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Abstract—Control systems using sensors and wireless net-
works are becoming more prevalent, due to its ease of de-
ployment: no wires and longer battery life. However, network
delays and packet losses can degrade control system performance,
which leads us to find the optimal network configuration to
minimize that impact. Another main difficulty of having wireless
networks for control systems is caused by interference and noise
that produce time-varying fault patterns, which motivates us
to do network reconfiguration at run time. We focus on the
online wireless network reconfiguration in cyber-physical systems
(CPS), with four main contributions: (1) a network imperfection
model; (2) six online reconfiguration algorithms for wireless
control system; (3) the design and implementation of the first
network reconfiguration framework for CPS with offline and
online components that consider time-correlated link failures;
(4) a case study with 12 hops and up to 50 nodes that controls a
nonlinear primary heat exchanger system in a small modular
nuclear reactor. Our network imperfection model is accurate
(with 0.993 Pearson correlation) and our online reconfiguration
algorithms have smaller error and longer network lifetime than
state-of-the-art static network configurations.

I. INTRODUCTION

Wireless control systems (WCS) are composed of con-
trollers, sensors and actuators connected via a wireless net-
work. WCSs controlled over multi-hop wireless sensor net-
work has received significant attention in recent years [7],
[16], [15], [26], [25], [33], [12]. Given that the control room is
usually geographically distant from the sensors and actuators,
wireless networks are good for place-and-play deployment
due to the lack of wires (electrical or networking). However,
wireless network delays to/from the control room and packet
losses can induce serious errors in the control system, which
is very undesirable. For example, in a nuclear power plant
(NPP), there could be the loss of efficiency, wasting megawatts
of power. We focus on the two main categories of network-
induced imperfections [36]: time delays and packet losses.

In practice, the control sampling period (i.e., the interval
where the control loop makes decisions) in cyber-physical
systems (CPS) is 2n seconds, where −2 ≤ n ≤ 9, that is, from
250 ms to approximately 8 minutes [7]. For the network delay,
there are two cases: (1) network worst-case delay is less than
the control sampling period; (2) The worst-case delay is more
than the control sampling period. For the first case, the delivery
ratio (DR, defined as the ratio of arrived messages and sent
messages) is the key effect on control system performance. The
higher the DR, the better the control system performance. To
achieve high DR, the network configuration can be set to “as
reliable as possible,” that is, a high level of redundancy, which

Figure 1: Network reconfiguration for control System with
dynamic Interference

requires more nodes, and thus typically induces more delay for
messages to be delivered, but all messages still arrive before
the end of the control sampling period and has little effect on
the control system performance.

However, when the worst-case delay is larger than the
control sampling period, there is a trade-off between network
delay and packet losses for the control system performance.
Although the network-induced imperfection problem has been
studied from the control perspective [17], [24], [27], [32],
minimizing the network-induced imperfections has not been
studied from the network perspective. The trade-off between
packet losses (requiring more redundant nodes) and delays
(calling for fewer nodes and less redundancy) can be achieved
through network configuration.

This problem can be thought of as an optimization to
find the network configuration with minimum network im-
perfections, which can be solved off-line. However, control
system environments typically change with time and space
[2], [6], such as moving people/obstacles and electromagnetic
and radio frequency interference (EMI/RFI). Some interference
can make the nodes inaccessible and disconnected for a
limited amount of time (e.g., if an obstacle, like a factory
robot transporting materials, blocks the wireless transmission),
which may severely impact the control system performance.
Therefore, we propose an online network reconfiguration to
deliver the required control system performance.

In this paper, we focus on multi-hop wireless network re-
configuration for control systems, when the worst-case network
delay is bigger than the control sampling period. We only con-
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sider link failures and define average link success ratio (LSR)
as the probability a message can be sent out successfully on
that link; we use LSR as the indication of the average network
interference. We solve the problem in two parts, offline and
online, as shown in Figure 1. For the offline part, to quantify
the network imperfection, we propose a network imperfection
model to transform network delay and delivery ratio to the total
induced delay on the control system. We estimate the total
induced delay for a set of network configurations, including
network topologies. We find an optimal estimated network
configuration set for each LSR offline, and store them at the
controller node. For the online part, at run time, the network
notifies the controller what the estimated LSR is and the
controller selects a network configuration for the network, from
the ones computed offline. The controller then broadcasts the
new network configuration to all the nodes in the network to
carry out a reconfiguration. Therefore, the control node acts
as a centralized network manager and decides which network
configuration should choose. To see the interaction between
network reconfiguration and the control system, we conduct a
systematic case study with a 12-hop and up to 50-node wireless
sensor network for a nonlinear primary heat exchanger system
in a small modular nuclear reactor in a NPP. The results show
that our network imperfection model is accurate and also that
network reconfiguration algorithms performs better than state-
of-the-art static network configuration.

