are effective for wireless control system, as described next. A
co-design of network topology conditions and control system
stability is explored in [8]. The integration of fault-tolerant
wireless network and control in nuclear power plants is studied
in [12]. In [6], the author proposes an algorithm on data
link layer TDMA scheduling to achieve higher delivery ratio
for emergency packets than regular packets. A case study
of a wireless-controlled water tank is conducted. However,
the author does not address the network delay imperfection
in wireless control system, since they assume the network
delay is less than the control sampling period. In [2], the
authors derive a sufficient condition for the random access
communication policy of shared wireless medium and design a
control-aware random access communication policy. However,
all of these works assume the network environment is stable
or the network interference is at a given, fixed level and do
not consider the interaction between network reconfiguration
and control, which is our focus in this paper. We show
how the network reconfiguration changes the control system
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Figure 1: Framework: network reconfiguration for control
System with dynamic Interference

performance, comparing with a state-of-the-art static network
configuration.

In this paper, we focus on multi-hop wireless network
reconfiguration for control systems, when the worst-case net-
work delay is bigger than the control system sampling period.
We only consider link failures between network nodes. We
define average link success ratio (LSR) as the probability a
message can be sent out successfully on that link and use
it as the indication of the average network interference. We
solve the problem in two parts, offline and online, as shown
in Figure 1. For the offline part, to quantify the network
imperfection, we propose a network imperfection model to
transform network delay and DR to the total induced delay
on the control system. We estimate the total induced delay for
a set of network configurations, including network topology.
We find an optimal estimated network configuration set for
each LSR offline, and store them at the controller node. For
the online part, at run time, the network notifies the controller
what the estimated LSR is and the controller selects a network
configuration for the network, from the ones computed offline.
The controller then broadcasts the new network configuration
to all the nodes in the network to carry out a reconfiguration.
The control node is also part of the colsed-loop control and
sends control signals back via wireless network. We study the
interaction between network reconfiguration and the control
system with a simulator that controls the wireless sensor
network and a non-linear primary heat exchanger system [12]
in a small modular nuclear reactor (SMR) in a nuclear power
plant. Note that safety issues are beyond the scope of this
paper; we focus on feasibility first.

II. OFFLINE OPTIMAL NETWORK CONFIGURATION

In this section, we propose the first model to quantify the
network imperfections in terms of network delay and DR,
considering the control system performance. We then show
how to find an optimal network configuration set (there might
be more than one optimal configuration) with this model.

Similar to [6], we have two assumptions: (1) when a
message is not received by the controller, the previously-
received value will be used. (2) sensors do not fail, and
produce real values (i.e., no noise). Under these assumptions,
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Figure 2: Network delay and delivery ratio trade off illustration
example, when network delay is greater than control system
sampling period.

the model and the algorithm to determine the optimal network
configuration set are general and can be used in any WCS.

A. Network Imperfection Model

We define D, the delay induced into the control system
by the wireless network, as T seq — Tsenseds Where Toyseq
is the time the measurement signal is used by the controller
and Tsenseq 1S the time the sensor sends out the sensor
measurement. The delay induced into the control system is

Dnetwork + nlossAssp

D = [ Ay w Acsp ey
where Dpctyork is the network end-to-end delay, A, is the
control sampling period, n;,ss is the number of consecutive
packet losses, A,y is the sensing sampling period. For ex-
ample, as shown in Figure 2, the control system sampling
period and sensor sampling period are both 0.1s, but when
the network delay is 0.2s and measurement M, gets lost,
the induced delay D, is 0.3s and the controller will use
measurement M instead. When the measurement M3 also
gets lost, the induced delay Ds is 0.4s and the controller will
(re-)use measurement M.

