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Abstract—Industrial wireless sensor networks (IWSNs) have 

become popular, given the lower cost of installation than wired 
networks and their flexibility. WSNs are applied in monitoring, 
measurement, and control. Nuclear power plants (NPPs), in 
particular, have not been eager to adopt WSNs due to reliability, 
electromagnetic and radio frequency interference (EMI/RFI) as 
well as security concerns. On the other hand, the two main 
benefits from adding WSNs to NPPs are increased reliability from 
using robust wireless monitoring as a backup network for the 
primary wired system and reduce costs from installation and 
maintenance (in comparison to wired networks).  

We propose a new fault model and a fault tolerant in-network 
aggregation scheme, bitvector. First, in order to mimic the 
interference environment in NPP, we define a new fault model 
with time-dependent faults. We propose the fault duration 
concept, a time span during which the link error rate is fixed, 
such as when EMI/RFI appears between nodes. Therefore, the 
fault duration is an indicator of the network stability. Second, 
based on the fault model, there are some network links whose 
quality are not good during a fault duration interval. Bitvector 
estimates neighbor link quality dynamically and orders primary 
and backup parents dynamically according to link quality 
estimation. In addition, since data rate is low in NPPs, bitvector 
is able to use redundancy to improve accuracy. In particular, for 
some faults, bitvector defers fault detection and fault recovery by 
one sensing interval. Experiments show that bitvector 
significantly improves performance in root mean square (RMS) 
error and correct message rate; benefits of bitvector are even 
larger for environments with high fault rates. 

Keywords—nuclear power plant; condition monitoring; in-
network aggregation; time-dependent fault model 

I. INTRODUCTION 
Industrial Wireless Sensor Networks (IWSNs) are a type of 

WSNs designed for industrial environment. The collaborative 
nature of IWSNs brings several advantages over traditional 
wired industrial monitoring and control systems, including 
self-organization, rapid deployment, flexibility, and inherent 
intelligent-processing capability [1]. The nuclear industry has, 
however, has been slower in implementing new technologies—
wireless technologies are no exception [2]. Nuclear power 
plants are not willing to adopt WSNs due to three concerns [3]: 
reliability, EMI/RFI (electromagnetic and radio frequency 

interference) and security. Wireless condition monitoring 
system has attracted more and more attention in NPPs field. 
Condition monitoring in NPPs requires that suitable sensors be 
used, dedicated parameters be monitored, baseline (normal 
conditions) be defined and the trend of the data be captured to 
identify condition changes [4]. The authors in [5] propose a 
real time condition monitoring architecture of NPPs using 
WSNs. The author in [2] proposes a design of prototype 
condition monitoring system. They have a scenario where data 
from wireless sensors installed on plant equipment is integrated 
with existing wired process sensors. Data from both wired 
sensors and wireless sensors sends to data acquisition and 
analysis servers.  

There are several special characteristics of WSNs in NPPs. 
For our paper, we focus on two of them. The first is high 
packet error rate because of EMI/RFI. The second is the low 
data rate in control systems of NPPs. 

According to [3], EMI/RFI is a concern because the high 
levels of electromagnetic noise from high-powered devices and 
ionizing radiation sources create a harsh environment for many 
commercial wireless devices to perform reliably. In addition, 
the signal-to-noise-ratio (SNR) of hot-leg coolant temperature 
sensor in NPPs is from 10dB to 7dB [6], which means the 
environment is very noisy. Therefore, EMI/RFI leads to high 
packet error rate in WSNs.  

Since wireless condition monitoring in NPPs is a backup 
network, data is not sent out very frequently as the general 
wireless sensor network. Therefore, the data rate is relatively 
low.  

We present a wireless sensor network scheme, bitvector 
that meets the two afore mentioned characteristics of NPPs 
condition monitoring. We make three contributions as follows. 

 We propose a new time-dependent fault model that 
includes the fault duration concept to simulate fault rate 
varying with time. This is needed because the 
interference in the wireless environments in NPPs is 
unpredictable and it could cause permanent, intermittent 
or transient faults. 

 For the challenge of having high error rates, some links 
in WSNs are affected by NPP interference for a fault 



duration time. Bitvector is able to estimate link quality 
dynamically, and to automatically select the parent-
child pairs according to link quality.  