The contributions of this paper encompass:

• a network imperfection model that formulates the
network imperfection induced into the control system
as total induced delay

• six online reconfiguration algorithms for the WCS
• the design and implementation of a new framework

with offline and online components for time-correlated
link failures

• a case study that presents the in-depth interaction
between the network reconfiguration and control

This paper is organized as follows. Section II discusses the
related work. Section III introduces how to determine offline
optimal network configuration. Section IV discusses online
network reconfiguration. Section V and Section VI present case
study and results. Section VII concludes the paper.

II. RELATED WORK

Network-induced imperfections are great challenges for
WCSs. The solutions for network delay and packet losses in
WCSs are typically divided into three categories: control only,
network only, and control+network co-design solutions.

Control solutions for dealing with network imperfections
are promising. The closed-loop system is modeled as a
switched system in [17], considering both time delays and
packet losses at the actuator nodes. Other examples include
[24], [27], [32] that use the model-based predictive control
approach, which obtains a finite number of future control
commands besides the current one for handling both time-
varying delays and packet drops. However, these works do not
consider network reconfiguration in WCSs.

For the network solutions, network reconfiguration is an
essential part of the network, since the network interference

is unpredictable and varies with time. Interference can make
the network disconnected and becomes inaccessible for a
certain amount of time and will degrade the control system
performance. Research works focus on different layers of
network reconfiguration. For the data link layer, an online
dynamic link layer scheduling algorithm is proposed in [8]
to meet the deadline of a rhythmic flow and minimize the
number of dropped regular packets, based on a rhythmic task
model proposed in [11]. Another example to literature that
adds adaptive slot stealing scheme to the TDMA protocol
for reducing the network delay is [4]. For the routing layer,
a dynamic routing algorithm IDDR is proposed in [35] to
simultaneously improve the fidelity for high data integrity
applications and decrease the end-to-end delay for delay-
sensitive applications. IDDR allows the packets with high
integrity requirement be forwarded to the next hop with smaller
queue length and allows the application packets with larger
weights to choose shorter paths for low delay. Topology control
is another active research area to dynamically tolerant node
[18], [20], [22] and link failures [28], [23], [10]. To tolerate
node failure, some heuristics algorithms, like CORP [14] in a
distributed way and SpiderWeb [31] in a centralized way, are
proposed to federate the disjoint network segments with least
relay nodes and eventually improve the network reliability. To
tolerate link failure, several algorithms [21], [19] mitigate the
impact of lossy links by maintaining K-connectivity of the
network. However, all aforementioned works do not consider
control system performance during reconfiguration (only from
the network perspective) and do not conduct systematic case
studies, which is an important evaluation step in WCSs.

Integration and co-design of network and control system
are effective for WCSs, as described next. A co-design of
network topology conditions and control system stability is
explored in [25]. The integration of fault-tolerant wireless
network and control in NPPs are studied in [33]. In [16],
the author proposes an algorithm on data link layer TDMA
scheduling to achieve higher delivery ratio for emergency
packets than regular packets. A case study of a wireless-
controlled water tank is conducted. However, the author does
not address the network delay imperfection in WCSs, since
they assume the worst-case network delay is less than the
control sampling period. In [3], the author derives a sufficient
condition for the random access communication policy of
shared wireless medium and design a control-aware random
access communication policy. However, all of these works
assume the network environment is stable or the network
interference is at a given, fixed level. None of them present
the interaction between network reconfiguration and control,
which is our focus in this paper. We show how network
reconfiguration affects control system performance, comparing
with a state-of-the-art static network configuration.

III. OFFLINE OPTIMAL NETWORK CONFIGURATION

We first introduce a model describing the network-induced
imperfection impact on the control system performance as
caused by the packet loss and network delay. We then show
how to find optimal network configuration set (there might be
more than one optimal configuration) by using this model.

Similar to [16], we have two assumptions: (1) when a
message is not received by the controller, the previously-
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Figure 2: Network delay and delivery ratio tradeoff illustration,
when network delay is greater than control sampling period.

received value will be used. (2) sensors do not fail, and produce
real values (i.e., no noise). Under these assumptions, the model
and algorithm to determine the optimal network configuration
set are general and can be used in any WCS.

