
Bitvector: Fault tolerant aggregation scheme for
monitoring in nuclear power plants

Wenchen Wang, Daniel Mossé
Computer Science Department

University of Pittsburgh
{wangwenchen, mosse}@cs.pitt.edu

Daniel G Cole
Department of Mechanical Engineering and

Materials Science
University of Pittsburgh

dgcole@pitt.edu

Abstract—Industrial wireless sensor networks (IWSNs) have

become popular, given the lower cost of installation than wired
networks and their flexibility. WSNs are applied in monitoring,
measurement, and control. Nuclear power plants (NPPs), in
particular, have not been eager to adopt WSNs due to reliability,
electromagnetic and radio frequency interference (EMI/RFI) as
well as security concerns. On the other hand, the two main
benefits from adding WSNs to NPPs are increased reliability from
using robust wireless monitoring as a backup network for the
primary wired system and reduce costs from installation and
maintenance (in comparison to wired networks).

We propose a new fault model and a fault tolerant in-network
aggregation scheme, bitvector. First, in order to mimic the
interference environment in NPP, we define a new fault model
with time-dependent faults. We propose the fault duration
concept, a time span during which the link error rate is fixed,
such as when EMI/RFI appears between nodes. Therefore, the
fault duration is an indicator of the network stability. Second,
based on the fault model, there are some network links whose
quality are not good during a fault duration interval. Bitvector
estimates neighbor link quality dynamically and orders primary
and backup parents dynamically according to link quality
estimation. In addition, since data rate is low in NPPs, bitvector
is able to use redundancy to improve accuracy. In particular, for
some faults, bitvector defers fault detection and fault recovery by
one sensing interval. Experiments show that bitvector
significantly improves performance in root mean square (RMS)
error and correct message rate; benefits of bitvector are even
larger for environments with high fault rates.

Keywords—nuclear power plant; condition monitoring; in-
network aggregation; time-dependent fault model

I. INTRODUCTION
Industrial Wireless Sensor Networks (IWSNs) are a type of

WSNs designed for industrial environment. The collaborative
nature of IWSNs brings several advantages over traditional
wired industrial monitoring and control systems, including
self-organization, rapid deployment, flexibility, and inherent
intelligent-processing capability [1]. The nuclear industry has,
however, has been slower in implementing new technologies—
wireless technologies are no exception [2]. Nuclear power
plants are not willing to adopt WSNs due to three concerns [3]:
reliability, EMI/RFI (electromagnetic and radio frequency

interference) and security. Wireless condition monitoring
system has attracted more and more attention in NPPs field.
Condition monitoring in NPPs requires that suitable sensors be
used, dedicated parameters be monitored, baseline (normal
conditions) be defined and the trend of the data be captured to
identify condition changes [4]. The authors in [5] propose a
real time condition monitoring architecture of NPPs using
WSNs. The author in [2] proposes a design of prototype
condition monitoring system. They have a scenario where data
from wireless sensors installed on plant equipment is integrated
with existing wired process sensors. Data from both wired
sensors and wireless sensors sends to data acquisition and
analysis servers.

There are several special characteristics of WSNs in NPPs.
For our paper, we focus on two of them. The first is high
packet error rate because of EMI/RFI. The second is the low
data rate in control systems of NPPs.

According to [3], EMI/RFI is a concern because the high
levels of electromagnetic noise from high-powered devices and
ionizing radiation sources create a harsh environment for many
commercial wireless devices to perform reliably. In addition,
the signal-to-noise-ratio (SNR) of hot-leg coolant temperature
sensor in NPPs is from 10dB to 7dB [6], which means the
environment is very noisy. Therefore, EMI/RFI leads to high
packet error rate in WSNs.

Since wireless condition monitoring in NPPs is a backup
network, data is not sent out very frequently as the general
wireless sensor network. Therefore, the data rate is relatively
low.

We present a wireless sensor network scheme, bitvector
that meets the two afore mentioned characteristics of NPPs
condition monitoring. We make three contributions as follows.

 We propose a new time-dependent fault model that
includes the fault duration concept to simulate fault rate
varying with time. This is needed because the
interference in the wireless environments in NPPs is
unpredictable and it could cause permanent, intermittent
or transient faults.

 For the challenge of having high error rates, some links
in WSNs are affected by NPP interference for a fault

duration time. Bitvector is able to estimate link quality
dynamically, and to automatically select the parent-
child pairs according to link quality.

 We take advantage of the low data rate and judiciously
add little redundancy to improve accuracy.

We compare bivector with Ridesharing [7] and FOMA [8].
Through simulations, we show that bitvector can gain as much
as 40% more accuracy than FOMA and 20% more accuracy
than Ridesharing, while delivering lower message overhead.