D is related to both D,,ct0rk and ny,ss, Which is a function
of the packet DR (DR estimation and end-to-end worst-case
delay estimation have been studied elsewhere [12], [10]). njoss
is estimated by the expected value of the network loss ratio
(1-DR). We assume message loss follows the uniform distri-
bution, since DR can be viewed as the probability a message
received by the controller. Note that we only estimate 1,55 as
uniform distribution and will address bursty losses problem in
Section II-C. Thus, njss = Y. i(1 — DR)%, ((1 — DR)" >

i=1

thr), where (1 — DR)® is the probability of i consecutive
losses. When the probability is less than a threshold (thr),
we assume that the probability can be ignored to avoid the
computation running forever. For example, when DR = 0.9
and the thr = 0.001, the probability of getting 1, 2 and
3 consecutive losses are 0.1, 0.01, and 0.001, respectively.
Since the probability of four consecutive losses is less than
thr, we ignore the probability of more than three consecutive
losses. Therefore, the expected number of consecutive losses
is 1x(1-0.9)+2x(1-0.9)2+3x(1-0.9)°=0.123.



B. Optimal Network Configuration Algorithm

Our offline algorithm discovers the set of network configu-
rations for the online portion. Since our goal is to minimize the
network impact (network delay and packet loss) to the control
system, an optimal network configuration means configuration
with minimum induced delay, D, considering the network
imperfection model in Section II-A. Note that the bigger
the LSR value is, the bigger the DR is. Therefore, each
LSR value corresponds to a DR. We find a set of estimated
optimal network configurations for each average LSR value
and store them in a look-up table 7" indexed by LSR value
(See Algorithm 1).

Initialization: Configuration Set C; all possible LSR set
LSR; Look-up table T; Dyin;
for lsr;inLSR do
reset Dy, and con fopy;
for conf;inC do
calculate estimated induced delay D; of conf;
if Dj <= D,,;n then
Dpin = Dj;
con fopt = conf;
T.insert(lsr;, con fopt)
Algorithm 1: The optimal network configuration set deter-
mination algorithm

III. ONLINE NETWORK RECONFIGURATION

Due to the time-varying noise and interference in the
environment, we devised an online dynamic network recon-
figuration to improve the control system performance and
minimize the total induced delay D.

The network reconfiguration is carried out by the controller,
given that it has all the information needed to decide the op-
timal configuration for the current network status. In essence,
we assume that the network conditions do not change as fast as
the network reconfiguration algorithms execute, the nodes are
time synchronized and messages are sent periodically every
sensing sampling period. When a reconfiguration is needed
due to interference or noise, the controller broadcasts a new
network configuration to all the nodes in the network. Note
that even though our offline algorithm is general, in this paper
we restrict network configuration to refer to the number of
sensor nodes. To save network energy consumption to prolong
the network lifetime, sleep nodes are activated when needed,
or active nodes are put to sleep if not needed, creating dif-
ferent network topologies. For simplicity, we assume different
topologies have different number of nodes.

Since we assume the worst-case network delay is greater
than the control system sampling period, packet re-ordering is
possible. In this paper, the old packet is discarded, if the latest
packet has already arrived at the remote controller.

Recall that online network reconfiguration is based on the
offline look-up table given the current LSR. We first propose
an algorithm to estimate LSR at run time. We then propose
six online network reconfiguration algorithms, that is, three

original algorithms (Section III-B) combined with and without
taking into account consecutive packet losses (Section III-C).

A. Network Average Link Success Ratio Estimation

Since Algorithm 1 generates a look-up table containing
optimal network configurations for each LSR value, we need
an estimation for the LSR when the reconfiguration algorithm
is executed. We propose a jumping window in-network aggre-
gation method to estimate the overall average network LSR.
The idea is that each node calculates its own message receiving
ratio, which is the average LSR for its receiving links, and
adds it to its message. Then, each node will propagate its own
average LSR, and parents will average their own LSR with
their children’s LSRs; this repeats until it gets to the controller.

Specifically, during the LSR estimation interval (LSRI),
every node calculates its average receiving LSR (the ratio
of the number of messages it receives and the number of
children it has). At the end of an LSRI, each node concatenates
its average receiving LSR with its own message, and sends
the message to its parent nodes (one or more parent nodes)
and itself to its parents. Eventually, the remote controller will
compute the final overall network average LSR.

B. Online Network Reconfiguration algorithms

We explore three options to reach the optimal configuration,
given that the optimality depends on the LSR, which cannot
be computed instantaneously (estimated from the last average
LSR during LSRI). The algorithms are DirectJlump to Opti-
mal (DO), Multiplicative Increase and Conservative Decrease
(MICD), and Adaptive Control (AC). These algorithms have
access to the offline look-up table 7.

