Lecture 5 Outline

- Context free grammars
- Abstract syntax trees
- Top down parsing
- Recursive descent

Reading Assignment
Section 4.1 - 4.4

Grammars and Syntax analysis
Grammar used to derive string or construct parser
First look at deriving strings
A sequence of production applications
S ⇒ ... ⇒ ... is a derivation
Can write derivation in linear form or tree form
E → E * E | E + E | (E) | id

Leftmost derivation
E ⇒ E + E ⇒ E * E + E ⇒ id * E + E ⇒ id * id + E ⇒ ...

Rightmost derivation
E ⇒ E * E ⇒ E + E ⇒ E * E + id ⇒ E * id + id ⇒ id * id + id

Parse trees
Can use parse tree -
- describes hierarchy
- filters out the order of replacement
Parse tree
- internal nodes are non-terminals
- leaves are terminal
Consider the string
id * id + id * id
Can draw 3 different trees!

Correct tree though is:
When more than one tree derives the same string,

- the grammar is ambiguous -
- need unambiguous grammars

Ambiguity is the property of a grammar and not the language - rewrite the grammar

Problem: precedence & associatively not specified

Consider precedence first

\[
E \rightarrow E \ast T \mid E + T
\]

string id + id * id + id

\[
\begin{array}{c}
\text{E } + \text{T} \\
\text{E } \ast \text{T} \\
\text{E } + \text{T} \\
\text{T} \\
\text{id}
\end{array}
\]

\[
\begin{array}{c}
\text{E } \ast \text{E} \\
\text{E } + \text{E} \\
\text{T} \\
\text{id}
\end{array}
\]

Two different orders of evaluation - neither correct

Soln: build precedence into grammar have different nonterminal for each precedence level

- lowest level - highest in tree (lowest precedence)
- highest level - lower in tree
- same level - same precedence

\[
E \rightarrow E \ast T \mid E - T \mid T
\]

\[
T \rightarrow E \ast F \mid T/F \mid F
\]

\[
F \rightarrow P \mid P \ast F
\]

\[
P \rightarrow \text{var} \mid \text{constant} \mid (E)
\]
Another problem is associativity.
Recursion on both sides - associativity is unclear.

\[E \rightarrow E + E \quad E \rightarrow E + E \]

Left recursion - left associate
Right recursion - right associate

\[E \rightarrow E \cdot T \quad \text{left associate} \]
\[E \rightarrow F ^ E \quad \text{right associate} \]

Grammars - discussed from point of view of generation
Syntax analysis - processing a string already constructed
- Is string in the language? - recognition
- If yes - compose derivation

Properties of BNF (important for syntax analysis)
- Any BNF grammar has a decidable parsing program
 - Can decide whether or not a string is in language.
- It is undecidable in general whether an arbitrary BNF grammar is
 - unambiguous.
- It is undecidable whether 2 grammars generate same language

Parsing
- Check if string is in language
- Construct parse tree or some representation

Types of Parsers

1. Universal Parsing - can parse any BNF grammar
 - e.g., Early's algorithm - powerful but too inefficient

2. Top-down - goal directed - expands string
 - Only works for certain class of grammars
 - Starts at root of parse tree and tries to get to leaves
 - Leftmost derivation
 - Can be efficiently written by hand
Before we explore parsing techniques, look ahead into what parser produces.

Abstract Syntax Trees

- A parser traces the derivation of a sequence of tokens
- The rest of the compiler needs a structural representation of the program
- Abstract syntax trees
 - Like parse trees but ignore some details
 - Abbreviated as AST

Abstract Syntax Tree. (Cont.)

- Consider the grammar

 \[
 E \rightarrow \text{int} | (E) | E + E
 \]
- And the string

 \[
 5 + (2 + 3)
 \]
- After lexical analysis (a list of tokens)

 \[
 \text{int}_5 \cdot \text{\texttt{+}} \cdot (\text{int}_2 \cdot \text{\texttt{+}} \cdot \text{int}_3)
 \]
- During parsing we build a parse tree ...
Example of Parse Tree

- Traces the operation of the parser
- Does capture the nesting structure
- But too much info
 - Parentheses
 - Single-successor nodes

Abstract Syntax Tree

- Also captures the nesting structure
- But abstracts from the concrete syntax
 => more compact and easier to use
- An important data structure in a compiler

Semantic Actions

- This is what we’ll use to construct ASTs
- Each grammar symbol may have attributes
 - For terminal symbols (lexical tokens) attributes can be calculated by the lexer
- Each production may have an action
 - Written as: \(X \rightarrow Y_1 \ldots Y_n \{ \text{action} \} \)
 - That can refer to or compute symbol attributes
Semantic Actions: An Example

- Consider the grammar
 \[E \rightarrow \text{int} \mid E + E \mid (E) \]
- For each symbol X define an attribute X.val
 - For terminals, val is the associated lexeme
 - For non-terminals, val is the expression's value (and is computed from values of subexpressions)
- We annotate the grammar with actions:
 \[
 \begin{align*}
 E &\rightarrow \text{int} \quad \{ E.val = \text{int}.val \} \\
 | & E_1 + E_2 \quad \{ E.val = E_1.val + E_2.val \} \\
 | & (E_1) \quad \{ E.val = E_1.val \}
 \end{align*}
 \]

Semantic Actions: An Example (Cont.)