The rest of the paper is organized as follows. In Section II,
we review the related work about link quality estimation, in-
network aggregation and fault model design. Section III
presents the basic idea of the bitvector scheme. In Section IV,
we discuss about our fault model design. In Section V, we
explain how we setup our simulation and experiment results.
Section VI summaries our work and presents conclusions.

II. BACKGROUND
 In order to monitor advanced small modular reactors
(SMRs) in NPP, we proposed a supervisory networked control
system architecture, shown in Figure 1. For each SMR, there
are two control loops. First, a primary control loop (local
controller -> local actuator -> plant -> local controller) is
connected by a field bus. Second, a secondary control loop
(sensor -> module-level supervisory controller -> local actuator
-> plant -> sensor) is connected by a wireless sensor network.
The secondary control loop is to monitor the condition of the
reactor, acting as a backup for the primary control loop. If the
local controller or the field bus fails, the module-level
supervisory controller (MLSC) acts as a backup controller to
control the reactor.

For module-level wireless sensor network, sensors attached
to SMR sensed different parameters of SMR. For each
parameter, there are several sensors monitoring the same
parameters. In order to reduce network traffic, in-network data
aggregation can be applied. Data aggregation (calculate
average value) happens when sensor B receives data from
sensor A and the received data of sensor A has the same
category as the sensor B. Then sensor B aggregates the data of
sensor A with its own data. In this way, the network traffic can
be reduced. In our paper, we only consider sensors send out
data to MLSC. MLSC acts as a base station.

Figure 1 Supervisory networked control system for advanced

SMRs

III. RELATED WORK

A. Time-Dependent Fault Model
Faults occur anytime and anywhere in WSNs. Many papers

focus on designing fault models for WSNs. According to [20],
the nature of the physical phenomenon constitutes the temporal
correlation between each consecutive observation of a sensor
node. The fault rate of the network varies based on the
temporal behavior. So, designing a good fault model that close
to the situation in real life is important.

However, as far as we know, there is not much research
effort focusing on fault model design. Most of studies assign
some constant link or node failure, determined before the
network starts. In [21], [22], the authors mention that based on
the temporal behavior of a fault, it can be considered as
permanent, intermittent or transient faults. However, they just
consider permanent faults in their study. The author in [23]
designs a fault model by assigning faults to some nodes and
also proposes a method for fault detection. Although it is able
to localize fault region efficiently, the fault rate of the network
is still fixed during network lifetime.

B. In-network data aggregation schemes
Much research in WSNs has been developed in the last

decade. To save energy and bandwidth, in-network data
aggregation schemes for WSNs attempt to aggregate as many
sensed values as possible onto a single message not by simply
consolidating messages, but in performing some transformation
in the sensed values. There are two main types of in-network
data aggregation schemes, namely tree-based and gossip-based
schemes.

Gossip-based schemes [9], [10] do not create or maintain
any specialized routing structure, but their disadvantage is that
their actual aggregate computation is slow to converge [11].
We do not consider gossip-based schemes.

For many tree-based topology of in-network aggregation
schemes [7], [8], [12], [13], [14], [15], the many parent-child
relationships are determined before network starts. Some
schemes consider only one parent-child pair for each node,
which remains fixed during the entire network lifetime.
However, due to failures, the network is typically not static and
thus some schemes attempt to “fix” the tree by changing
parent-child structure dynamically due to faults [15]. Our
starting point is a tree with fixed structure, that is, fixed
potential parent-child relationships.

If the quality of the link between child and parent is not
good, the child’s message cannot be sent out with high success
probability. Therefore, fixed parent-child relation could
decrease the network reliability. The Ridesharing scheme [7]
uses redundant paths in the WSN to deliver a correct aggregate
result to the base station. In particular, Ridesharing organizes
sensors in a track graph (see Figure 3 in next section), where
one sensor may have multiple parents (one primary parent and
one or more backup parents). Each sensor broadcasts its
message to its parents. If a primary parent does not receive its
child’s message, the backup parent of that child takes care of
that message (it aggregates the sensed value in its own

message). In this way, a message from one sensor is delivered
with high reliability.

Later work [16] removes the assumption that the parent-
child relation is fixed and describes how to consider link
quality in the scheme, while studying how link quality
estimation impacts different data aggregation schemes. For
example, it is shown that the quality between tracks have more
impact on the error rate than those with in the same track and
that finding an optimal parent schedule is NP-hard. Still, link
quality estimation mechanism is not embedded in the data
aggregation scheme, and the parent-child relation is still fixed.