A. Network Imperfection Model

We define the delay induced into the control system by the
wireless network as Tused − Tsensed, where Tused is the time
the measurement signal is used by the controller and Tsensed
is the time the sensor sends out the sensor measurement. The
delay induced into the control system is

D = dDnetwork + nloss∆ssp

∆csp
e∆csp (1)

where Dnetwork is the network end-to-end delay, ∆csp is the
control sampling period, nloss is the number of consecutive
packet losses, ∆ssp is the sensing sampling period. For ex-
ample, as shown in Figure 2, the control sampling period and
sensing sampling period are both 0.1s, but when the network
delay is 0.2s and measurement M2 gets lost, the induced delay
D2 is 0.3s and the controller will use measurement M1 instead.
When the measurement M3 also gets lost, the induced delay
D3 is 0.4s and the controller will (re-)use measurement M1.

D is related to both network delay and the number of
consecutive packet losses, which is a function of the packet
delivery ratio (delivery ratio estimation and end-to-end worst-
case delay estimation have been studied elsewhere [33], [29]).
nloss is estimated by the expected value of the network loss
ratio (1-DR). We assume message losses follow the uniform
distribution, since DR can be viewed as the probability a

message received by the controller. Thus, nloss =
n∑
i=1

i(1 −

DR)i, ((1−DR)i ≥ thr), where (1−DR)i is the probability
of i consecutive losses. When the probability is less than a
threshold (thr), we assume that the probability can be ignored
to avoid the computation running forever. For example, when
DR = 0.9 and the thr = 0.001, the probability of getting 1, 2
and 3 consecutive losses are 0.1, 0.01, and 0.001, respectively.
Since the probability of four consecutive losses is less than
thr, we ignore the probability of more than three consecutive
losses. Therefore, the expected number of consecutive losses
is 1× (1− 0.9) + 2× (1− 0.9)2 + 3× (1− 0.9)3 = 0.123.

B. Optimal Network Configuration Determination Algorithm

Our offline algorithm discovers the set of network con-
figurations that will be examined during the online portion.
Since our goal is to minimize the network impact (network

delay and package loss) to the control system, an optimal
network configuration means configuration with minimum
induced delay, D, considering the network imperfection model
in Section III-A. It is important to note that the bigger the LSR
value is, the bigger the delivery ratio is. Therefore, each LSR
value corresponds to a delivery ratio. As shown in Algorithm
1, we find a set of estimated optimal network configurations
for each average LSR value and store them in a look-up table
T indexed by LSR value.

Initialization;
Configuration set C, All possible LSR set LSR, Dmin;
for lsri ∈ LSR do

reset Dmin and confopt;
for confj ∈ C do

calculate estimated induced delay Di of confj
if Dj <= Dmin then

Dmin = Dj ;
confopt = confj

end
end
T.insert(lsri, confopt);

end
return T

Algorithm 1: The optimal network configuration set deter-
mination algorithm

IV. ONLINE NETWORK RECONFIGURATION

Due to the time-varying noise and interference in the
environment, we devised an online dynamic network recon-
figuration to improve the control system performance and
minimize the total induced delay D.

The network reconfiguration is carried out by the controller,
given that it has all the information needed to decide the opti-
mal configuration for the current network status. In essence, we
assume that the network conditions do not change as fast as the
network reconfiguration algorithms execute and the nodes are
time synchronized. When a reconfiguration is needed due to
interference or noise, the controller broadcasts a new network
configuration to all the nodes in the network. Note that even
though our offline algorithm (Section III) is general, in this
paper we restrict network configuration to refer to the number
of sensor nodes in a certain area. To save network energy
consumption to prolong the network lifetime, sleep nodes are
activated when needed, or active nodes are put to sleep if not
needed, creating different network topologies. For simplicity,
we assume different topologies have different number of nodes.

Since we assume the worst-case network delay is greater
than the control sampling period, packet re-ordering is pos-
sible. In this paper, the old packet is discarded, if the latest
packet has already arrived at the remote controller.

Recall that online network reconfiguration is based on the
offline look-up table given the current LSR. In this section, we
first propose an algorithm to estimate LSR at run time. We then
propose six online network reconfiguration algorithms, that is,
three original algorithms combined with and without taking
into account consecutive packet losses (see Section IV-C).
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A. Network Average Link Success Ratio Estimation

Since Algorithm 1 generates a look-up table containing
optimal network configurations for each LSR value, we need
an estimation for the link success ratio when the reconfigu-
ration algorithm is executed. We propose a jumping window
in-network aggregation method to estimate the overall average
network LSR. The idea is that each node calculates its own
message receiving ratio, which is the average LSR for its
receiving links, and adds it to its message. Then, each node
will propagate its own average LSR to its parents, and parents
will average their own LSR with their children’s LSRs; this
repeats until it gets to the controller.