 We take advantage of the low data rate and judiciously 
add little redundancy to improve accuracy.  

We compare bivector with Ridesharing [7] and FOMA [8]. 
Through simulations, we show that bitvector can gain as much 
as 40% more accuracy than FOMA and 20% more accuracy 
than Ridesharing, while delivering lower message overhead.   

The rest of the paper is organized as follows. In Section II, 
we review the related work about link quality estimation, in-
network aggregation and fault model design. Section III 
presents the basic idea of the bitvector scheme. In Section IV, 
we discuss about our fault model design. In Section V, we 
explain how we setup our simulation and experiment results. 
Section VI summaries our work and presents conclusions.  

II. BACKGROUND 
     In order to monitor advanced small modular reactors 
(SMRs) in NPP, we proposed a supervisory networked control 
system architecture, shown in Figure 1. For each SMR, there 
are two control loops. First, a primary control loop (local 
controller -> local actuator -> plant -> local controller) is 
connected by a field bus. Second, a secondary control loop 
(sensor -> module-level supervisory controller -> local actuator 
-> plant -> sensor) is connected by a wireless sensor network. 
The secondary control loop is to monitor the condition of the 
reactor, acting as a backup for the primary control loop. If the 
local controller or the field bus fails, the module-level 
supervisory controller (MLSC) acts as a backup controller to 
control the reactor.  

For module-level wireless sensor network, sensors attached 
to SMR sensed different parameters of SMR. For each 
parameter, there are several sensors monitoring the same 
parameters. In order to reduce network traffic, in-network data 
aggregation can be applied. Data aggregation (calculate 
average value) happens when sensor B receives data from 
sensor A and the received data of sensor A has the same 
category as the sensor B. Then sensor B aggregates the data of 
sensor A with its own data. In this way, the network traffic can 
be reduced. In our paper, we only consider sensors send out 
data to MLSC. MLSC acts as a base station.  

 
Figure 1 Supervisory networked control system for advanced 

SMRs 

III. RELATED WORK 

A. Time-Dependent Fault Model 
Faults occur anytime and anywhere in WSNs. Many papers 

focus on designing fault models for WSNs. According to [20], 
the nature of the physical phenomenon constitutes the temporal 
correlation between each consecutive observation of a sensor 
node. The fault rate of the network varies based on the 
temporal behavior. So, designing a good fault model that close 
to the situation in real life is important.  

However, as far as we know, there is not much research 
effort focusing on fault model design. Most of studies assign 
some constant link or node failure, determined before the 
network starts. In [21], [22], the authors mention that based on 
the temporal behavior of a fault, it can be considered as 
permanent, intermittent or transient faults. However, they just 
consider permanent faults in their study. The author in [23] 
designs a fault model by assigning faults to some nodes and 
also proposes a method for fault detection. Although it is able 
to localize fault region efficiently, the fault rate of the network 
is still fixed during network lifetime.  

B. In-network data aggregation schemes 
Much research in WSNs has been developed in the last 

decade. To save energy and bandwidth, in-network data 
aggregation schemes for WSNs attempt to aggregate as many 
sensed values as possible onto a single message not by simply 
consolidating messages, but in performing some transformation 
in the sensed values. There are two main types of in-network 
data aggregation schemes, namely tree-based and gossip-based 
schemes.  

Gossip-based schemes [9], [10] do not create or maintain 
any specialized routing structure, but their disadvantage is that 
their actual aggregate computation is slow to converge [11].  
We do not consider gossip-based schemes. 

For many tree-based topology of in-network aggregation 
schemes [7], [8], [12], [13], [14], [15], the many parent-child 
relationships are determined before network starts. Some 
schemes consider only one parent-child pair for each node, 
which remains fixed during the entire network lifetime. 
However, due to failures, the network is typically not static and 
thus   some   schemes   attempt   to   “fix”   the   tree   by   changing  
parent-child structure dynamically due to faults [15]. Our 
starting point is a tree with fixed structure, that is, fixed 
potential parent-child relationships. 