The OPAG scheme [14] proposes to carry out data
aggregation at the multiple levels, not only at the parent level.
However, data aggregation nodes are still assigned statically,
that is, before the network starts. The FOMA scheme [8] is an
improvement of OPAG scheme, where the parent-child relation
does not change during network running. FOMA has four
phases to collect data: (a) creating a routing tree structure, (b)
data aggregation node (DAN) selection, (c) signature
construction, and (d) data collection. Although FOMA
improves reliability in high network density, it uses a lot
control messages and still the parent-child relation is fixed.

C. Link Quality Estimation for in-network data aggregation
scheme

 Link quality estimator is often applied in WSNs. Link
quality estimation in WSNs is a fundamental building block for
several mechanisms and network protocols. For instance,
routing protocols rely on link quality estimation to overcome
low-power links’ unreliability and maintain the correct network
operation [17]. And link quality estimation involves link
monitoring, link measurements and metric evaluation [17].

 However, not much effort has been done to combine link
quality estimation technique and aggregation schemes
efficiently in WSNs. In [18], a three-level monitoring
architecture is proposed to estimate link quality and then
compute aggregates, where each level consists of a class of
tools. However, this monitoring approach is energy-intensive.
In [19], they present an algorithmic framework for link loss
monitoring based on the recent modeling and computational
methodology of factor graphs for the data aggregation
communication paradigm in sensor networks. However,
computing the link quality includes complex computation for
link estimation and is very costly in dynamic situations.

IV. FAULT MODEL DESIGN
In the past, most WSNs have considered constant link

reliabilities, or a certain distribution with a constant average.
However, in real-world networks, especially in NPPs, the fault
rate is time-varying as EMI/RFI appears and disappears. This
implies that the fault rate for each link does not remain the
same for the duration of the network lifetime.

We devised a time-dependent fault model to account for
realistic faults in NPP networks. For example, if the EMI/RFI
happens in a certain area of NPPs, each sensor pair is affected
with the same interference during a specific time interval
(duration of EMI/RFI). Each link error rate may stay the same
for a while (we call this interval the fault duration) and then

change to another value (could be higher or lower, depending
on the network conditions, but it is usually lower—normal
network conditions). Formally, we propose the concept of fault
duration, which is a time span that error rate of all links in
network remain the same. After that time span, the error rate
changes and is fixed for the next fault duration. For the entire
network running time, the fault rate changes as a function of
the fault duration, which can be seen as an indicator of the
network stability.

For example, Figure 2 shows that the link error rate varies
with time, when the link error rate is randomly chosen from the
range (0.0, 0.4). When fault duration is 1, link error rate varies
every one time interval. When the fault duration is 2, link error
rate varies within the same range (0.0, 0.4) every two time
intervals.

Figure 2 Fault model illustration with fault duration 1

and fault duration 2

V. BITVECTOR FAUTL-TOLERANT AGGREGATION
 Our new bitvector scheme enhances/extends Ridesharing
[7]. According to the fault model in section IV, we devise a bit
vector for each node to record its neighbors’ situation and the
bit vector is appended to the message sent by the node, in
addition to the aggregated value (message data/payload). The
bitvector scheme has the following contributions beyond the
Ridesharing scheme, as describe in the sections below:

 Dynamic link quality estimation: estimate neighborhood
link quality of a node by efficiently keeping track of
recent packet receptions, reflecting the state of the links
dynamically.

 Order primary and backup parents dynamically: parent
selection (primary, backups) for a child is obtained
based on the dynamic link quality estimation.

 Dynamic TDMA scheduling for each level: the
transmission order for nodes in a level is determined at
first by node types. Primary parents have higher priority
than backup parents.

 Online fault detection and recovery: both detection and
recovery are achieved efficiently by taking advantage of
natural broadcasting and overhearing messages.

 Similar to Ridesharing scheme [7], sensors are organized in
a track graph, as shown in Figure 3, the base station is in level
0, sensors one hop away from the data sink are in level 1, and
so on. A directed edge from a child C to a parent P1 indicates
that P1 and C are within each other’s radio range and that P1
listens to C’s communication. Each sensor has multiple
parents, one primary parent and several backup parents.

 We define sensing interval as the time of data sending from
the highest level to the base station. And the sensor’s data
traffic is sending periodically (every sensing interval). Sensing
interval and interval are used interchangeably in our paper.