Specifically, every node records the number of messages it
receives during a certain amount of time, the LSR estimation
interval (LSRI). Every node is able to calculate its average
receiving LSR (calculated as the ratio of the number of
messages it receives and the number of messages it should
receive) from its receiving links during LSRI. At the end of
an LSRI, each node concatenates its average receiving LSR
with the message it needs to send, and sends the message to
its parent nodes (one or more parent nodes). The parent node
averages the received LSR from its children and its own LSR
and sends out the message with the calculated average LSR
over all its children (grandchildren, grand-grandchildren and
etc.) and itself to its parents. Eventually, the remote controller
will compute the final overall network average LSR.

B. Online Network Reconfiguration algorithms

The intuition behind the online algorithm is to find the opti-
mal configuration according to the current estimated LSR, and
then adjust the network topology to the optimal configuration.
We explore three options to reach the optimal configuration,
given that the optimality depends on the LSR, which cannot
be computed instantaneously. The algorithms are DirectJump
to Optimal (DO), Multiplicative Increase and Conservative
Decrease (MICD), and Adaptive Control (AC). The input of
these algorithms is the offline look-up table T .

1) DO: DirectJump to Optimum Algorithm: We adjust
the network topology to have the exact number of nodes
that correspond to the optimal network topology estimation,
whenever the LSR value changes. See Algorithm 2 for details.

Initialization;
LSRCounter=0, currnode = minnode;
while true do

if LSRCounter == LSRI then
do Link success ratio estimation, currLSR;
get topology estimation from T , T (currLSR);
currnode=T (currLSR).node;
change network topology to be currnode;
LSRCounter=0;

end
LSRCounter++;

end
Algorithm 2: Direct jump to optimum (DO)

2) MICD: Multiplicative Increase and Conservative De-
crease Strategy: Given that a topology corresponds to different
number of relay nodes, we were inspired by [30] and ensure

the network is reliable, the number of nodes is multiplicatively
(i.e., very quickly) increased when the current number of nodes
is less than the estimated optimal number of nodes (similar
to the TCP/IP protocols window reduction, but in a different
context). When the current number of nodes is more than the
estimated optimal number of nodes, the number of nodes is
conservatively decreased (in our case, we reduce the current
number of nodes by 1). Algorithm 3 shows more details.

Initialization;
LSRCounter=0, estnode=0, currnode = minnode,
increment = 1;

while true do
if LSRCounter == LSRI then

do Link success ratio estimation, currLSR;
get topology estimation from T , T (currLSR);
estnode=T (currLSR).node;
if currnode < estnode then

currnode = currnode+increment;
increment = increment×2;

else if currnode > estnode then
currnode = currnode-1;

else
increment=0;

end
change network topology to be currnode;
LSRCounter=0;

end
LSRCounter++;

end
Algorithm 3: Multiplicative Increase and Conservative De-
crease (MICD)

3) AC: Adaptive Control Algorithm: Inspired by adaptive
control theory [9], in AC, the larger the difference between the
estimated optimal number of nodes and the current number of
nodes is, the faster we add or remove nodes. In Algorithm 4, α
is a parameter that guides the speed of addition and reduction
of nodes in the network (0 < α < 1). When α = 0, AC
behaves like DO and the speed to add or reduce nodes is
maximum. When α = 1, the current number of nodes does not
change, that is, it is a static network. In essence, the smaller
the α is, the higher speed to change the current number of
nodes. Algorithm 4 shows more details.

Initialization;
LSRCounter=0, estnode=0, currnode = minnode;
while true do

if LSRCounter == LSRI then
do Link success ratio estimation, currLSR;
get topology estimation from T , T (currLSR);
estnode=T (currLSR).node;
currnode = α× currnode + (1− α)× estnode;
change network topology to be currnode;
LSRCounter=0;

end
LSRCounter++;

end
Algorithm 4: Adaptive Control (AC)
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C. Online Network Reconfiguration Algorithms Considering
Consecutive Message Losses

From Equation 1, the total induced delay is proportional to
the number of consecutive losses nloss. Therefore, orthogonal
to the algorithms in Section IV-B, we consider nloss. Since
the LSR estimation is inaccurate (we predict future average
LSR based on the previous average LSR), there could be
undetected consecutive message losses, which will degrade
the control system performance. In other words, when there
are consecutive message losses, we need to make the network
more robust (we choose to add more nodes). As a first exper-
imental step, whenever there are more than three consecutive
message losses, we add k (k = 3) more nodes in the network.
Considering consecutive losses, we devise three more online
algorithms: CL-DO, CL-MICD, and CL-AC.