If the quality of the link between child and parent is not 
good, the child’s message cannot be sent out with high success 
probability. Therefore, fixed parent-child relation could 
decrease the network reliability. The Ridesharing scheme [7] 
uses redundant paths in the WSN to deliver a correct aggregate 
result to the base station. In particular, Ridesharing organizes 
sensors in a track graph (see Figure 3 in next section), where 
one sensor may have multiple parents (one primary parent and 
one or more backup parents). Each sensor broadcasts its 
message to its parents. If a primary parent does not receive its 
child’s  message, the backup parent of that child takes care of 
that message (it aggregates the sensed value in its own 



message). In this way, a message from one sensor is delivered 
with high reliability.  

Later work [16] removes the assumption that the parent-
child relation is fixed and describes how to consider link 
quality in the scheme, while studying how link quality 
estimation impacts different data aggregation schemes. For 
example, it is shown that the quality between tracks have more 
impact on the error rate than those with in the same track and 
that finding an optimal parent schedule is NP-hard.  Still, link 
quality estimation mechanism is not embedded in the data 
aggregation scheme, and the parent-child relation is still fixed.   

The OPAG scheme [14] proposes to carry out data 
aggregation at the multiple levels, not only at the parent level.  
However, data aggregation nodes are still assigned statically, 
that is, before the network starts. The FOMA scheme [8] is an 
improvement of OPAG scheme, where the parent-child relation 
does not change during network running. FOMA has four 
phases to collect data: (a) creating a routing tree structure, (b) 
data aggregation node (DAN) selection, (c) signature 
construction, and (d) data collection. Although FOMA 
improves reliability in high network density, it uses a lot 
control messages and still the parent-child relation is fixed.  

C. Link Quality Estimation for in-network data aggregation 
scheme 

 Link quality estimator is often applied in WSNs. Link 
quality estimation in WSNs is a fundamental building block for 
several mechanisms and network protocols. For instance, 
routing protocols rely on link quality estimation to overcome 
low-power  links’  unreliability  and  maintain  the  correct  network  
operation [17]. And link quality estimation involves link 
monitoring, link measurements and metric evaluation [17].  

 However, not much effort has been done to combine link 
quality estimation technique and aggregation schemes 
efficiently in WSNs. In [18], a three-level monitoring 
architecture is proposed to estimate link quality and then 
compute aggregates, where each level consists of a class of 
tools. However, this monitoring approach is energy-intensive. 
In [19], they present an algorithmic framework for link loss 
monitoring based on the recent modeling and computational 
methodology of factor graphs for the data aggregation 
communication paradigm in sensor networks. However, 
computing the link quality includes complex computation for 
link estimation and is very costly in dynamic situations.  

IV. FAULT MODEL DESIGN 
In the past, most WSNs have considered constant link 

reliabilities, or a certain distribution with a constant average. 
However, in real-world networks, especially in NPPs, the fault 
rate is time-varying as EMI/RFI appears and disappears. This 
implies that the fault rate for each link does not remain the 
same for the duration of the network lifetime. 

We devised a time-dependent fault model to account for 
realistic faults in NPP networks. For example, if the EMI/RFI 
happens in a certain area of NPPs, each sensor pair is affected 
with the same interference during a specific time interval 
(duration of EMI/RFI). Each link error rate may stay the same 
for a while (we call this interval the fault duration) and then 

change to another value (could be higher or lower, depending 
on the network conditions, but it is usually lower—normal 
network conditions). Formally, we propose the concept of fault 
duration, which is a time span that error rate of all links in 
network remain the same. After that time span, the error rate 
changes and is fixed for the next fault duration. For the entire 
network running time, the fault rate changes as a function of 
the fault duration, which can be seen as an indicator of the 
network stability. 

For example, Figure 2 shows that the link error rate varies 
with time, when the link error rate is randomly chosen from the 
range (0.0, 0.4). When fault duration is 1, link error rate varies 
every one time interval. When the fault duration is 2, link error 
rate varies within the same range (0.0, 0.4) every two time 
intervals. 