Figure 3 Track Graph Example Illustration

A. Dynamic Link Quality Estimation
 Link quality is estimated using a bit vector that each node
attaches to every data message it sends. One element of a bit
vector is called bit element corresponding to one neighbor. A
bit element contains two fields. The first field is received bit (r-
bit), which indicates whether it has received a message from a
certain neighbor for the current interval. If the r-bit is 0, it
means the sensor did not receive message from that neighbor,
and it is 1 otherwise. The second field is a 3-bit probability
value (p-value) used to evaluate the quality of the link between
a certain neighbor and itself. The p-value ranges from 0 (i.e.,
000) to 7 (i.e., 111). When a node receives a message from one
neighbor correctly, the p-value increases by 1 or remain 7 (if
current p-value is already 7) for that neighbor. Otherwise, the
p-value decreases by 1. In our protocol, if the p-value is -1, it
means the link fails. To start with, the r-bit is initialized to 1
and p-value to 111. In practice, to save message overhead, each
node only attaches parent and children bit elements of the
node’s bit vector to the data message.

Each node knows who their neighbors are in the network
construction phase. They know they should hear from all their
neighbors once at the end of each interval. If a node does not
receive a message from a neighbor, it sets r-bit of the neighbor
to be 0 and decreases the p-value by 1 at the end of that
interval.

Figure 3 depicts an example. The tower is the base station.
Node C1 has two parents, P1 and P2. Node C1 is located in level

2 and its parents are located one level above it. Assume that the
link between C1 and P1 and the link between C1 and P2 fail. At
interval 0, C1 broadcasts its data message with its bit vector to
P1 and P2. At the end of interval 0, P1 realizes that it did not
receive the message from C1. It sets the r-bit of C1 to be 0 and
decreases the p-value by 1 to 110 (i.e., C1’s bit element in P1’s
bit vector is 0110). P2 receives the message from C1, so the
initial value of r-bit of C1 remains as 1 and the p-value of C1 as
111. When P1 broadcasts its message, C1 cannot overhear P1’s
message (we assume links are all symmetric) and C1 sets P1’s
bit element to 0110 at the end of interval 0. The bit vectors of
C1, P1 and P2 at the end of interval 0 are shown in Table 1.

Table 1 Example Result

 P1 bit
element

P2 bit
element

C1 bit
element

P1 bit vector 1111 0110 0110

P2 bit vector 0110 1111 1111
C1 bit vector 0110 1111 1111

B. Order primary and backup parents dynamically
the primary parent with good quality link between the

parent and its child has higher success probability of
transmitting the child’s message. Therefore, we select primary
parent with highest link quality to reduce error (improve
accuracy).

Data is sent level by level from the highest level to the
lowest level. The level that sends out data is called

transmission level. In order to let children estimate their

parent link quality, children need to listen when their parents

are sending out messages. Suppose level i is a transmission

level, children in level i+1 and parents in level i-1 listen

messages from level i.
In bitvector, since each node maintains a bit vector for its

neighbors, a child has its parents’ p-values. Each child orders
its parents according to p-values. The parents with the highest
(lowest) p-value is selected as the primary (last backup) parent.
If two p-values are the same, we break ties by node id. With
this protocol, we can make parent selection dynamic. For the
previous example, please refer to Table 1. Child C1 should
order its parents as P2 and P1 at the end of the interval 0, since
P2 has higher p-value (111) than P1 (110).

When a parent node receives a message from its child, it
checks the bit vector attached in the child’s data message to see
whether it is selected as the primary parent.

In conclusion, each child decides the order of its primary
and backup parents. Each child makes decision at the end of
each interval, according to calculated p-values of its parents
during that interval. In this way, parents’ order can be selected
dynamically by their children. And parents receive the parent
selection decisions from their children. A parent may act
different roles for different children. In other words, a parent
node may be a primary parent for a child and a backup parent
for another child. For example, in Figure 3, children C1 and C2

have two common parents P1 and P2. P1 may be primary parent
of C1, but backup parent of C2.

C. Dynamic TDMA Scheduling for Each Level
In order to do message correction, the primary parent

needs to be scheduled to send out messages before the backup

parents. Since parents order is changed by their children
dynamically, we need to specify the sending orders

dynamically. But an optimal parent scheduling algorithm is

NP-hard, which can be proven as in [16], by reducing the

schedule selection problem to the minimum feedback arc set

problem. We design an approximate algorithm to do parent
scheduling for each level.