1) DO: DirectJump to Optimum Algorithm: In DO we
adjust the network topology to have the exact number of nodes
that correspond to the optimal network topology estimation,
whenever the LSR value changes (see Algorithm 2).

Initialization, LS RCounter=0, curr,ode = MiNnode;
while true do
if LSRCounter == LSRI then

do Link success ratio estimation, currrsgr;
get topology estimation from 7', T'(currrsr);
Curtpode=T(currpsr).node;
change network topology to be currpode;
LSRCounter=0;

LSRCounter++;
Algorithm 2: Direct jump to optimum (DO)

2) MICD: Multiplicative Increase and Conservative De-
crease Algorithm: Given that a topology corresponds to
different number of relay nodes, we were inspired by [11]
and ensure the network is reliable, the number of nodes is
multiplicatively (i.e., very quickly) increased when the current
number of nodes is less than the estimated optimal number of
nodes (similar to the TCP/IP protocols window reduction, but
in a different context). When the current number of nodes is
more than the estimated optimal number of nodes, the number



of nodes is conservatively decreased; in our case, we reduce
the current number of nodes by 1 (Algorithm 3).

Initialization;
LSRCounter=0, est,oqe=0, Currnode = MiNpode,
increment = 1;
while true do
if LSRCounter == LSRI then
do Link success ratio estimation, currsg;
get topology estimation from T', T'(currpsgr);
eStnode=T (currpsr).node;
if currpode < €Stnoqe then
CUTTpode = CUTTpodeHiNCTEMent;
increment = incrementx?2;
else if curr,,qe > estyoqe then
CUTTpode = CUTTpode-1;
else
increment=0;
change network topology to be currpode;
LSRCounter=0;
LSRCounter++;
Algorithm 3: Multiplicative Increase and Conservative De-
crease (MICD)

3) AC: Adaptive Control Algorithm: Inspired by adaptive
control theory [5], AC attempts to adjust the number of nodes
to the network conditions: the larger the difference between the
estimated optimal number of nodes and the current number of
nodes is, the faster we add or remove nodes. In Algorithm 4, «
is a parameter that guides the speed of addition and reduction
of nodes in the network (0 < a < 1). When a = 0, AC
behaves like DO and the speed to add or reduce nodes is
maximum. When « = 1, the current number of nodes does
not change, that is, it is a static network.

Initialization;

LSRCounter=0, estnode=0, CUrTnode = MiNnode;

while true do

if LSRCounter == LSRI then

do Link success ratio estimation, currysg;
get topology estimation from T', T'(currpsgr);
eStnode=T (currpsr).node;
CUTTpode = O X CUTTpode + (1 — @) X €Stpode;
change network topology to be curr,ode;
LSRCounter=0;

LSRCounter++;
Algorithm 4: Adaptive Control (AC)

C. Reconfiguration Considering Consecutive Message Losses

From Equation 1, the total induced delay are proportional
to number of consecutive losses n;,ss. Therefore, orthogonal
to the algorithms in Section III-B, we consider n;,ss. Since
the LSR estimation is inaccurate and message loss is assumed
as uniform distribution, there could be undetected consecu-
tive message losses, which will degrade the control system

performance. In other words, when there are consecutive
message losses, we need to make the network more robust
(we choose to add more nodes). As a first experimental
step, whenever there are more than three consecutive message
losses, we add k (kK = 3) more nodes in the network. By
considering consecutive losses, we end up with three more
online algorithms: CL-DO, CL-MICD, and and CL-AC.

IV. CONCLUSION AND FUTURE WORK

We explore the interaction between online network recon-
figuration and control, when the worst-case network delay is
bigger than the control system sampling period. We propose a
network imperfection model and network reliability estimation
offline; we propose six online network topology control algo-
rithms, with and without considering consecutive loss (three
each). Next we will study a mechanism for tolerating loss
of the control messages and create a case study for non-
linear heat exchanger system in nuclear reactors controlled
by wireless network.
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