 
Figure 2 Fault model illustration with fault duration 1 

and fault duration 2 

 

V. BITVECTOR FAUTL-TOLERANT AGGREGATION 
 Our new bitvector scheme enhances/extends Ridesharing 
[7]. According to the fault model in section IV, we devise a bit 
vector for each node to record its  neighbors’  situation and the 
bit vector is appended to the message sent by the node, in 
addition to the aggregated value (message data/payload). The 
bitvector scheme has the following contributions beyond the 
Ridesharing scheme, as describe in the sections below: 

 Dynamic link quality estimation: estimate neighborhood 
link quality of a node by efficiently keeping track of 
recent packet receptions, reflecting the state of the links 
dynamically. 

 Order primary and backup parents dynamically: parent 
selection (primary, backups) for a child is obtained 
based on the dynamic link quality estimation. 

 Dynamic TDMA scheduling for each level: the 
transmission order for nodes in a level is determined at 
first by node types. Primary parents have higher priority 
than backup parents. 



 Online fault detection and recovery: both detection and 
recovery are achieved efficiently by taking advantage of 
natural broadcasting and overhearing messages.  

 Similar to Ridesharing scheme [7], sensors are organized in 
a track graph, as shown in Figure 3, the base station is in level 
0, sensors one hop away from the data sink are in level 1, and 
so on. A directed edge from a child C to a parent P1 indicates 
that  P1  and  C  are  within  each  other’s   radio  range  and  that  P1  
listens   to   C’s   communication. Each sensor has multiple 
parents, one primary parent and several backup parents.  

      We define sensing interval as the time of data sending from 
the highest level to the base station. And   the   sensor’s   data  
traffic is sending periodically (every sensing interval). Sensing 
interval and interval are used interchangeably in our paper.
   

 
Figure 3 Track Graph Example Illustration 

A. Dynamic Link Quality Estimation 
 Link quality is estimated using a bit vector that each node 
attaches to every data message it sends. One element of a bit 
vector is called bit element corresponding to one neighbor. A 
bit element contains two fields. The first field is received bit (r-
bit), which indicates whether it has received a message from a 
certain neighbor for the current interval. If the r-bit is 0, it 
means the sensor did not receive message from that neighbor, 
and it is 1 otherwise. The second field is a 3-bit probability 
value (p-value) used to evaluate the quality of the link between 
a certain neighbor and itself. The p-value ranges from 0 (i.e., 
000) to 7 (i.e., 111). When a node receives a message from one 
neighbor correctly, the p-value increases by 1 or remain 7 (if 
current p-value is already 7) for that neighbor. Otherwise, the 
p-value decreases by 1. In our protocol, if the p-value is -1, it 
means the link fails. To start with, the r-bit is initialized to 1 
and p-value to 111. In practice, to save message overhead, each 
node only attaches parent and children bit elements of the 
node’s  bit  vector  to  the  data  message.   

Each node knows who their neighbors are in the network 
construction phase. They know they should hear from all their 
neighbors once at the end of each interval. If a node does not 
receive a message from a neighbor, it sets r-bit of the neighbor 
to be 0 and decreases the p-value by 1 at the end of that 
interval.   

Figure 3 depicts an example. The tower is the base station. 
Node C1 has two parents, P1 and P2. Node C1 is located in level 

2 and its parents are located one level above it. Assume that the 
link between C1 and P1 and the link between C1 and P2 fail. At 
interval 0,  C1 broadcasts its data message with its bit vector to 
P1 and P2. At the end of interval 0, P1 realizes that it did not 
receive the message from C1. It sets the r-bit of C1 to be 0 and 
decreases the p-value by 1 to 110 (i.e., C1’s  bit  element in P1’s  
bit vector is 0110). P2 receives the message from C1, so the 
initial value of  r-bit of C1 remains as 1 and the p-value of C1 as 
111. When P1 broadcasts its message, C1 cannot overhear P1’s  
message (we assume links are all symmetric) and C1 sets P1’s  
bit element to 0110 at the end of interval 0. The bit vectors of 
C1, P1 and P2 at the end of interval 0 are shown in Table 1.  

Table 1 Example Result 

 P1 bit 
element  

P2 bit 
element  

C1 bit 
element  

P1 bit vector  1111 0110 0110 

P2 bit vector  0110 1111 1111 
C1 bit vector  0110 1111 1111 

 

B. Order primary and backup parents dynamically 
the primary parent with good quality link between the 

parent and its child has higher success probability of 
transmitting the child’s message. Therefore, we select primary 
parent with highest link quality to reduce error (improve 
accuracy). 