Without loss of generality, we describe our TDMA

scheduling as designed for each level. For nodes at each level,

we divide them into three time partitions, children partition,

primary parent partition and backup parent partition. Nodes in

children partition are scheduled to send messages before nodes
in primary parent partition. And nodes in primary parent

partition send message before nodes in backup parent

partition. The reason that we define children partition is that a

node can be both parent and sibling to a certain node in the

same level. For example, in Figure 3, C2 selects C1, P1 and P2

as its parents. So C1 is a parent and sibling of C2. Children
node should send before their parents. The children partition is

for those children nodes located in the same level as their

parents. For the previous example, for the level 2 TDMA

scheduling, C2 needs to send message before C1, because C2 is

child of C1. C2 is located in children partition. The primary

parent partition contains the nodes that are the primary parents
of any of their children. The backup parent partition contains

the nodes that are only the backup parents of all of their

children. Note that at a cursory examination one may believe

that a conflict exists in case two children C1 and C2 select

common parents P1 as primary and backup, respectively, while
P2 is chosen as backup and primary, respectively, as Figure 3

shows. We note that in our protocol a parent is classified as

backup parent partition only if that parent is not selected as

primary parent for any sensors. That means P1 and P2 both are

classified as primary parent partition. When a parent receives

a message from a child, each node knows whether it is a
primary parent according to its children’s bit vector. If a
parent does not receive a message from a child, the parent will

use the previous parent order assigned by its child. Within

each partition, the nodes are ordered by their ids in ascending
order. Nodes with smaller ids send messages before nodes

with larger ids.
In this way, we achieve dynamic TDMA scheduling for

each level.

D. Online Fault Detection and Fault Recovery
There are three types of faults in our scheme, and each

fault has a corresponding fault recovery method. The first fault
condition is that a primary parent does not receive a child’s
message, but the side link between the primary and the backup
parent does not fail. The second fault condition is that a
primary parent does not receive a child’s message and the side
link between the primary and the backup parent fails. The

third fault is caused by the conflict of TDMA scheduling that
a child’s backup parent sends message before its primary
parent. The last two kinds of faults cannot be handled in
Ridesharing [7].

1) Primary link failure: The backup parents who
overhear the message can handle missing messages in current
interval. This function works the same way as Ridesharing [7].
If backup parent overhears primary parent, it will check bit
vector of their common child, if the received bit of the
common child is 0 in primary parent bitvector list. The backup
parent will aggregate the common child message.

2) Side link failure: Bitvector scheme handles side link
failure by delaying recovery to the next interval. In interval i,
when a side link fails, the backup parent does not know
whether the parent with higher priority received the child
message or not. In this case, the backup parent simply saves
the child message until the end of next interval i+1. During
the current interval i, the child will listen to their parent
messages. (We assume that all links in the network are
symmetric, that is, if a child does not overhear a parent’s
message, neither does the parent.) When the backup parent
receives a message from its child in the next interval i+1, it
checks the child’s bit vector and knows whether the child’s
primary parent received last interval i’s message, according to
the r-bit of primary parent bit element. If the r-bit is 0, it
means the child did not overhear the primary parent, so the
primary parent did not receive the child’s message from
interval i. In this case, the backup parent will aggregate the
saved child message from last interval i in the current interval
i+1.

For example, in Figure 3, suppose the side link between P1

and P2 and the link between C1 and P1 fail, in interval i, the

child C1 sends out a message mi1. P1 does not receive mi1 and

sends out its own data message mi2. But due to the side link

between P1 and P2 failure, P2 cannot overhear mi2 of P1, so
that P2 does not know whether P1 aggregated mi1. P2 saves mi1

in its message queue. At the same time, child C1 overhears

each of its parent message and update its bit vector (P1: 0110,

P2: 1111). In the next interval i+1, child C1 sends out another

message m(i+1)1 with bit vector P2 1111 and P1 0110 (C1

reorders its parents and selects P2 as its primary parent). P2
received message m(i+1)1 with bit vector from C1 again. Since

our links are all symmetric, according to C1’s r-bit of its

parents, P2 knows that C1 did not overhear P1, and that P1 also

did not receive mi1 in the last interval i. Therefore, P2

aggregates mi1 and m(i+1)1 in current interval i+1. In this way,

P2 in interval i+1 handles the missing message mi1 from
interval i.

Since some faults are detected one interval after the faults

really happen, we assign the message transmission rate to be
twice that of the data rate of sensors. The impact of this fault
recovery method is that more messages will be injected in the
network and it consumes more energy. We evaluate the effects
on the energy and performance in Section V.

3) Overhearing messages after sending out own
messages: Although unusual, there is a slight chance that
some backup parents may send messages before the primary

parent. And backup parents overhear the primary parents’
messages after sending out their own data messages. Their

common child’s data cannot be aggregated if primary parent
of those children fails. We allow nodes in a transmission level

to continue listening to their siblings after sending out their

own data messages. In this way, backup parents saves

common child messages in current interval and aggregates it

in the next interval, when the primary parent is detected to

have failed to aggregate the common child’s message. This
fault recovery method gains more network reliability by

consuming more power. We evaluate the effects on the
reliabiilty and energy in Section V.

