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Introduction

We study point process models for multivariate event sequences

• Data consist of multiple sequences D = {yc}|D|c=1, yc = {(ti, ui)}
|yc|
i=1

• ti ∈ R is the time and ui ∈ {1, . . . ,U} the type of the i -th event
• For each type u of events, a conditional intensity function (CIF)

λu(t) = lim
dt→0+

E [N([t, t + dt))|Ht]

dt
is the instantaneous rate of events at time t given the history Ht

p(yc) =
U∏
u=1

 |yc|∏
i=1

λu(ti)
δ(ui,u) exp

(
−
∫ T c

0

λu(t)dt

) ,
U∏
u=1

pu(yc)

Two types of models have been developed independently over years
Hawkes Process GP-Modulated Point Process

λ3(t) = µ3 +
∑
tj<t

φ3uj(t − tj) λ3(t) = g(f (t)), f ∼ GP , g(·) ≥ 0

Regressive point process Latent-state point process
Once learned, applicable to unseen

sequences
Principled way to flexibly model

the intensity functions
Limited flexibility Inference on the same sequence

GP Regressive Point Processes
We propose a model combining the advantages of the above two models

λ3(t) = f (x(t))2

= f (t − s11(t), . . . , t − sQU (t))
2

• f ∼ GP(µ,K )
• squ (t) is the time of the q-th

(from last) event of type u before
time t
• x(t) = (t − squ (t))

U ,Q
u=1,q=1 are the

times since the last Q events for
each type u

K (x(t), x ′(t ′)) =
D∑

d=1

I [xd(t)] I
[
x ′d(t

′)
]

︸ ︷︷ ︸
K1

γd exp

(
−(xd(t)− x ′d(t

′))2

2αd

)
︸ ︷︷ ︸

K2

• I [xd(t)] = 1 iff the q-th (from last) event of type u exists

Conditional GPRPP

• Introduce a set of pseudo-input-points Z and their pseudo-observations
fZ = mZ + εZ with noise εZ
• Marginalize out εZ and maximize the likelihood conditioned on mZ

ln pũ(y |mZ) = ln

∫∫
pũ(y |fx)p(fx|mZ , εZ)p(εZ)dfxdεZ

= ln

∫
pũ(y |fx)p(fx|mZ)dfx

= lnE [pũ(y |fx)] ≥ E [ln pũ(y |fx)]
pũ is the density for event type ũ

Results
Learning the influence of past events. Solid lines are the CIFs after the

occurrence of an event of the same type. Dashed lines are the baseline CIFs.
Ground truth HP-GS[1] HP-LS[2] CGPRPP
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Test log-likelihood on MIMIC lab orders. Each dataset consists of a
different set of multiple types of lab test orders on patients.

Dataset 355 60 3 95 368 354 151 550 113 140

HP-GS[1] -3668 -4673 -3721 -4064 -3366 -4344 -3338 -1053 -4656 -3206
HP-GS-A[1] -3947 -5051 -3733 -4390 -3711 -4792 -3574 -1064 -5049 -3475
HP-LS[2] -6510 -7299 -5722 -5712 -5625 -7185 -5323 -1744 -7143 -4625
NSMMPP[3] -3664 -4660 -3737 -3982 -3309 -4409 -3763 -1039 -4539 -3244
CGPRPP -3249 -4246 -3759 -3933 -3378 -4225 -3093 -1175 -4276 -2942
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