- String: 5 + (2 + 3)
- Tokens: int5 '+' '(' int2 '+' int3 ')

<table>
<thead>
<tr>
<th>Productions</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>E \rightarrow E_1 + E_2</td>
<td>E.val = E_1.val + E_2.val</td>
</tr>
<tr>
<td>E_1 \rightarrow \text{int}_5</td>
<td>E_1.val = \text{int}_5.val = 5</td>
</tr>
<tr>
<td>E_2 \rightarrow (E_3)</td>
<td>E_2.val = E_3.val</td>
</tr>
<tr>
<td>E_3 \rightarrow E_4 + E_5</td>
<td>E_3.val = E_4.val + E_5.val</td>
</tr>
<tr>
<td>E_4 \rightarrow \text{int}_2</td>
<td>E_4.val = \text{int}_2.val = 2</td>
</tr>
<tr>
<td>E_5 \rightarrow \text{int}_3</td>
<td>E_5.val = \text{int}_3.val = 3</td>
</tr>
</tbody>
</table>

Semantic Actions: Notes

- Semantic actions specify a system of equations
- Order of resolution is not specified
- Example:
 \[E_3.val = E_4.val + E_5.val \]
 - Must compute E_4.val and E_5.val before E_3.val
 - We say that E_3.val depends on E_4.val and E_5.val
 - The parser must find the order of evaluation
Lecture 5 CS 2210

Dependency Graph

- Each node labeled E has one slot for the val attribute
- Note the dependencies

![Dependency Graph Diagram]

Lecture 5 CS 2210

Evaluating Attributes

- An attribute must be computed after all its successors in the dependency graph have been computed
 - In previous example attributes can be computed bottom-up
- Such an order exists when there are no cycles
 - Cyclically defined attributes are not legal

Lecture 5 CS 2210

Semantic Actions: Notes (Cont.)

- **Synthesized** attributes
 - Calculated from attributes of descendents in the parse tree
 - E.val is a synthesized attribute
 - Can always be calculated in a bottom-up order
- Grammars with only synthesized attributes are called S-attributed grammars
 - Most frequent kinds of grammars
Semantic Actions: Notes (Cont.)

- Semantic actions can be used to build ASTs
- And many other things as well
 - Also used for type checking, code generation, ...
- Process is called syntax-directed translation
 - Substantial generalization over CFGs

Constructing An AST

- We first define the AST data type
 - Supplied by us for the project
- Consider an abstract tree type with two constructors:

 \[
 \text{mkleaf}(n) = \begin{array}{c}
 n \\
 \end{array}
 \]

 \[
 \text{mkplus}(1, 2) = \begin{array}{c}
 \text{PLUS} \\
 1 \quad 2
 \end{array}
 \]

Constructing a Parse Tree

- We define a synthesized attribute ast
 - Values of ast values are ASTs
 - We assume that int_lexval is the value of the integer lexeme
 - Computed using semantic actions

\[
E \rightarrow \text{int} \quad E.ast = \text{mkleaf}(\text{int.lexval})
\]

\[
| E_1 \ast E_2 \quad E.ast = \text{mkplus}(E_1.ast, E_2.ast)
\]

\[
| (E) \quad E.ast = E.ast
\]
Parse Tree Example

- Consider the string `int 5 '+' '(' int2 '+' int3 ')'
- A bottom-up evaluation of the ast attribute:

 \[
 \text{E.ast} = \text{mkplus}(\text{mkleaf}(5), \text{mkplus}(\text{mkleaf}(2), \text{mkleaf}(3)))
 \]

Review

- We can specify language syntax using CFG
- A parser will answer whether \(s \in \text{L}(G) \)
- ... and will build a parse tree
- ... which we convert to an AST
- ... and pass on to the rest of the compiler
- This and other lectures
 - How do we answer \(s \in \text{L}(G) \) and build a parse tree?
 - After that: from AST to assembly language