VI. EVALUATION
In our evaluation, we compare bitvector scheme with

Ridesharing [7] and FOMA [8] schemes. We use the following
metrics to evaluate the performance of the three schemes:

 Average relative RMS: the average normalized root
mean square error to the correct result, which is metric
of network accuracy. In other words, this computes
how far off the value received at the base station is from
the actual results that should be received by the base
station. RMS in our paper means RMS error.

 Average correct message ratio: the ratio of correct
messages received by base station and total number of
messages, averaged over the number of intervals.

 Average energy per node per interval: average energy
consumed per node (total energy divided by number of
nodes in the network) averaged over the number of
intervals.

 Average message overhead per interval: that is, the
total amount of overhead per message (counted by
bytes) transmitted in network averaged over the number
of intervals. This metric represents the message
overhead for different schemes transmitted in network.

A. Simulation Setup
In our simulation, we put a number of sensors in a grid

distribution. Each sensor is only able to hear messages from
its eight direct neighbors. Similar to Ridesharing [7], the
power consumption is 65 mW for transmission, 21.0 mW for
listening and reception, and 0 mW in sleep mode. The network
bandwidth is assumed to be 38.4 Kbps. For comparison
purposes, we implemented bitvector, Ridesharing, and FOMA
and our new fault model based on fault duration. Each
simulation runs for 16 sensing intervals. The results are
averaged over 50 runs, to ensure statistical significance of the
results.

B. Experimental Results
1) Accuracy comparison: We vary the link error rate and

the fault duration, when the total number of nodes is 49 (7x7
grid). We use two metrics, namely relative RMS and correct

message rate, to evaluate network accuracy. Figure 4 shows a
3D graph of the relative RMS when varying link error rate and
fault duration. Figure 5 shows a 3D graph of the correct
message rate when varying link error rate and fault duration.
The bitvector is more robust (that is, better in both metrics)
than Ridesharing and FOMA schemes when link error rate
increases. When link error rate is 0.4, the bitvector has about
20% improvement in RMS comparing to Ridesharing and
46% improvement in RMS comparing to FOMA. This is
because when link error rate is high, each child in bitvector
reorders their parents more frequently to select the highest
quality link to send out data first and therefore becomes more
tolerant to faults.

Figure 4 Relative RMS when varying link error rate and fault

duration (the number of nodes is 49)

Figure 5 Correct message rate when varying link error rate and

fault duration (the number of nodes is 49)

 The reasoning of parent reorder was validated through an
experiment that changes the parent reorder frequency (i.e., the
number of times parent were reordered averaged over the
number of intervals). Figure 6 shows the parent reorder
frequency when varying link error rate and fault duration. As
expected, we found some correlation between network
accuracy and parent reorder frequency when link error rate is
not very high (between 0 and 0.4). That is, the more frequent
the parents being reordered, the more accuracy we can get.
But when the link error rate is high (larger than 0.4), the
parent reorder frequency decreases, because the network is so
lossy that children cannot overhear their parents’ messages
very often, so that they cannot update their bitvectors and
reorder their parents. We note that this case is rare, but it
should still be studied.

 Figure 7 shows that RMS of bitvector, FOMA and
Ridesharing all decrease as fault duration increases. And
bitvector decreases more in RMS error than FOMA and
Ridesharing. It is because bitvector is able to estimate the link
quality and reorder parents by link quality. When the fault
duration gets bigger, parents with high quality is more likely
being chosen, so that the RMS error decreases as fault
duration increases. In addition, Figure 8 shows the parent
reorder frequency versus fault duration when link error rate is
0.4. As expected, the parent reorder frequency decreases when
fault duration increases. The reason is that when network is
stable, the link error rate tends to be constant, so that the
parents’ order of each node is stable. Note that in Figure 6,
there are more data points showing the same phenomenon for
the other link error rate, but we can see the decrease is less
steep for very low and very high link error rate. It is because
for low link error rate, link quality is good and parent

reordering happens infrequently for small fault duration.
Parent reorder frequency does not increase obviously when
fault duration increases. This is due to a similar phenomenon
of that explaining of Figure 6, when the link error rate is larger
than 0.4.

We also carried out a sensitivity analysis of the schemes to
network size; for that, we varied the network size from 25
(5x5 grid) to 169 (13x13 grid) and changed link error rate to
compare relative RMS. Figure 9 is a 3D graph showing the
RMS while varying link error rate and network size. We found
that all the three schemes perform better in smaller size
network than larger size network. But bitvector scheme
always has highest reliability. Note also from Figure 9 that the
shape of the curves changes slightly with larger networks,
making the RMS better/lower for very large or very small link
error rate; this is due to a similar phenomenon of that
explaining Figure 4.