Data is sent level by level from the highest level to the 
lowest level. The level that sends out data is called 

transmission level.  In order to let children estimate their 

parent link quality, children need to listen when their parents 

are sending out messages. Suppose level i is a transmission 

level, children in level i+1 and parents in level i-1 listen 

messages from level i. 
In bitvector, since each node maintains a bit vector for its 

neighbors, a child has its  parents’  p-values. Each child orders 
its parents according to p-values. The parents with the highest 
(lowest) p-value is selected as the primary (last backup) parent. 
If two p-values are the same, we break ties by node id. With 
this protocol, we can make parent selection dynamic. For the 
previous example, please refer to Table 1. Child C1 should 
order its parents as P2 and P1 at the end of the interval 0, since 
P2 has higher p-value (111) than P1 (110).  

When a parent node receives a message from its child, it 
checks the bit vector attached  in  the  child’s  data  message  to see 
whether it is selected as the primary parent. 

In conclusion, each child decides the order of its primary 
and backup parents. Each child makes decision at the end of 
each interval, according to calculated p-values of its parents 
during  that  interval.  In  this  way,  parents’  order  can  be  selected  
dynamically by their children. And parents receive the parent 
selection decisions from their children. A parent may act 
different roles for different children. In other words, a parent 
node may be a primary parent for a child and a backup parent 
for another child. For example, in Figure 3, children C1 and C2 



have two common parents P1 and P2. P1 may be primary parent 
of C1, but backup parent of C2.     

C. Dynamic TDMA Scheduling for Each Level 
In order to do message correction, the primary parent 

needs to be scheduled to send out messages before the backup 

parents. Since parents order is changed by their children 
dynamically, we need to specify the sending orders 

dynamically. But an optimal parent scheduling algorithm is 

NP-hard, which can be proven as in [16], by reducing the 

schedule selection problem to the minimum feedback arc set 

problem. We design an approximate algorithm to do parent 
scheduling for each level. 

Without loss of generality, we describe our TDMA 

scheduling as designed for each level. For nodes at each level, 

we divide them into three time partitions, children partition, 

primary parent partition and backup parent partition. Nodes in 

children partition are scheduled to send messages before nodes 
in primary parent partition. And nodes in primary parent 

partition send message before nodes in backup parent 

partition. The reason that we define children partition is that a 

node can be both parent and sibling to a certain node in the 

same level. For example, in Figure 3, C2 selects C1, P1 and P2 

as its parents. So C1 is a parent and sibling of C2. Children 
node should send before their parents. The children partition is 

for those children nodes located in the same level as their 

parents. For the previous example, for the level 2 TDMA 

scheduling, C2 needs to send message before C1, because C2 is 

child of C1. C2 is located in children partition. The primary 

parent partition contains the nodes that are the primary parents 
of any of their children. The backup parent partition contains 

the nodes that are only the backup parents of all of their 

children. Note that at a cursory examination one may believe 

that a conflict exists in case two children C1 and C2 select 

common parents P1 as primary and backup, respectively, while 
P2 is chosen as backup and primary, respectively, as Figure 3 

shows. We note that in our protocol a parent is classified as 

backup parent partition only if that parent is not selected as 

primary parent for any sensors. That means P1 and P2 both are 

classified as primary parent partition. When a parent receives 

a message from a child, each node knows whether it is a 
primary   parent   according   to   its   children’s   bit   vector.   If   a  
parent does not receive a message from a child, the parent will 

use the previous parent order assigned by its child. Within 

each partition, the nodes are ordered by their ids in ascending 
order. Nodes with smaller ids send messages before nodes 

with larger ids.   
In this way, we achieve dynamic TDMA scheduling for 

each level.  

D. Online Fault Detection and Fault Recovery 
There are three types of faults in our scheme, and each 

fault has a corresponding fault recovery method. The first fault 
condition   is   that   a   primary   parent   does   not   receive   a   child’s  
message, but the side link between the primary and the backup 
parent does not fail. The second fault condition is that a 
primary  parent  does  not  receive  a  child’s  message  and  the  side  
link between the primary and the backup parent fails. The 

third fault is caused by the conflict of TDMA scheduling that 
a   child’s backup parent sends message before its primary 
parent. The last two kinds of faults cannot be handled in 
Ridesharing [7]. 