V. PRIMARY HEAT EXCHANGER CASE STUDY

We conducted a case study to show and experiment with
our wireless network reconfiguration for a nonlinear primary
heat exchanger system (PHX) in a NPP [5]. Safety issues are
beyond the scope of this paper; we focus on feasibility first.

The PHX has its main function the exchange of heat from
inside of the reactor to the outside. The PHX is typically
modeled as a nonlinear system, and a nuclear reactor model
typically has three PHXs. For simplicity of presentation, we
only discuss wireless control for one PHX, but when multiple
PHXs are present, multiple streams could be isolated and/or
combined. There are three measurements periodically sent to
the remote controller, namely outlet hot leg temperature, inlet
hot leg temperature, and mass flow rate. The deadline for
each measurement to reach the controller is 0.586s, otherwise
the system becomes unstable [33]. Another requirement is
low power consumption to increase the network lifetime and
reliability. We equate power with the number of active nodes.

We deploy a 12-hop and up to 50 nodes (9 sensors and
41 relay nodes) in the NPP under consideration. We wake
up some inactive nodes or put some active nodes to sleep, as
reconfigurations are needed. As shown in Figure 3, the network
contains two parts: a k-connected region and a relay region.
We connect these two regions by virtual roots, special sensor
nodes. Messages go from sensors to virtual roots, and then to
the controller; the routing in each region is done differently.
Note that all the nodes in one level of the relay region can
reach all nodes in the next level in our topology design.

In the k-connected region, there are k edge-disjoint paths
(here we consider k ≤ 4) from the sensors to the virtual roots.
The number of paths is set depending on the current network
link quality. The more edge-disjoint paths are required, the
more nodes need to be active in the network and the higher
DR is. In this paper, we activate paths from left to right.
Experimentally, adding paths from right to left or randomly
results in no significant differences.

In the relay region, there is a line of primary nodes and
at most three lines of backup nodes from the virtual roots to
the remote controller. In this paper, we activate backup nodes
from highest level to lowest level. We have experimented with
adding nodes from lowest to highest level and random, without
significant differences in the results (see Section VI-B5).

Figure 3: Network topology design

We use the bitvector protocol [34], which uses broadcast
and TDMA scheduling to guarantee real-time transmission, as
follows. Relay nodes broadcast messages level by level towards
the controller. Within each level, primary node will broadcast
first, then the first, second, and third backup nodes, in order.
Therefore, the worst-case network delay is n∆t, where n is
the number of the current active nodes and ∆t is the time slot
of TDMA scheduling (∆ = 10ms in the case study). If the
backup parent finds out (while overhearing and checking the
bit vector) that the primary did not send out the values, the
backup parent compensates for it. Therefore, the more active
nodes in the network, the higher DR and network delay are.

For testing, we combined the implementations of bitvector
protocol with a state-of-the-art cyber-physical system simulator
(WCPS 2.0 [16]) and allow wireless network to run together
with the primary heat exchanger system simulink model. The
online reconfiguration algorithms mentioned in Section IV are
implemented on the controller.

To simulate time-correlated faults (see Section IV), we
adjust each relay node’s received signal strength (RSSI) [13]
to change the quality of links (LSR) associated with the relay
node to be in the range (0.5, 1.0). We use real-world noise
traces [16] and change the range of link quality over time,
depending on the following quantities. rssi duration: the time
interval at which the RSSI is fixed (after that, the RSSI may be
changed); rssi range and time range: the value and time range
the RSSI duration is chosen from. We randomly choose RSSI
from rssi range (-60dBm, -85dBm) with a uniform distribution
and randomly choose rssi duration from time range (0, 20s)
also with a uniform distribution. Figure 4 shows an example
of RSSI values; it’s clear that the RSSI values vary a lot.

VI. QUANTITATIVE RESULTS FROM CASE STUDY

The quantitative results shown are from WCPS augmented
with the algorithms developed herein; an operator changes the
power output for the reactor. To evaluate the performance
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Figure 4: Time-correlated rssi variation example

Table I: Parameters and Values

Parameters Values
Sensing sampling period 0.1s
Control sampling period 0.1s

Simulation time 300 seconds
LSRI Range [2s, 20s]

Reference functions [ramp30, ramp120]
α value [0.1, 0.9]

of the control system (in this case the PHX), we adopted
three metrics: Integral Absolute Error (IAE) [15], Maximum
Absolute Error (MAE) [15] and RMS Error (RMSE), which is
the RMS error measured between the closed-loop responses
using wired control (i.e., no packet drops and no network
delay) and wireless control under consideration. We only show
RMSE in the paper, given that the IAE and MAE results
are very similar because all these metrics describe the error
between wireless and wired control (no packet loss and no
delay). We also measure the induced delay (to analyze RMSE)
of the network imperfection model, the number of nodes that
are used in the network, and the network lifetime. Table I
shows our simulation parameters and values.