Figure 6 Parent reorder frequency when varying link error rate

and fault duration (the number of nodes is 49)

Figure 7 RMS vs fault duration (number of nodes is 49)

Figure 8 Parent reorder frequency vs fault duration for link

error rate of 0.4

Figure 9 Network size while varying link error rate and RMS

2) Energy comparison: In Figure 10 we show the measured
average energy consumption per node per interval for the
three schemes tested. In the experiment, we vary link error
rate when there are 49 sensors with fault duration = 4 (fixed
for the duration of the experiment to isolate the effects of error
rate). The result shows that bitvector consumes more energy
than FOMA, because it allows nodes in two levels (i.e.,

parents and children) to listen to the nodes transmitting.
FOMA also has extra costs of energy for sending out many
control messages (more exactly, 3n messages, where n is the
number of sensors in the network). Ridesharing has the least
energy consumptions because it only allows nodes to listen to
their parents one level below, and each message has less
overhead message than both bitvector and FOMA schemes
(see below).

Figure 10 Energy vs link error rate with fault duration 1 (the

number of nodes is 49)

Figure 11 Overhead vs link error rate with fault duration 1 (the

number of nodes is 49)

3) Message overhead comparison: In this experiment, we
evaluate the message overhead in bytes send per interval. The
result is shown in Figure 11. For Ridesharing, the message
overhead for each node is 2 bits times the number of children.
For bitvector scheme, each node needs to send out a bit vector
with parent bit elements and children bit elements (4 bits per
bit element). Therefore, bitvector has more overhead messages
than Ridesharing. But the amount of overhead does not vary
with link error rate for Ridesharing or for bitvector. In
contrast, for FOMA, the overhead is as follows: the DAN

(data aggregation node) selection phase needs to send out
DAN messages from the root to all leaf nodes; in the signature
construction phase, it needs to send out a signature message
from each leaf node to the root; in the data collection phase,
each node needs to send out data message including one
aggregation signature and one or more partial results. For
FOMA scheme, the amount of control messages decrease as
the link quality gets worse, since fewer partial results need to
be sent.
4) Network density: To evaluate how network density1 affects
the network reliability, we carried out an experiment that
changes network density with fixed link error rate of 0.3,
when there are 169 sensors in the network. The performance
of all the schemes increases with the increase in network
density as shown in Figure 12. For Ridesharing, that is
because the probability that a node finds three parents
decreases. For bitvector, there are two main reasons: (a) first,
finding three parents is hard (see Ridesharing above), and (b)
second, the probability to reorder the parents decrease due to
lossy network. For FOMA, the success probability that a data
message is sent to DAN node decreases.

Figure 12 RMS for varying network density (The number of

nodes is 169 and link error rate is 0.3)

VII. CONCLUSION

In this paper, we introduced a new realistic time-dependent
fault model called fault duration that is ideal to model
interference in nuclear power plant wireless monitoring
environments, where interference in the network lasts for a
fixed interval of time. We also devised new in-network
aggregation scheme, bitvector, for monitoring nuclear power
plants. Our bitvector scheme embeds a dynamic link quality
estimation mechanism that selects the best parent-child links
for child nodes to propagate their results/data. Our scheme
shows a much lower root mean square error (RMS) comparing

1 We changed the network density by creating holes in the
network, that is, removing sensors (or making them “dead”)
from randomly selected locations in the grid, with a uniform
distribution.

to state of the art (FOMA and Ridesharing), while it has lower
message overhead, and it allows for fault detection and
recovery, link quality estimation and parent reorder. In
addition, the network accuracy improves as fault duration gets
bigger. Bitvector also performs better for high network density.

ACKNOWLEDGMENT
We would like to thank all the anonymous reviewers for

their suggestions. The work in this paper was supported by
Department of Energy.

REFERENCES
[1] Gungor V C, Hancke G P. Industrial wireless sensor networks:

Challenges, design principles, and technical approaches[J].
Industrial Electronics, IEEE Transactions on, 2009, 56(10):
4258-4265.

[2] Hashemian H M, Kiger C J, Morton G W, et al. Wireless sensor
applications in nuclear power plants[J]. Nuclear Technology,
2011, 173(1): 8-16.

[3] Hashemian H M, Strasser W. What you need to know about
sensor reliability before and after and accident[C]//IAEA TWG
NPPIC Meeting, Austria. 2011.