1) Primary link failure: The backup parents who 
overhear the message can handle missing messages in current 
interval. This function works the same way as Ridesharing [7]. 
If backup parent overhears primary parent, it will check bit 
vector of their common child, if the received bit of the 
common child is 0 in primary parent bitvector list. The backup 
parent will aggregate the common child message.  

2) Side link failure: Bitvector scheme handles side link 
failure by delaying recovery to the next interval. In interval i, 
when a side link fails, the backup parent does not know 
whether the parent with higher priority received the child 
message or not. In this case, the backup parent simply saves 
the child message until the end of next interval i+1. During 
the current interval i, the child will listen to their parent 
messages. (We assume that all links in the network are 
symmetric, that is, if   a   child   does   not   overhear   a   parent’s  
message, neither does the parent.) When the backup parent 
receives a message from its child in the next interval i+1, it 
checks   the   child’s   bit   vector   and   knows   whether   the   child’s  
primary parent received last interval i’s message, according to 
the r-bit of primary parent bit element. If the r-bit is 0, it 
means the child did not overhear the primary parent, so the 
primary parent did not   receive   the   child’s   message   from  
interval i. In this case, the backup parent will aggregate the 
saved child message from last interval i in the current interval 
i+1.  

For example, in Figure 3, suppose the side link between P1 

and P2 and the link between C1 and P1 fail, in interval i, the 

child C1 sends out a message mi1. P1 does not receive mi1 and 

sends out its own data message mi2. But due to the side link 

between P1 and P2 failure, P2 cannot overhear mi2 of P1, so 
that P2 does not know whether P1 aggregated mi1. P2 saves mi1 

in its message queue. At the same time, child C1 overhears 

each of its parent message and update its bit vector (P1: 0110, 

P2: 1111). In the next interval i+1, child C1 sends out another 

message m(i+1)1 with bit vector P2 1111 and P1 0110 (C1 

reorders its parents and selects P2 as its primary parent). P2 
received message m(i+1)1 with bit vector from C1 again. Since 

our links are all symmetric, according to C1’s   r-bit of its 

parents, P2 knows that C1 did not overhear P1, and that P1 also 

did not receive mi1 in the last interval i. Therefore, P2 

aggregates mi1 and m(i+1)1 in current interval i+1. In this way, 

P2 in interval i+1 handles the missing message mi1 from 
interval i. 

Since some faults are detected one interval after the faults 

really happen, we assign the message transmission rate to be 
twice that of the data rate of sensors. The impact of this fault 
recovery method is that more messages will be injected in the 
network and it consumes more energy. We evaluate the effects 
on the energy and performance in Section V. 

 



3) Overhearing messages after sending out own 
messages: Although unusual, there is a slight chance that 
some backup parents may send messages before the primary 

parent. And backup   parents   overhear   the   primary   parents’  
messages after sending out their own data messages. Their 

common  child’s  data   cannot   be   aggregated   if   primary  parent  
of those children fails. We allow nodes in a transmission level 

to continue listening to their siblings after sending out their 

own data messages. In this way, backup parents saves 

common child messages in current interval and aggregates it 

in the next interval, when the primary parent is detected to  

have failed to   aggregate   the   common   child’s   message.   This  
fault recovery method gains more network reliability by 

consuming more power. We evaluate the effects on the 
reliabiilty and energy in Section V. 

VI. EVALUATION 
In our evaluation, we compare bitvector scheme with 

Ridesharing [7] and FOMA [8] schemes. We use the following 
metrics to evaluate the performance of the three schemes: 

 Average relative RMS: the average normalized root 
mean square error to the correct result, which is metric 
of network accuracy.  In other words, this computes 
how far off the value received at the base station is from 
the actual results that should be received by the base 
station. RMS in our paper means RMS error.  

 Average correct message ratio: the ratio of correct 
messages received by base station and total number of 
messages, averaged over the number of intervals. 