A. Offline Optimal Network Configuration

By applying Algorithm 1, we can get the look-up table
containing the optimal configuration set for each LSR value.
Figure 5a shows the estimated optimal number of nodes for
different LSR values. The higher the LSR, the higher the
percentage of packets that get delivered, and the more robust
the network will be, and therefore the fewer sensor nodes
needed. The optimal number is always multiple of 10 and
the worst-case delay is multiple of 0.1s (∆csp) due to the
network imperfection model calculation. For example, the
network delay is taken as 0.3 if the actual values are above
0.2s and below 0.3s, because of the ceiling operation.

To correlate the network imperfection model (see Sec-
tion III-A) and the control system performance, we run the
simulation with static RSSI values. Figure 5b shows the
induced delay for different number of nodes and different RSSI
values. Note that when the number of nodes is 20, the network
is not robust and has more consecutive message losses, thus
has more induced delay although the network delay is the
lowest (for the messages that are actually delivered). When
the number of nodes is 50, the opposite behaviors occur.

Figure 5c shows the power output RMSE of the PHX.
Comparing Figures 5b and 5c, we can see visually and
statistically (Pearson correlation r = 0.993, p < 0.001) that
our network imperfection model is significantly correlated to
the power output RMSE.

B. Online Network Reconfiguration results

In order to simulate time-correlated link quality models,
we fine-tuned the RSSI range and duration to get different
representative network fault models with different average
RSSI values. We simulate our system on five fault models
with average RSSI values as -65 dBm, -70 dBm, -74 dBm,
-78 dBm and -82 dBm. In this section, we present control
system performance, network lifetime results for different
online reconfiguration schemes.

1) Heat exchanger system power reference function: We
change the power reference function (i.e., the required power
output of a nuclear reactor), considering four ramp functions to
reduce power from 42 MW to 37.8 MW as shown in Figure 6.
Ramp30 means that it takes 30 seconds to reduce the power
from 42 MW to 37.8 MW. As shown in Figure 7, the steeper
the reference function, the larger the RMSE. This is because
when the reference function is steep, it requires the control
system to reduce its power output in much less time, and thus
it will have more transient response, causing larger RMSE. We
note that the online network reconfiguration schemes perform
similarly for all reference functions. We only present the results
for ramp30 to save space. Note that the RMSEs decrease with
the decrease in slope, because the system has more time to
adjust to the new output reference power. Thus, our scheme
is most useful when there is little time for adjustment (e.g.,
quick correction of the power output) or when the difference
in power is large (e.g., at startup of a new reactor when other
reactors have to adjust their power output). Still, our scheme
is also effective under all circumstances; our worst scenario is
for ramp120, and the cumulative gains of our scheme (i.e., the
difference in error we provide) is about 10MW over a 300-
second interval (with RSSI = -82).

2) Comparison of Online Reconfiguration Schemes: Figure
8a shows the power output RMSE of the PHX for different
average values of RSSI and different online network recon-
figuration schemes proposed in Section IV; IAE and MAE
results are similar to the RMSE results. In the figure, “static”
is when the number of nodes in the network is fixed. We tested
the number of nodes 20 to 50 and chose the static scheme
with minimum RMSE among these tests. As expected, the
more interference (lower RSSI) causes the dynamic network
reconfiguration schemes perform better than the static scheme
with minimum RMSE. This is because that when the average
RSSI values of network fault models are -65dBm, -70dBm,
and -74dBm, the LSR is mostly between 0.8 and 1.0. From
Figure 5a, for those values of RSSI, the static scheme with 30
nodes can handle most of the network interference. However,
when the network fault models are -78dBm and -82dBm,
the LSR drops to between 0.85 and 0.5, and the system
necessitates more frequent network reconfiguration.