Parsing

- Two approaches
 - Top down
 - Easier to understand and implement manually
 - Bottom up
 - More powerful - can be implemented automatically
Example Grammar

\[\text{<program>} \rightarrow \text{begin} \text{<stmts>} \text{end} \$ \]
\[\text{<stmts>} \rightarrow \text{<stmt>} ; \text{<stmts>} \]
\[\text{<stmts>} \rightarrow \epsilon \]
\[\text{<stmt>} \rightarrow \text{simplestms} | \text{begin} \text{<stmts>} \text{end} \]

Consider Grammar:

\[S \rightarrow AB \quad B \rightarrow bD \]
\[A \rightarrow aC \quad D \rightarrow d \]
\[C \rightarrow c \]

Consider string derivation:

\[S \Rightarrow \text{a c b d} \]

\[S \Rightarrow AB \quad (1) \]
\[S \Rightarrow AB \quad (5) \]
\[S \Rightarrow aC B \quad (2) \]
\[S \Rightarrow A b D \quad (4) \]
\[S \Rightarrow a C B d \quad (3) \]
\[S \Rightarrow A b d \quad (3) \]
\[S \Rightarrow a C b d \quad (4) \]
\[S \Rightarrow a C b d \quad (2) \]
\[S \Rightarrow a C b d \quad (2) \]

Leftmost

\[S \rightarrow A B \quad (1) \]
\[S \rightarrow A B \quad (5) \]
\[S \rightarrow a C b D \quad (2) \]
\[S \rightarrow a C b d \quad (4) \]

Top down & bottom up derivations

Top Down Parsers

1. Recursive descent - simple to implement, uses backtracking
2. Predictive parser - predict the rule based on the 1st m symbols without backtracking - restrictions on the grammar to avoid backtracking
3. LL(k) - predictive parser for LL(k) grammar
 - non recursive & only k symbol look ahead
 - table driven - efficient
Recursive Descent

\[
E \rightarrow T + E \mid T \\
T \rightarrow \text{int} \ast T \mid \text{int} \mid (E)
\]

Input string: int*int

Initial parse tree is E

Initial focus is at beginning of output

1. pick a production for E: \(E \rightarrow T \)
2. pick a production for T: \(T \rightarrow (E) \) match current input token int with (- failure, backtrack to T
3. Pick another production - \(T \rightarrow \text{int} \ast T \) move to int match current input; success; advance input, move to \(\ast \), match current input; success! advance input, move to T
4. Pick production for T: \(T \rightarrow \text{int} \) move to int, match current input success! input end, complete derivation

ACCEPT

Recursive descent parsing uses backtracking

- For a non-terminal in the derivation, productions are tried in some order until
 - a production is found that generates a portion of the input or
 - no production is found that generates a portion of the input, in which case backtrack to previous non-terminal
- Parsing fails if no production for the start symbol generates the entire input
- Terminals of the derivation are compared against input
 - match ~ advance input, continue
 - no match ~ backtrack

Implementation

Create a procedure for each non-terminal which does the following

1. checks if input symbol matches a terminal symbol in the grammar rule
2. calls other procedure when non-terminals are part of the rule
3. if end of procedure is reached, success is reported to the caller
Problem: doesn’t work if grammar is left recursive

Right recursion is ok – string is consumed

Left recursion – infinite loop – not consuming string

\[A \rightarrow A \ a \ | \ B \]

Left recursion can always be removed

Rewrite the grammar so productions “make” some progress

Changing a grammar to remove left recursion

Example: \(A \rightarrow AB \mid C \)

can be rewritten

- \(A \rightarrow CA' \)
- \(A' \rightarrow BA' \mid \epsilon \)

Note that the item \(C \), which is the first element of every string in the language is generated first
In general can eliminate all immediate left recursion:

\[A \rightarrow A \alpha \mid \beta \] then change to

\[A \rightarrow \beta A' \]
\[A \rightarrow \alpha A' \mid \epsilon \]

Example: \[<\text{expr}> \rightarrow <\text{expr}> + <\text{term}> \mid <\text{term}> \]
change to

\[<\text{expr}> \rightarrow <\text{term}> <\text{expr}'> \]
\[<\text{expr}'> \rightarrow + <\text{term}> <\text{expr}'> \mid \epsilon \]

Not all left recursion is immediate

May be hidden by multiple productions

\[A \rightarrow BC \mid D \]
\[B \rightarrow A E \mid F \]

See text section 4.3 for elimination of general left recursion

Summary of recursive descent

Recursive descent is a simple and general parsing strategy

- Left-recursion must be eliminated first—can be eliminated automatically
- Unpopular because it is thought to be too inefficient—
 Backtracking reparses the string
 Also must undo semantic actions!
- Techniques used in practice do no backtracking at
 the cost of restricting the class of grammar