 Average energy per node per interval: average energy 
consumed per node (total energy divided by number of 
nodes in the network) averaged over the number of 
intervals.  

 Average message overhead per interval: that is, the 
total amount of overhead per message (counted by 
bytes) transmitted in network averaged over the number 
of intervals. This metric represents the message 
overhead for different schemes transmitted in network. 

A. Simulation Setup  
In our simulation, we put a number of sensors in a grid 

distribution. Each sensor is only able to hear messages from 
its eight direct neighbors. Similar to Ridesharing [7], the 
power consumption is 65 mW for transmission, 21.0 mW for 
listening and reception, and 0 mW in sleep mode. The network 
bandwidth is assumed to be 38.4 Kbps. For comparison 
purposes, we implemented bitvector, Ridesharing, and FOMA 
and our new fault model based on fault duration. Each 
simulation runs for 16 sensing intervals. The results are 
averaged over 50 runs, to ensure statistical significance of the 
results. 

B. Experimental Results  
1) Accuracy comparison: We vary the link error rate and 

the fault duration, when the total number of nodes is 49 (7x7 
grid). We use two metrics, namely relative RMS and correct 

message rate, to evaluate network accuracy. Figure 4 shows a 
3D graph of the relative RMS when varying link error rate and 
fault duration. Figure 5 shows a 3D graph of the correct 
message rate when varying link error rate and fault duration. 
The bitvector is more robust (that is, better in both metrics) 
than Ridesharing and FOMA schemes when link error rate 
increases. When link error rate is 0.4, the bitvector has about 
20% improvement in RMS comparing to Ridesharing and 
46% improvement in RMS comparing to FOMA. This is 
because when link error rate is high, each child in bitvector 
reorders their parents more frequently to select the highest 
quality link to send out data first and therefore becomes more 
tolerant to faults. 

 
Figure 4 Relative RMS when varying link error rate and fault 

duration (the number of nodes is 49) 

 
Figure 5 Correct message rate when varying link error rate and 

fault duration (the number of nodes is 49) 

     The reasoning of parent reorder was validated through an 
experiment that changes the parent reorder frequency (i.e., the 
number of times parent were reordered averaged over the 
number of intervals). Figure 6 shows the parent reorder 
frequency when varying link error rate and fault duration. As 
expected, we found some correlation between network 
accuracy and parent reorder frequency when link error rate is 
not very high (between 0 and 0.4). That is, the more frequent 
the parents being reordered, the more accuracy we can get. 
But when the link error rate is high (larger than 0.4), the 
parent reorder frequency decreases, because the network is so 
lossy   that   children   cannot   overhear   their   parents’   messages  
very often, so that they cannot update their bitvectors and 
reorder their parents. We note that this case is rare, but it 
should still be studied.  



     Figure 7 shows that RMS of bitvector, FOMA and 
Ridesharing all decrease as fault duration increases. And 
bitvector decreases more in RMS error than FOMA and 
Ridesharing. It is because bitvector is able to estimate the link 
quality and reorder parents by link quality. When the fault 
duration gets bigger, parents with high quality is more likely 
being chosen, so that the RMS error decreases as fault 
duration increases. In addition, Figure 8 shows the parent 
reorder frequency versus fault duration when link error rate is 
0.4. As expected, the parent reorder frequency decreases when 
fault duration increases. The reason is that when network is 
stable, the link error rate tends to be constant, so that the 
parents’   order  of   each  node   is   stable.     Note   that   in Figure 6, 
there are more data points showing the same phenomenon for 
the other link error rate, but we can see the decrease is less 
steep for very low and very high link error rate. It is because 
for low link error rate, link quality is good and parent 

reordering happens infrequently for small fault duration. 
Parent reorder frequency does not increase obviously when 
fault duration increases. This is due to a similar phenomenon 
of that explaining of Figure 6, when the link error rate is larger 
than 0.4.  

We also carried out a sensitivity analysis of the schemes to 
network size; for that, we varied the network size from 25 
(5x5 grid) to 169 (13x13 grid) and changed link error rate to 
compare relative RMS. Figure 9 is a 3D graph showing the 
RMS while varying link error rate and network size. We found 
that all the three schemes perform better in smaller size 
network than larger size network. But bitvector scheme 
always has highest reliability. Note also from Figure 9 that the 
shape of the curves changes slightly with larger networks, 
making the RMS better/lower for very large or very small link 
error rate; this is due to a similar phenomenon of that 
explaining Figure 4. 