3) Sensitivity Analysis of LSR Estimation Interval: For the
network energy consumption, we calculate the average net-
work energy consumption during one round of measurements
of transmissions from sensor to the controller. We measure
π = πsend + πrec, where π is the sum of the sending and
receiving energy for all active sensors (energy in sleep mode
is ignored). Since we use a broadcast TDMA protocol, each
active node broadcasts only once during each transmission
round. We assume each active node consumes the same energy
when broadcasting and thus: (a) πsend = Nesend, where N
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Figure 5: (a) Offline optimal network configuration determination for different LSR values (b) Total induced delay result with
RSSI=-64 dBm (average LSR=0.93), RSSI=-70 dBm (average LSR=0.88), RSSI=-76 dBm (average LSR=0.82), RSSI=-82 dBm
(average LSR=0.77) and RSSI=-84 dBm (average LSR=0.72) (c) power output RMSE (in MW) comparing with the network
with no error no delay (DR = 1.0 and ∆network = 0.0) for different RSSI values, as a function of the nodes in the network

Figure 6: Control system power reference functions
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Figure 7: Power output RMSE for different reference functions
(average RSSI=-82 dBm and LSRI = 2s (20 samples))

is the number of active nodes and esend is the energy for
one node of sending one message; (b) πrec = Eerec, where
erec is the energy consumption for one node of receiving a
message and E is the total number of transmission links; and

(c) E =
L∑
l=1

nl−1nl, where L is the total network levels, nl is

the number of nodes of level l (assuming all the nodes in one
level can reach all nodes in the next level, as in Section V). For
simplicity, we assume a general battery capacity is 8640J (two
AA batteries), erec = esend =20 mA [1], transmission and
receiving duration is 5ms and voltage is 1.5V. Figure 8b shows
the network lifetime for different reconfiguration schemes.
Schemes considering consecutive message losses (CL-DO,
CL-AC and CL-MICD) consume more energy than their coun-
terparts not considering consecutive message losses (DO, AC
and MICD). This is because CL-* schemes are more aggressive
adding additional nodes when there are consecutive losses. In
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Figure 8: (a) Power output RMSE results, (b) network lifetime
results and (c) network lifetime / RMSE results; (LSRI: 2s; AC
and CL-AC schemes with α: 0.1)
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Figure 9: (a) Average number of nodes in the network, (b)
average induced delay and (c) average RMSE over time (LSRI:
2s; Average RSSI: -82 dBm; CL-AC schemes with α: 0.1)

addition, from the Figure 8b, we found that when there is
more interference in the network, the network consumes more
energy, since the network needs more backup nodes to handle
link failures. For network performance results, see Figure 16.

To consider both control system performance and network
energy consumption together, we normalize network lifetime
by RMSE in Figure 8c for different average RSSI values. The
static scheme in fault model with average RSSI = -82dBm
is significantly worse than the dynamic schemes, because it
consumes the most network energy consumption, and it has the
most RMSE, demonstrating that our reconfiguration schemes
are necessary and work well when the network has more
interference. Note that we selected the best (minimum RMSE)
static scheme to be conservative in our evaluation, but in reality
it would be hard to select a good static configuration a priori,
since the network interference is unpredictable. In addition,
CL-MICD always performs the worst among the dynamic
reconfiguration schemes. Figure 9 shows the comparison over
3,000 samples of CL-MICD and CL-AC on 20 experiments.
The reason CL-MICD always performs worse is because the
speed of reducing the number of nodes is slow (reduce one at
a time) and the speed of adding nodes is fast (exponential in-
crease), which produces more induced delay (induced delay
of CL-MICD is always higher than CL-AC) and degrades the
control system performance.

Since LSR is estimated periodically, the length of the
LSR estimation interval (LSRI) will affect the control system
performance. Figure 10a shows the results of the power output
RMSE for different LSRI values. When the LSRI increases,
the RMSE of the schemes DO, MICD and AC increases
because estimation is less accurate at high LSRI values. In
Figure 11, the yellow line is the real LSR; the black line
(LSRI of 2s) tracks the real LSR better than the LSRIs of
8s and 16s. Therefore, the control system performance gains
less error, when the LSR estimation is accurate. Figure 12
shows the comparison of the DO with LSRI of 2s and DO
with LSRI of 20s. From sample 600 to 800, the DO with LSRI
of 20s runs with 30 nodes in the network because the LSR is
estimated high averaged over the last 200 samples (from 400
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Figure 10: (a) Power output RMSE result, (b) network lifetime
results and (c) network lifetime / RMSE results for different
LSRIs (RSSI: -82 dBm; AC and CL-AC with α: 0.1)

to 600). However, from sample 600 to 800, the LSR is low
(network has more interference) and 30 nodes cannot handle
the link failures, which makes the consecutive message losses
happen (induced delay D is high) and negatively affects the
control system performance. Note that the RMSEs of the CL-*
schemes are not affected by the LSRI values (similar results
for the other fault models) because, even though the LSR
estimation may not be accurate, CL-* schemes add additional
nodes to compensate to make the network robust. However, the
side-affect is that CL-* schemes consume more energy. Figure
10b and 10c show the network lifetime and the network life-
time normalized by RMSE. For network performance (network
delay and DR), see Figure 17.