[4] http://www.power-eng.com/articles/print/volume-115/issue-
8/features/power-plant-condition-monitoring.html

[5] Lin R, Wang Z, Sun Y. Wireless sensor networks solutions for
real time monitoring of nuclear power plant[C]//Intelligent
Control and Automation, 2004. WCICA 2004. Fifth World
Congress on. IEEE, 2004, 4: 3663-3667.

[6] Jin X, Guo Y, Sarkar S, et al. Anomaly detection in nuclear
power plants via symbolic dynamic filtering[J]. Nuclear
Science, IEEE Transactions on, 2011, 58(1): 277-288.

[7] Gobriel S, Khattab S, Mossé D, et al. Ridesharing: Fault tolerant
aggregation in sensor networks using corrective
actions[C]//Sensor and Ad Hoc Communications and Networks,
2006. SECON'06. 2006 3rd Annual IEEE Communications
Society on. IEEE, 2006, 2: 595-604.

[8] Ashouri M, Yousefi H, Hemmatyar A M A, et al. FOMA:
Flexible overlay multi-path data aggregation in wireless sensor
networks[C]//Computers and Communications (ISCC), 2012
IEEE Symposium on. IEEE, 2012: 000508-000511.

[9] Boyd S, Ghosh A, Prabhakar B, et al. Randomized gossip
algorithms[J]. Information Theory, IEEE Transactions on, 2006,
52(6): 2508-2530.

[10] Aysal T C, Yildiz M E, Sarwate A D, et al. Broadcast gossip
algorithms for consensus[J]. Signal Processing, IEEE
Transactions on, 2009, 57(7): 2748-2761.

[11] Hakoura B, Rabbat M G. Data aggregation in wireless sensor
networks: A comparison of collection tree protocols and gossip
algorithms[C]//Electrical & Computer Engineering (CCECE),
2012 25th IEEE Canadian Conference on. IEEE, 2012: 1-4.

[12] Madden S, Franklin M J, Hellerstein J M, et al. TAG: A tiny
aggregation service for ad-hoc sensor networks[J]. ACM
SIGOPS Operating Systems Review, 2002, 36(SI): 131-146.

[13] Manjhi A, Nath S, Gibbons P B. Tributaries and deltas: Efficient
and robust aggregation in sensor network
streams[C]//Proceedings of the 2005 ACM SIGMOD
international conference on Management of data. ACM, 2005:
287-298.

[14] Chen Z, Shin K G. OPAG: Opportunistic data aggregation in
wireless sensor networks[C]//Real-Time Systems Symposium,
2008. IEEE, 2008: 345-354.

[15] Berfield A, Chrysanthis P K, Mossé D. LSynD: Localized Synopsis
Diffusion[C]//Object and Component-Oriented Real-Time Distributed
Computing, 2007. ISORC'07. 10th IEEE International Symposium on.
IEEE, 2007: 313-320.

[16] Gobriel S, Khattab S, Mossé D, et al. Considering link qualities
in fault-tolerant aggregation in wireless sensor
networks[C]//Global Telecommunications Conference, 2009.
GLOBECOM 2009. IEEE. IEEE, 2009: 1-6.

[17] Baccour N, Koubaa A, Mottola L, et al. Radio link quality
estimation in wireless sensor networks: a survey[J]. ACM
Transactions on Sensor Networks (TOSN), 2012, 8(4): 34.

[18] Zhao J, Govindan R, Estrin D. Computing aggregates for
monitoring wireless sensor networks[C]//Sensor Network
Protocols and Applications, 2003. Proceedings of the First
IEEE. 2003 IEEE International Workshop on. IEEE, 2003: 139-
148.

[19] Mao Y, Kschischang F R, Li B, et al. A factor graph approach to
link loss monitoring in wireless sensor networks[J]. Selected
Areas in Communications, IEEE Journal on, 2005, 23(4): 820-
829.

[20] Vuran M C, Akan Ö B, Akyildiz I F. Spatio-temporal
correlation: theory and applications for wireless sensor
networks[J]. Computer Networks, 2004, 45(3): 245-259.

[21] Gupta G, Younis M. Fault-tolerant clustering of wireless sensor
networks[C]//Wireless Communications and Networking, 2003.
WCNC 2003. 2003 IEEE. IEEE, 2003, 3: 1579-1584.

[22] Silva I, Guedes L A, Portugal P, et al. Reliability and
availability evaluation of wireless sensor networks for industrial
applications[J]. Sensors, 2012, 12(1): 806-838.

[23] Chen J, Kher S, Somani A. Distributed fault detection of
wireless sensor networks[C]//Proceedings of the 2006 workshop
on Dependability issues in wireless ad hoc networks and sensor
networks. ACM, 2006: 65-7