 
 

 

 
Figure 6 Parent reorder frequency when varying link error rate 

and fault duration (the number of nodes is 49) 

 

 
Figure 7 RMS vs fault duration (number of nodes is 49) 

 
Figure 8 Parent reorder frequency vs fault duration for link 

error rate of 0.4 

 
Figure 9 Network size while varying link error rate and RMS 

2) Energy comparison: In Figure 10 we show the measured 
average energy consumption per node per interval for the 
three schemes tested. In the experiment, we vary link error 
rate when there are 49 sensors with fault duration = 4 (fixed 
for the duration of the experiment to isolate the effects of error 
rate). The result shows that bitvector consumes more energy 
than FOMA, because it allows nodes in two levels (i.e., 



parents and children) to listen to the nodes transmitting. 
FOMA also has extra costs of energy for sending out many 
control messages (more exactly, 3n messages, where n is the 
number of sensors in the network). Ridesharing has the least 
energy consumptions because it only allows nodes to listen to 
their parents one level below, and each message has less 
overhead message than both bitvector and FOMA schemes 
(see below).   

 
Figure 10 Energy vs link error rate with fault duration 1 (the 

number of nodes is 49) 

 
Figure 11 Overhead vs link error rate with fault duration 1 (the 

number of nodes is 49) 

 
3) Message overhead comparison: In this experiment, we 
evaluate the message overhead in bytes send per interval. The 
result is shown in Figure 11. For Ridesharing, the message 
overhead for each node is 2 bits times the number of children. 
For bitvector scheme, each node needs to send out a bit vector 
with parent bit elements and children bit elements (4 bits per 
bit element). Therefore, bitvector has more overhead messages 
than Ridesharing. But the amount of overhead does not vary 
with link error rate for Ridesharing or for bitvector. In 
contrast, for FOMA, the overhead is as follows: the DAN 

(data aggregation node) selection phase needs to send out 
DAN messages from the root to all leaf nodes; in the signature 
construction phase, it needs to send out a signature message 
from each leaf node to the root; in the data collection phase, 
each node needs to send out data message including one 
aggregation signature and one or more partial results. For 
FOMA scheme, the amount of control messages decrease as 
the link quality gets worse, since fewer partial results need to 
be sent. 
4) Network density: To evaluate how network density1 affects 
the network reliability, we carried out an experiment that 
changes network density with fixed link error rate of 0.3, 
when there are 169 sensors in the network. The performance 
of all the schemes increases with the increase in network 
density as shown in Figure 12. For Ridesharing, that is 
because the probability that a node finds three parents 
decreases. For bitvector, there are two main reasons: (a) first, 
finding three parents is hard (see Ridesharing above), and (b) 
second, the probability to reorder the parents decrease due to 
lossy network. For FOMA, the success probability that a data 
message is sent to DAN node decreases.  

 
Figure 12 RMS for varying network density (The number of 

nodes is 169 and link error rate is 0.3) 

VII. CONCLUSION 

In this paper, we introduced a new realistic time-dependent 
fault model called fault duration that is ideal to model 
interference in nuclear power plant wireless monitoring 
environments, where interference in the network lasts for a 
fixed interval of time.  We also devised new in-network 
aggregation scheme, bitvector, for monitoring nuclear power 
plants. Our bitvector scheme embeds a dynamic link quality 
estimation mechanism that selects the best parent-child links 
for child nodes to propagate their results/data. Our scheme 
shows a much lower root mean square error (RMS) comparing 

                                                 
1 We changed the network density by creating holes in the 
network,  that  is,  removing  sensors  (or  making  them  “dead”)  
from randomly selected locations in the grid, with a uniform 
distribution. 



to state of the art (FOMA and Ridesharing), while it has lower 
message overhead, and it allows for fault detection and 
recovery, link quality estimation and parent reorder. In 
addition, the network accuracy improves as fault duration gets 
bigger. Bitvector also performs better for high network density. 
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