4) Adaptive control algorithm with different alpha values:
Recall that the AC scheme has a variable alpha (0.1 ≤ α ≤
0.9), which determines the speed to add or reduce nodes in
the network (small α, fast node adding). The α value can also
affect the control system performance. Figure 13 shows the
RMSE of AC and CL-AC schemes for different α values.
When α > 0.5, the control system performs worse. This is
because the speed of adding or removing nodes is so slow
that it cannot react to the LSR variation in time. Figure 14
shows the reason more clearly. From sample 600 to 800, when
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Figure 11: Comparison of estimated and real LSRs (average RSSI = -82dBm)

Figure 12: (a) Average number of nodes in the network, (b)
average induced delay and (c) average RMSE over time (LSRI:
2s; Average RSSI value: -82 dBm;)

the network has more interference, the speed of AC (α=0.9)
of adding nodes is slower than the AC (α=0.1), causing con-
secutive message losses and more induced delay. From sample
800 to 1300, when the network has less interference, the speed
of AC (α=0.9) of reducing nodes is also slow and induce
more delay (network delay is high) into the control system.
From Figure 13, we also find that CL-AC always performs
better than AC. Although the speed to add or reduce nodes is
slow for α 0.9, considering consecutive losses can compensate
somewhat when the network has more interference. Figure
14 shows more details. From sample 600 to 800, when the
network has more interference (consecutive message losses
happen), CL-AC (α=0.9) adds more nodes in the network than
AC (α=0.9), which improves control system performance. But
CL-AC may add more nodes than needed. From sample 1300
to 1600, CL-AC (α=0.9) adds too many nodes and causes more
induced delay (see Figure 14 (b)) and thus consumes more
network energy consumption comparing with AC (α=0.9).

5) Comparison of Nodes Activation Methods: Our exper-
iments show that adding nodes from the highest level to the
lowest level (deactivating nodes in the opposite direction: from
lowest to highest level), from the lowest level to the highest
level, or randomly. For lack of space, we do not show all the
results, but the three methods behave very similarly for DR and
network delay. In the same vein, the results for AC and CL-AC
values are also similar, because that our fault model generates
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Figure 13: Power output RMSE result comparison of AC
and CL-AC for different alpha values (average RSSI value:
-82dBm; LSRI: 2s)

Figure 14: (a) Average number of nodes in the network, (b)
average induced delay and (c) average RMSE over time for
AC (α=0.1), CL-AC (α=0.9) and AC (α=0.9) (average RSSI
value: -82dBm; LSRI: 2s;)

time-correlated faults, instead of space-correlated faults.

VII. CONCLUSION AND FUTURE WORK

In recent years, the WCS controlled over multi-hop wire-
less sensor network has been explored. However, the interac-
tion between network reconfiguration and control, when the
worst-case network delay is bigger than the control sampling
period has not been researched. In this paper, we propose
and implement a framework with offline and online parts. In
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Figure 15: (a) Power output RMSE result, (b) network lifetime
results and (c) Network lifetime / RMSE results for different
adding/reducing nodes methods (the average RSSI value: -82
dBm; AC and CL-AC schemes with α: 0.1; LSRI: 2s)

detail, we propose a network imperfection model and network
configuration determination estimation offline; we propose six
online network topology control algorithms with and without
considering consecutive losses. We also conduct a systematic
case study to see the in-depth interaction between network
reconfiguration and the control. Our simulation result shows
that our network imperfection model is accurate with Pearson
correlation 0.993, that network reconfiguration works better
than the static scheme showing low error (RMSE, MAE, IAE),
and showing longer network lifetime. We find that consecutive
message losses can degrade the control system performance
due to more total induced delay.

In the future, aside from reconfiguring the number of nodes,
we will explore other network aspects, such as routing layer
reconfiguration and data link layer reconfiguration.

APPENDIX

A. Network delay and network delivery ratio

Figures 16 and 17 show that network delay and DR have
similar tendency. The higher the network delay is, the higher
the DR is. This is because that when the network delay is high,
the network has more backup nodes, which increases the DR.
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Figure 16: (a) Network delivery ratio and (b) network delay
for different average RSSI values
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Figure 17: (a) Network delivery ratio and (b) Network delay
for different LSRIs(the average RSSI value: -82 dBm; AC and
CL-AC schemes with α=0.1)
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